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Abstract: This paper presents an automatic signal quality assessment method for 

continuously monitoring electrocardiogram (ECG) signals using wireless sensors 

attached to human bodies, with particular attention being given to ECG signals captured 

while the subjects are performing daily routine activities. In this study signal recordings 

from three databases are used: two ECG databases acquired using wireless body sensor 

networks from young subjects and elderly subjects during their daily routine activities, 

and the Massachusetts Institute of Technology - Boston’s Beth Israel Hospital arrhythmia 

database. From these databases, ECG signals are divided into small segments, each 5 

seconds long, and are then labelled with two levels of quality, i.e. ‘low-quality’ and 

‘high-quality’. For feature extraction, two levels of statistical features are employed: (i) 

window-based temporal features and (ii) segment-based features. The latter are derived 

from statistical values of the window-based temporal features and ECG signal 

amplitudes. A correlation-based feature selection algorithm is applied to find an optimal 

set of features. For signal quality classification, four machine-learning-based 

classification algorithms, i.e. Instance-based Learning, Decision Tree, Multilayer 

Perceptron and Rule Induction, are compared.  
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INTRODUCTION 
 
 Continuous health monitoring systems using wireless wearable sensors have drawn much 

attention from the research community [1-3]. By monitoring the patient’s vital signs, e.g. oxygen 

saturation, respiration rate, blood pressure rate, heart rate and body temperature, the feedback 

concerning the current health status can be provided in real time to the medical profession for 

making a suitable diagnosis. A continuous monitoring system can be applied to a wide range of 

medical applications for both the patient treatment and prevention, e.g. monitoring cardiovascular 

disease (CVD) patients [1, 2], monitoring patients during physical rehabilitation after surgery [3], 

and detecting emergency situations such as falls in an elderly person [4]. According to a report 

published by the World Health Organisation [5], CVDs have been one of the major causes of non-

communicable diseases (NCDs):  17.5 million deaths were due to CVDs in 2012, representing 46% 

of all NCD mortalities. Of this number, 7.4 million and 6.7 million were caused by heart attacks and 

strokes respectively. In order to prevent sudden cardiac deaths, continuous electrocardiogram 

(ECG) monitoring is needed for early detection of the patients’ abnormalities. Some studies [6-8] 

have recently presented continuous ECG monitoring systems using wireless sensors, which can 

probably be used for monitoring patients at home.  

 In continuous cardiac monitoring, ECG signals are easily contaminated by noises and 

artefacts, e.g. baseline drift and motion artefacts [9], which results in low-quality signals and leads 

to a high rate of false alarms [10]. Several studies have presented methods for automatic ECG signal 

quality assessment. Chudacek et al. [11] proposed a rule-based system for detecting common types 

of noises in ECG signals, e.g. baseline drift, power line interference and motion artefacts. Based on 

statistical values of ECG signal amplitudes, five noise-detection rules were used for classifying low-

quality signals. Kuzilek et al. [12] developed a three-step method for ECG signal quality 

assessment. First, a threshold-based rule constructed from statistical values of signal amplitudes was 

used to determine the quality score of each signal recording. Secondly, the quality score of each 

signal recording was independently determined using Support Vector Machine, with features 

including kurtosis values, covariance matrices and time-lagged covariance matrices. The quality 

scores obtained from these two steps were next combined and used for deciding whether a signal 

recording should be accepted. Zaunseder et al. [13] proposed a method for assessing the ECG signal 

quality based on Ensembles of Decision Trees (EDTs) created by bootstrap aggregating. ECG 

features related to signal frequency contents, e.g. power in the high frequency noise (45-250 Hz) 

and low frequency noise (0-0.5 Hz), were used for constructing EDTs. Johannesen et al. [14] 

presented a two-step algorithm for assessing the quality of ECG signals. Signal recordings with lead 

connection issues, i.e. signal absence and large voltage saturation, were first excluded. Next, three 

different quality scores, ranging from 0 to 10, were determined for each signal recording based on 

the type of ECG noises, i.e. baseline drift, power line interference and muscular noises. Using these 

quality scores, a rule set was employed to determine whether the signal recordings were acceptable. 

