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Abstract: The well-known degenerating neurological diseases that cause dementia include 

Alzheimer’s disease (AD), Huntington’s disease (HD) and Pick’s disease (PD). The spatial 

features of whole-brain neuroimages depicted by AD, HD and PD diseases have been little 

explored and thus allow new directions in research. In this study we explore the possibility of 

distinguishing between patients with neurological disorders and the healthy or normal 

cognitive (NC) elderly, paying special attention to statistical similarity measurements through 

histogram analysis. The whole-brain spatial histogram and 2D-texture-descriptor local binary 

pattern based on rotation invariance are utilised. The histogram comparison by means of the 

probability of different grey-level appearance needs less computational requirements and has 

satisfactory recognition accuracy. Various pseudo-metrics for comparing histogram 

distributions, as well as the data from 21 NC, 24 AD, 18 HD and 16 PD brain magnetic 

resonance images, were used. The statistical analysis, which is associated with correlation and 

concordance correlation coefficients, compares pairs of diseases in order to assess the 

effectiveness of texture features in differentiating between patients with dementia and the 

healthy elderly. 

 

Keywords:  degenerative neurological diseases, texture analysis, distance metrics, spatial 

feature analysis, brain magnetic resonance images 
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INTRODUCTION  
 

From the imaging techniques’ point of view, aging is also associated with alterations in 

tissue intensity and contrast. Normal aging leads to atrophy of the grey matter and white matter as 

well as an increase in the cerebro-spinal fluid [1, 2]. Prince et al. [3] estimated that 35.6 million 

people lived with dementia worldwide in 2010. In the upcoming 20 years this number will almost 

double. It is estimated that in 2030 about 65.7 million people will be affected by dementia. Also, 

they have shown that in 2010, 58% of all people with dementia lived in countries with low or 

middle incomes, and they anticipate an increase of up to 63% in 2030 and 71% in 2050. 

Additionally, the elderly population is expected to double by 2030, and it is well known that 

dementia prevalence increases with age. Greater attention and particular concern are given to 

dementia because the decline in memory and other cognitive functions leads to a substantial impact 

on individuals, families and healthcare systems.   

In this study we propose a method to distinguish those with dementia disorders (as 

Alzheimer’s, Huntington’s and Pick’s diseases) from the healthy or normal cognitive (NC) elderly 

based on statistical similarity measurements through histogram analysis. This method belongs to the 

diagnosis-facilitating techniques. Alzheimer’s disease (AD) is a neurological disorder with a severe 

loss of memory and cognitive abilities and characterised by a gradual onset and worsening of 

symptoms [4]. Generally, people aged 65 years or older are affected. The average lifespan after 

diagnosis is typically about 8 years [5, 6]. Cuingnet et al. [7] reported a comparative study of 

different methods for sophisticated feature selection in the classification of patients with AD based 

on anatomical magnetic resonance (MR) images. The goal was to assist in the early diagnosis of 

AD. The authors concluded that those methods did not perform substantially better than simpler 

ones. Also, they found that the oldest controls and the youngest patients were more often 

misclassified. AD today remains incurable but it is vital for patients to receive an effective 

treatment to slow down the progression of symptoms, improve life quality and extend life 

expectancy. Huntington’s disease (HD) is an inherited, degenerative brain disease that affects the 

mind and body. It usually begins during mid-life, and both the intellectual decline and irregular and 

involuntary movements of the limbs or facial muscles are the specific features. Image analysis does 

not provide much information on this disease. Majid et al. [8] analysed T1-weighted structural scans 

to evaluate the neural degeneration in the pre-manifest stage of HD. Their focus was on the 

contribution of biomarkers in atrophy detection that is consistent with the known pre-manifest stage 

of HD. Pick’s disease (PD) is a rare brain disorder, characterised morphologically by severe atrophy 

of the tissues in the frontal and temporal lobes of the brain and by the presence in the cerebral 

cortex of degenerative neuronal lesions or abnormal bodies (Pick’s bodies). PD usually begins 

between the ages of 40-60. The symptoms are similar to AD.  