In all the above work [11-14], ECG signal recordings were obtained from Physionet Challenge 

2011 database [15], which contained signal recordings (each 10 seconds long) acquired from 

normal subjects using mobile devices. Further experiments on ECG signals captured while a subject 

is performing daily routine activities and on arrhythmic ECG signals are required.  

 In this study we propose a machine-learning-based method for automatic signal quality 

assessment in continuous wireless monitoring. To develop and validate the method, ECG signal 

recordings from three databases were used. ECG signals in the first and second databases were 
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acquired from young subjects and elderly subjects respectively, using wireless Body Sensor 

Networks (BSNs) attached to the human bodies. The young subjects and the elderly subjects were 

asked to perform sixteen and seven daily routine activities respectively. The third database was 

obtained from the arrhythmia database of Massachusetts Institute of Technology - Boston’s Beth 

Israel Hospital (MIT-BIH) public standard. To label ECG signals with quality levels, signals in 

these databases were discomposed into 5-second segments. Two levels of statistical features were 

extracted from the obtained signal segments. In the first level, window-based temporal features 

were extracted from statistical values, e.g. mean, variance and slope of each 1-second sliding 

window. In the second level, segment-based features were derived from statistical values of the 

window-based temporal features and those of ECG signal amplitudes. In order to select an 

appropriate set of features, a correlation-based feature selection algorithm was applied to the 

segment-based features. Four machine-learning-based classification algorithms, i.e. Instance-Based 

Learning (IBk), Decision Tree (J48), Multilayer Perceptron (MLP) and Rule Induction (PART), 

were used for constructing signal-quality classification models from the first database, and the best 

obtained classifier was tested on the other two databases.  

MATERIALS AND METHODS 

Data Description 

 Lead-II ECG signal recordings from three databases were used. The first and second 

databases, DB1 and DB2, were used for investigating the effects of the use of wireless-portable 

devices to capture signals from human subjects in free-living environments. The third database, 

DB3, was employed to investigate the performance of a signal quality assessment model for ECG 

signals captured from subjects with heart diseases.  In most studies on continuous monitoring using 

wireless devices [16-20], the number of human subjects used for framework evaluation was in the 

range of 5-27 subjects. For example, 5 subjects were used for evaluation of fall detection using 

acceleration and gyroscope signals [16], 12 subjects for evaluation of signal quality classification 

using ECG signals [17], and 20 subjects for evaluation of activity recognition using physiological 

signals [18]. For activity recognition using ECG signals [19, 20], 23 and 27 subjects were used for 

evaluation. In this study signal recordings for DB1 and DB2 were captured from a total of 20 

subjects through wireless devices.  

 DB1 comprises ECG recordings acquired from 10 healthy young volunteer subjects (3 

females and 7 males) aged between 27-44 years at Thammasat University. DB2 comprises ECG 

recordings acquired from 10 healthy elderly volunteer subjects (8 females and 2 males) aged 

between 57-71 years at Charoenkrung Pracharak Hospital. ECG recordings in both DB1 and DB2 

were acquired at 100 Hz with 12-bit resolution using a wireless BSN node [21] attached to the 

subject bodies. None of the subjects had a clinical record of heart disease.  

 In order to incorporate noises arising from body movements, ECG signals in DB1 and DB2 

were captured during routine daily activities. The young subjects were asked to perform 16 routine 

daily activities, consisting of 5 static and 11 non-static activities, 5 times each. The elderly subjects 

were asked to perform 7 routine activities, comprising 6 static activities and 1 non-static activity, 2 

times each. The lists of static activities and non-static activities are shown in Table 1 and Table 2 

respectively. Table 3 presents detailed hardware specifications of a wireless BSN node used in this 

study.  
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        Table 1.  Static activity list 
 

No.                     Activity type DB1 DB2 

1 

Sitting 

on a chair   

2 on a chair while reading a book  - 

3 on a bed -  

4 

Lying 

on back   

5 on left side -  

6 on right side -  

7 
Standing 

still (no movement)   