Texture analysis (TA) technique provides a means of obtaining tissue information such as 

the features of being smooth or rough, regular or irregular and coarse or fine, and the random 

appearance patterns. Texture features can be used to characterise the properties of tissues or to 

detect structural abnormalities in different tissues [9, 10]. The discriminative power of TA in the 

diagnosis of degenerating neurological diseases that cause dementia has not been largely studied. At 

the early stage of research, co-occurrence matrix-based TA has been found to be sensitive in 

differentiating AD patients from NC persons [11]. Later, Li et al. [12] found that the features 

extracted from MR images using co-occurrence matrices could be correlated with the scores of the 

mini mental-state exam, which is a test of cognitive impairments typically used in AD medical 
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diagnosis. Bicacro et al.[13] successfully used histograms of the gradient magnitude and  orientation 

and Haar-like features to extract the texture of deoxy-D-glucose positron emission tomographic 

images in order to distinguish between AD patients, patients with mild cognitive impairment and 

NC persons. Gray et al. [14] explored previous knowledge about the disease in order to segment the 

regions that are typically affected by AD. Only the average intensities of such regions of interest 

were used as features. Lillemark et al. [15] used both the surface connectivity marker and centre of 

mass-based marker as tools for the classification of NC, mildly-impaired cognitive, and AD 

subjects. The surface connectivity marker could detect mild cognitive impairment by means of an 

area under the curve of 0.599 for the 1-year period. Illán et al. [16] proposed a fully automatic 

computer-aided diagnosis system in order to improve the accuracy of early diagnosis of AD. The 

final classification was based on an automatic feature selection. Also, a combination of component-

based support vector machine classification and a pasting vote technique that combines an 

unweighed sum of votes with the relevant information contained in the analysed areas was used.  

Each MR image has an intensity that reflects both the physiological state of the tissues and 

impact of the diseases [17]. Any variation of the spatial intensity distribution results in an abnormal 

scan. Apparently, the histogram technique that measures the frequency of occurrence of the 

different grey-scale patterns throughout the image is an attractive method to assess and characterise 

the texture of an image. In practice, the number of entries in the histogram is so large that even for 

small neighbourhoods it is impossible to take into account all the possible patterns. The simplest 

way to overcome this drawback is by decreasing the number of grey levels. The Local Binary 

Pattern (LBP) method represents a proper solution [18, 19]. 

In this paper we focus on the LBP method. In the last decade the LBP application in the 

medical field has been limited to adenoma detection in endoscopic images and nodular thyroid 

segmentation in ultrasound images [20, 21]. Oppedal et al. [22] used the 2D-LBP method to extract 

the textural information of white matter lesions in MR images in order to diagnose different types of 

dementia including, but not restricted to, AD. The LBP is a grey-scale invariant local texture 

descriptor with minimal computational complexity. Recently, LBP was used to include prior 

information about the localisation of changes in the human brain and to differentiate AD versus NC 

groups by using a support vector machine [23, 24]. Chang et al. [25] used isotropic LBPs on three 

orthogonal planes to distinguish between attention deficit and hyperactivity disorders based on 

morphological information without using functional data. They used various parcellations and 

different image resolutions but their conclusion was that parcellation information did not improve 

the results. Also, the LBP method avoids a course of dimensionality [26, 27].  

As a step forward, our goals are to detect global differences in spatial patterns in patients 

suffering from degenerating neurological diseases that cause dementia and to analyse the texture 

dissimilarity between healthy brains and those affected by dementia. More precisely, we use the 

well-known descriptor, LBP, for texture extraction and histogram comparison. The relative 

differences between histograms can be quantified across different pathological subjects and act as 

an indicator for differentiating dementia from NC subjects, and can also lead to an early detection of 

the degenerating neurological diseases.  

The main purpose of this work is to develop a method with less computational complexity 

but good enough to work equally efficiently for various data sets. The specific objectives of this 

study are: 1) to determine the existing structural changes relative to NC subjects; 2) to use various 

pseudo-metrics for comparing histogram distributions; and 3) to use the well-known statistical 
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procedures (involving the use of correlation and concordance correlation coefficients) for a paired 

comparison of results across the data set.   
 
MATERIALS AND METHODS   
 

Data Sets and Data Processing 
 

The brain atlas images used in this study were retrieved from the Harvard Medical School 

database [28]. A series of T2-weighted MR slices in 2D format belonging to four different MR 

image data sets were used in the experiments. In total, 21 MR images of the healthy (or NC) elderly, 

24 AD patients, 18 HD patients and 16 PD patients were used. Slices from the axial plane and 256  

256 in-plane resolution were carefully selected in terms of position, orientation and scale of the 

reference NC images and the images corresponding to AD, HD and PD. Within the sequence 2D+T, 

similar slices (i.e. those placed at the same level) were selected. A flow chart of the data analysis 

procedure is shown in Scheme 1. We implemented the proposed technique by means of MATLAB. 