8 while deeply breathing  - 
 

    
   Table 2.  Non-static activity list 
 

No.                                                  Activity type DB1 DB2 

1 

Up and down movement of 

right arm  - 

2 left arm  - 

3 both arms  - 

4 Jumping up and down on the floor  - 

5 Twisting left-right-left at the waist  - 

6 
Bending 

forward  - 

7 backward  - 

8 

Walking 

on the floor   

9 upstairs  - 

10 downstairs  - 

11 Jogging   - 

 

      Table 3.  Detailed hardware specifications of wireless BSNs 
 

Hardware  Module Specification 

CPU 

(TI MSP130F149) 

 Clock 8 Kilobytes 

 RAM 2 Kilobytes 

 Flash memory 60 Kilobytes 

 Analogue-to-Digital converter resolution 12 Bits 

Radio transceiver 

(Chipcon CC2420) 

 Communication standard Wireless IEEE 802.15.4 

 Bandwidth  250 Kilobits per second 

 Frequency 2.4 Giga Hertz 

External storage  EEPROM 4 Megabytes 
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 The arrhythmia database of MIT-BIH public standard [22] was used as the third database, 

DB3. It consists of 48 ECG recordings acquired at 360 Hz with 11-bit resolution using holters. The 

recordings were captured from 47 subjects (22 females and 25 males) aged between 32-89 years. 

Each of them was an inpatient or outpatient of Beth Israel Hospital between 1975-1979. As 

suggested by a report published by the Association for the Advancement of Medical 

Instrumentation (AAMI) [23], four ECG recordings in DB3 were excluded (i.e. the recordings 102, 

104, 107 and 217) since they contained paced beats. The remaining 44 recordings were used in this 

study. 
 

ECG Signal Annotations 
 

 In order to annotate ECG signals with quality levels, the quality classes suggested by 

Clifford et al. [24] were applied. Signals without any noise or with some minor noises, i.e. signals in 

classes A and B [24], were considered as ‘high-quality’ signals. Signals that could hardly be 

interpretable with confidence, i.e. those in classes D and F [24], were regarded as ‘low-quality’ 

signals. To avoid confusion due to different quality levels, quality labelling was performed at the 

level of segments. ECG signals from DB1, DB2 and DB3 were decomposed into small segments, 

each of which was 5 seconds long. A segment was labelled as ‘low-quality’ if 40% or more of its 

ECG signal samples (totalling approximately 2 seconds) were assessed as low quality. It was 

labelled as ‘high-quality’ otherwise. Figure 1 illustrates the difference between a high-quality signal 

segment and low-quality signal segments caused by some common types of ECG noises [9]. The 

distribution of signal qualities in each database is shown in Table 4. 

 
 

 

Figure 1.  Examples of ECG signals in DB1: a high-quality segment (a), compared with low-quality 
segments caused by baseline drift (b), power line interference (c) and motion artefacts (d) 
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Table 4.  No. of segments labelled with each quality level in DB1, DB2 and DB3 

Database 
Signal quality level 

Total 
Low High 

DB1 287 2,219 2,506 

DB2 87 382 469 

DB3 - 15,884 15,884 

 
Feature Extraction 

 Based on our observation and analysis of ECG signals, the sum of signal amplitudes in a 

signal portion corrupted by noises, e.g. baseline-drift noises and motion artefacts, was usually 

significantly greater than that in a noiseless signal portion (see Figure 1 for example). Amplitudes 

of ECG signals can therefore be used as features for separating noisy signal portions from noiseless 

ones. Signal-amplitude-based features (i.e. statistical values of signal amplitudes) were also 

employed for signal quality classification in several studies [11, 12, 14, 25]. 

 In order to minimise the variation among subjects in different databases, ECG signals in a 

database (DB1, DB2 or DB3) were normalised with median and standard deviation values calculated 

over the same database. For signal quality assessment, two levels of statistical features, i.e. window-

based temporal features and segment-based features (5 seconds per one segment), were extracted. 

Six window-based temporal features, including mean, variance and slope of signal amplitudes, were 

first extracted from normalised ECG signals using a window of size 1 second, shifted at each step 

by 0.5 second. The statistical values of the window-based temporal features were then used for 

extracting 36 segment-based features. Four additional segment-based features were calculated from 

the statistical values of signal amplitudes. Tables 5 and 6 show the window-based temporal features 

and segment-based features used in this study. 
 
Feature Selection 
 

 In machine-learning-based classification, the feature selection is an important data 

processing step for eliminating irrelevant and redundant information, and it can often enhance the 

classification performance. Hall [26] proposed a correlation-based feature-selection (CFS) 

algorithm that is both fast and effective for a feature section [27]. CFS is a heuristic method for 

finding a subset of features that are strongly correlated with a particular class while being 

uncorrelated with other classes. CFS has been widely used for reducing a feature space and 

determining appropriate features in several studies, e.g. cardiac arrhythmia classification using ECG 

signals [28, 29], sleep apnea detection using ECG signals and saturation of peripheral oxygen 

signals [30], sleep-stage classification using ECG signals [31], and activity recognition using 

acceleration signals [32]. In this study CFS with the best first-search strategy was applied to 

selection of an appropriate feature subset for signal quality classification. By applying the CFS to 

segment-based features in DB1, 5 features, i.e. F2, F5, F8, F20 and F38, were selected from the 40 

original features. These selected features are given in Table 7. 
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          Table 5.  Window-based temporal features 

Feature Description 

T1 Mean of ECG amplitudes 

T2 Variance of ECG amplitudes 

T3 Summation of ECG amplitude slopes 

T4 Mean of absolute ECG amplitudes 

T5 Variance of absolute ECG amplitudes 

T6 Summation of slopes of absolute ECG amplitudes 

    Table 6.  Segment-based features (calculated from window-based temporal features and signal  
     amplitudes within each 5-second segment) 

Feature Description 

F1-F3 Means of T1, T2 and T3 respectively 

F4-F6 Variances of T1, T2 and T3 respectively 

F7-F9 Slopes of T1, T2 and T3 respectively 

F10-F12 Maximum values of T1, T2 and T3 respectively 

F13-F15 Minimum values of T1, T2 and T3 respectively 

F16-F18 Differences between maximum and minimum values of T1, T2 and T3 respectively 

F19-F21 Means of T4, T5 and T6 respectively 

F22-F24 Variances of T4, T5 and T6 respectively 

F25-F27 Slopes of T4, T5 and T6 respectively 

F28-F30 Maximum values of T4, T5 and T6 respectively 

F31-F33 Minimum values of T4, T5 and T6 respectively 

F34-F36 Differences between maximum and minimum values of T4, T5 and T6 respectively 

F37 Mean of absolute ECG amplitudes 

F38 Variance of ECG amplitudes 

F39 Summation of ECG amplitude slopes 

F40 Difference between maximum and minimum ECG amplitudes 

                          Table 7.  Segment-based features selected by CFS algorithm 

Feature Description 

F2 Mean of T2 within 5-second segment 

F5 Variance of T2 within 5-second segment 

F8 Slope of T2 within 5-second segment 

F20 Mean of T5 within 5-second segment 

F38 Variance of signal amplitudes within 5-second segment 
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Signal Quality Classification 

 Four well-known machine-learning-based algorithms implemented in Java [27], namely IBk 

(Instance-based Learning), J48 (Decision Tree), MLP (Multilayer Perceptron) and PART (Rule 

Induction), were used for signal quality classification in this study. The IBk, also known as lazy 

learning, performs a classification based on a comparison between new instances (test data) and 

known instances stored in the memory (training data). A k-nearest neighbour algorithm is a basic 

IBk method used for implementing an IBk classifier. The J48 is an implementation of a well-known 

J48 algorithm, i.e. a C4.5 algorithm. In J48, a greedy algorithm is adopted for constructing decision 

trees and for reduced-error pruning. The MLP algorithm is one of the most versatile artificial neural 

network models. It is a feed-forward model for mapping input data to an appropriate output. It can 

solve non-linearly separable problems and has been widely used for pattern recognition and 

classification. The PART algorithm is used for constructing a set of rules based on selection of leaf 

nodes with the largest instance coverage in partial C4.5 decision trees. 