 

 
 

Scheme 1.  Flow chart of data analysis procedure 

 

Preprocessing: Skull Stripping 
 

We develop our own method of eliminating outward bone rings (skull-stripping), while the 

white matter, grey matter and cerebro-spinal fluid should remain intact in the brain MR image 

obtained. The skull-stripped brains are the input for the LBP algorithm and histogram comparison. 

In our algorithm the brain and non-brain regions are automatically identified by means of a mask 

produced by segmentation and morphological operations. This mask includes brain tissues and 

eliminates the skull, skin, muscles, fat, eyes, dura mater and bone. The background or non-mask 

tissues is associated with zero intensity. The foreground or mask (including cerebral matter) gets all 

the non-zero intensity of pixels. Then an image-subtraction algorithm for the original image against 

the masked image is used. Figure 1 shows some samples of the skull-stripped MR images of the 

brain used in the experiments. 

The Dice similarity metric was used to assess the segmentation results [29]. The average 

Dice scores of 0.96450.0272 for NC, 0.96050.0072 for AD, 0.94710.0312 for HD and 

0.92760.0092 for PD were computed. 
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Figure 1.  Samples of skull stripped brain MR images: (a) NC; (b) AD; (c) HD; (d) PD 

 

Two-dimensional LBP 
 

The LBP is a texture operator used to convert the pixels into an image by thresholding the 

neighbourhood of each pixel and converting the result into a binary number. Since the brain MR 

images are strongly affected by non-uniform illumination, the robust invariance against the 

monotonic grey level of the LBP makes it a good texture operator. The LBP acts on every local 

region uniformly. It encodes the texture of the local neighbourhood of a given pixel  ccc yxX ,  in 

a 3 × 3 neighbourhood, using the central value as a threshold. The encryption is done by 

multiplying the threshold values by weights given by the corresponding pixels and then summing 

up the result. Each peripheral pixel of the 3 × 3 neighbourhood is assigned a value 0 or 1 if its grey-

level intensity is below or above the intensity of the central pixel respectively. As the 

neighbourhood consists of 8 pixels, if the grey value of the central pixel and the neighbouring pixels 

are considered, a total of 28 = 256 different labels can be obtained. The kernel function is 
 

                                                                                                             
where Ic is the grey level of the central pixel and Ij the grey levels of the peripheral pixels j{0, 

1,..,7}. 
After computing the LBPs associated with all pixels (by sliding the mask over the image), 

the texture of the image is extracted by means of the histogram. However, the number of distinct 

patterns grows exponentially with the number of sampling points (~2j) and the practical estimation 

of the genuine occurrence probabilities is very difficult. In this case the histogram stability has 

become a serious issue because if we assume that there are 24 neighbours for the central pixel, then 

more than 16 million patterns exist. To overcome this drawback, a rotation-invariant LBP (RI-LBP) 

operator has been introduced [19, 30]. It reduces the feature vector length of the LBP needed in the 

texture analysis and is less sensitive to variances in rotation, scale and illumination. The RI-LBP 

descriptor is obtained by converting the squared 3  3 mask into a circular neighbourhood indicated 

as (8; 1). The circle is centred at the central pixel of the mask. The first number is the number of 

pixels at the periphery and the second is the radius of the circle (in pixels). The peripheral pixels’ 

location is dependent on the central pixel position, and the localisation at non-integer pixel 

coordinates can exist. Here, a bi-linear interpolation is used. In the second step the feature vector is 

processed to obtain another vector which is invariant with the discrete rotations of the input image. 
 

Texture Analysis 
 

It is well known that different regions of the brain may consist of different textures. We 

adopted a local texture analysis by using local signal processing that maximises the separation and 

discrimination among different texture representations. The LBP feature extraction algorithm 

represents an image as a sum of LBP histograms. Each LBP histogram is extracted from a local 
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region of the image. Large structural differences in the cerebral cortex are searched and different 

histograms are computed for different diseases. These histograms are a good descriptor for the 

comparison of changes among images. However, the dimensionality of the input data is large and 

the number of bins in a histogram grows exponentially with the number of the input data. To 

overcome this drawback, a sparse representation of the histograms is used; only those bins whose 

content is not empty are stored.  
 