 To evaluate the performance of the obtained signal quality classifiers, a leave-one-out cross- 

validation method [33] was applied to the ECG recordings in DB1, which were acquired from 10 

subjects. In each cross-validation step ECG signals from nine subjects were employed for 

constructing a classification model, and ECG signals from the remaining subject were used for 

testing. ECG recordings in DB2 and DB3 were used as test data in order to evaluate the robustness 

and generalisation capacity of the signal quality classifier constructed from the entire DB1. Table 8 

summarises the utilisation of each database. 

 Table 8.  Database utilisation for evaluating signal quality classifier 

Experiment 

Utilisation 

DB1  

(2,506 segments) 
DB2  

(469 segments) 
DB3  

(15,884 segments) 

#1 Leave-one-out cross validation - - 

#2 Training data Test data - 

#3 Training data - Test data 

 

EXPERIMENTS AND RESULTS 
 
 The performance of signal quality assessment is measured using four standard measures: 

sensitivity, specificity, selectivity and accuracy [34]. In this study true positives and true negatives 

are signal segments accurately assessed as ‘low-quality’ and ‘high-quality’ respectively, while false 

positives and false negatives are those inaccurately assessed as ‘low-quality’ and ‘high-quality’ 

respectively. 

 Referring to Table 8, ECG signal recordings from the databases DB1, DB2 and DB3 were 

employed for different experimental objectives. Signal recordings from DB1 were used for 

evaluating the performance of our proposed signal quality classification framework using a leave-

one-out cross validation. In addition to such cross validation on DB1 itself, signals from DB1 were 

also used to construct a signal quality assessment model for classifying unseen signals in DB2 and 

DB3 for the purpose of evaluating the robustness and generalisation capacity of the model. The 
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database DB3 was also used for evaluating the performance of the model in arrhythmia signal 

recordings.     

 To construct the signal quality classification model, four well-known algorithms, i.e. IBk, 

J48, MLP and PART, were used with default parameter values of Weka (API version 3.6.5) [27]. 

DB1 was employed for evaluating the performance of the four algorithms. Using the leave-one-out 

cross validation, Table 9 shows a performance comparison for the four algorithms. When all 

features (40 features, cf. Table 6) were used, the J48 algorithm gave the highest accuracy of 

96.73%, with the sensitivity of 82.58%, the specificity of 98.56% and the selectivity of 88.10%. 

When the selected features (5 features, cf. Table 7) were used, the MLP algorithm yielded the 

highest accuracy of 97.37%, with the sensitivity, specificity and selectivity of 83.62%, 99.14% and 

92.66% respectively. Table 10 shows the overall classification performance of the MLP classifier.  

 Table 11 shows the confusion matrix for static and non-static activities obtained using the 

MLP classifier constructed from the selected features in DB1. The accuracy values are 98.43% and 

96.72% for static and non-static activities respectively. The results demonstrate that the MLP signal 

quality assessment model can reliably classify ECG signals captured while the subjects are 

performing daily routine activities, with an accuracy of more than 95%. 

Table 9. Performance comparison of signal quality assessment using machine-learning-based 
algorithms on DB1 

Algorithm 
Using all features  Using selected features 

SEN SPE SEL ACC  SEN SPE SEL ACC 

IBk (k = 1) 75.61% 97.70% 80.97% 95.17%  83.97% 97.84% 83.39% 96.25% 

IBk (k = 3) 75.96% 98.69% 88.26% 96.09%  83.28% 98.65% 88.85% 96.89% 

J48 82.58% 98.56% 88.10% 96.73%  81.88% 99.23% 93.25% 97.25% 

MLP 79.44% 98.87% 90.12% 96.65%  83.62% 99.14% 92.66% 97.37% 

PART 79.09% 98.56% 87.64% 96.33%  82.58% 99.01% 91.51% 97.13% 

Note: SEN = sensitivity, SPE = specificity, SEL = selectivity, ACC = accuracy, k = the number of nearest neighbours for Instance-

based Learning 
 

                  Table 10.  Classification performance of MLP using DB1 

Signal quality level 
Using all features  Using selected features 

Low High  Low High 

A
ct

ua
l Low 228 59  240 47 

High 25 2194  19 2200 

Sensitivity 79.44%  83.62% 

Specificity 98.87%  99.14% 

Selectivity 90.12%  92.66% 

Accuracy 96.65%  97.37% 
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   Table 11.  Confusion matrix for static and non-static activities in DB1 

                         using MLP with selected features 
 

Activity type Quality level 
Predicted 

Accuracy 
Low High 

Static 
Low 43 15 

98.43% 
High 0 895 

Non-static 
Low 197 32 

96.72% 
High 19 1305 

  
 To implement the signal classification model for real-time continuous monitoring, a feature 

set of small size is preferred. Based on the results shown in Table 9, the MLP algorithm with the 

five selected features was chosen for classifying signal quality levels. In order to evaluate its 

robustness, the MLP classifier constructed from DB1 (the young-subject database) was employed to 

classify ECG signals from DB2 (the elderly-subject database) and DB3 (the standard arrhythmia 

database). 

 Table 12 presents the performance of the MLP model evaluated on DB2. The overall 

accuracy values are 93.39% and 94.67% using all features and selected features respectively. Table 

13 shows the relation between predicted signal quality levels and actual activity types in DB2. For 

static and non-static activities, the overall accuracy of 94.30% and 96.39% respectively are 

achieved.  

 The performance of the MLP classifier using DB3 is shown in Table 14, with average 

accuracy values of 93.65% and 98.05% when all features and selected features respectively are 

used. Since all ECG recordings in DB3 were captured in a hospital-based environment with no 

activity of daily living being involved, all ECG signals in this dataset are annotated as ‘high-

quality’. Sensitivity and selectivity are therefore not calculated. 

                  Table 12.  Classification performance of MLP using DB2 

Signal quality level 
Using all features  Using selected features 

Low High  Low High 

A
ct

ua
l Low 76 11  80 7 

High 20 362  18 364 

Sensitivity 87.36%  91.95% 

Specificity 94.76%  95.29% 

Selectivity 79.17%  81.63% 

Accuracy 93.39%  94.67% 
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      Table 13.  Confusion matrix for static and non-static activities in DB2  
                  using MLP with selected features 
 

Activity type Quality level 
Predicted 

Accuracy 
Low High 

Static 
Low 68 5 

94.30% 
High 17 296 

Non-static 
Low 12 2 

96.39% 
High 1 68 

 

                  Table 14.  Classification performance of MLP using DB3 

Signal quality level 
Using all features  Using selected features 

Low High  Low High 

A
ct

ua
l Low 0 0  0 0 

High 1,009 14,875  309 15,573 

Sensitivity N/A  N/A 

Specificity 93.65%  98.05% 

Selectivity N/A  N/A 

Accuracy 93.65%  98.05% 

   
 With reference to Table 14, 309 segments are predicted as ‘low-quality’ and 15,573 

segments as ‘high-quality’, using MLP with selected features. These low-quality and high-quality 

segments (5 seconds each) consist of 2,416 and 98,540 heartbeats respectively. Table 15 shows the 

association between five AAMI heartbeat classes [23], which are standard classes widely used in 

ECG classification [35-37], and the predicted signal quality levels. The 2,416 heartbeats predicted 

as ‘low-quality’ are divided into 1,808 non-ectopic beats, 7 supraventricular ectopic beats, 333 

ventricular ectopic beats, 256 fusion beats and 12 unknown beats. The non-ectopic beats classified 

as ‘low-quality’ are obtained mainly from two ECG recordings in DB3, i.e. the recordings 116 and 

213. Most of ventricular ectopic beats and fusion beats that are classified as ‘low-quality’ belong to 

the recording 213. A closer investigation reveals that the ECG amplitude values of the recordings 

116 and 213 are much higher than those of the remaining recordings in DB3 (the other 42 

recordings). ECG segments in recordings with high outlier amplitude values, such as the recordings 

116 and 213, can be excluded by some additional preprocessing steps, e.g. using threshold-based 

rules.   

 Table 16 provides a summary of related studies on ECG signal quality classification. In this 

study our machine-learning-based framework was evaluated on ECG signals captured through 

wireless BSNs from young subjects (DB1) and elderly subjects (DB2) while they were performing 

daily routine activities, and also on ECG signals obtained from the publicly available MIT-BIH 

arrhythmia database (DB3). Using the MLP classifier with a combination of window-based temporal 

and segment-based features, accuracy values of 97.4%, 94.7% and 98.1% were achieved on DB1, 
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DB2 and DB3 respectively. As demonstrated by these results, our framework performs well 

compared to existing related studies (cf. Table 16) and can potentially be used for signal quality 

assessment in continuous ECG monitoring. 

Table 15.  AAMI heartbeat types associated with beats with predicted signal qualities from DB3 

AAMI class Total beats 
Predicted signal quality 

Low High 

Non-ectopic beats 89,896 1,808 88,088 

Supraventricular ectopic beats 2,773 7 7,463 

Ventricular ectopic beats 7,470 333 2,440 

Fusion beats 802 256 546 

Unknown beats 15 12 3 

Total 100,956 2,416 (2.39%) 98,540 (97.61%) 
  

Table 16.  Comparison of existing studies on signal quality classification 

Ref. Database used Device type Features/Criteria Method ACC 

[11] 
(2011) 

PhysioCha2011 Mobile phones 
5 threshold-based rules  

concerning signal amplitude contents 
Rule-based 

system 
86.8% 

[12] 
(2011) 

PhysioCha2011 Mobile phones 

6 threshold-based rules  
concerning signal amplitude contents  

+  segment-based features  
based on covariance matrices, 
kurtosis values and means of  

signal amplitudes 

Rule-based 
system  

+  
SVM  

91.8% 

[13] 
(2011) 

PhysioCha2011 Mobile phones 
35 segment-based features  

based on signal frequency contents 
EDTs 90.4% 

[14] 
(2012) 

PhysioCha2011 Mobile phones 
5 threshold-based rules 

concerning signal amplitude and  
signal frequency contents 

Rule-based 
system 

91.2% 

[17] 
(2012) 

ECG signal recordings captured from 
12 young subjects  

during 5 ADL 

Contactless ECG 
devices 

17 segment-based features  
based on statistical values of  

signal amplitudes 
SVM 91.0% 

[25] 
(2014) 

PhysioCha2011 Mobile phones 
Signal quality indices  

based on combination of energy,  
concavity and correlation features 

ANN 93.6% 

This study 

ECG signal recordings captured from 
10 young subjects  

during 16 ADL Wireless  
BSNs 

5 segment-based features 
 based on two levels of statistical features, 
i.e. window-based temporal features and 

segment-based features 

MLP 

97.4% 

ECG signal recordings captured from 
10 elderly subjects  

during 11 ADL 
94.7% 

MIT-BIH arrhythmia database 
Hospital-based 

holters  
98.1% 

Note: ADL = activities of daily living, ACC = accuracy, SVM = Support Vector Machine, EDTs = Ensembles of Decision Trees,  ANN = Artificial 
Neural Network, MLP = Multilayer Perceptron  
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CONCLUSIONS  
 

 We have presented a machine-learning-based method for automatic ECG signal quality 

assessment in continuous wireless monitoring. The experimental results have shown that the 

proposed method yields an average accuracy of more than 96%. The method can thus be reliably 

applied to improve the performance of arrhythmia classification in continuous ECG monitoring by 

reducing false arrhythmia alarms arising from low-quality signal portions. 
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