Experimental Design 
 

Our experiments were carried out using the same parameters for every problem. Iakovidis et 

al. [20] showed that the pair (p; r) = (8; 1) is a good compromise between classification accuracy 

and boundary errors. Here, p specifies the number of neighbours and the number of enabled filter 

elements;  r = 1 is the radius of the neighbourhood sizes of 3  3. The implementation steps are as 

follows: 1) a radial filter to compare the central pixel with the pixel of the immediate proximity and 

a logical operation that generates the RI-LBP are used. This increases the running time but it results 

in a relatively sparse histogram (many combinations disappear). Here, all neighbours receive similar 

treatment; 2) a function is used to modify the contrast of the input images by replacing the pixel 

values in a manner that results in either a tight histogram (with no empty bins) or a uniformly 

distributed histogram; 3) a logical function provides the output array. It does not contain repeated 

elements and the element order is not altered.  
 

Histogram Matching 
 

One histogram for each brain MR image was built to represent the texture region. To prove 

useful in classification problems, the information provided by the histograms must be combined in a 

certain manner. In order to estimate the similarity/dissimilarity between two images, the histogram 

of NC individuals was compared with those of the AD, HD and PD patients using various standard 

distance metrics [31]. Four measures of similarity between demented and normal brain slices were 

used. Two particular cases of the Minkowski distance   








1

0 ,,,
n

k kjkiMKW yyjid  were 

analysed.
 
Here, y denotes the variables in the dataset, k is the index of the variable, n is the total 

number of variables and λ is the order of the Minkowski metric; λ = 1 corresponds to the Manhattan 

distance and λ = 2 to the Euclidean distance. In equations 2-5, D1 denotes the Euclidian distance, 

D2 is the Euclidean squared distance and D3 is the Manhattan distance; they are metric similarity 

functions. D4 denotes the vector cosine angle distance and it is a non-metric similarity function. D1, 

D2 and D3 indicate the magnitude of difference between two vectors while D4 gives a measure of 

how similar the two vectors are, but with no regard to magnitude. 

 

       
i NCdisNCdis ihihhhD

2
,1                                          (2) 

       
i NCdisNCdis ihihhhD

2
,2                                          (3) 

      
i NCdisNCdis ihihhhD ,3                                             (4) 

          
i disi disNCi disNCdis ihihihihhhD 22,4                         (5) 
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Here, dish  and NCh  are the histograms of demented and normal brain images respectively. All these 

metrics are non-negative and measure the similarity score. Scores closer to 0 indicate a more perfect 

similarity between slices. All T2-weighted MR images were spatially normalised.  
 

Statistical Analysis 
 

After collecting the experimental data, the first compulsory step is to identify the values 

affected by aberrant errors. These data are eliminated. The identification of the data affected by 

aberrant errors is accomplished by applying the Chauvenet test [31]. 

For statistical studies and inter-patient correlation, the similarity degree of histograms is 

based on a pair analysis. The linear correlation coefficient  r and  the coefficient of 

determination r2 were computed for each pair of data sets. The quantity r measures the strength and 

direction of a linear relationship between two variables, and the quantity r2 gives the proportion 

of the variance (fluctuation) of one variable that is predictable from the other variable. Also, it 

indicates how certain one can be in making predictions from a certain investigation.  

In order to understand the significance of individual independent variables and measure how 

well a new set of observations reproduces an original set, the concordance correlation coefficient 

(CCC) [32] was used:  

  2

21
2
2

2
1212   rCCC                                      (6) 

 
where  21,  and  2

2
2
1 ,  are the means and variances of the data sets S1 and S2 respectively. In 

order to assess the reproducibility and the similarity/dissimilarity of the results, CCC was applied to 

both the spatial histogram and RI-LBP histogram analysis. 
 
RESULTS AND DISCUSSION 
 

We have encountered serious difficulties during our similarity/dissimilarity studies based on 

grey level intensity due to the scarcity of HD and PD image databases as well as differences in 

image resolution, slice thickness and image quality.  The methodology applied in this study aims to 

quickly identify dementia in MR images. As the first step, a histogram comparison is performed, 

which shows the relative frequencies of occurrence of each pattern of the diseases analysed 

compared with the NC brain images. Figure 2 shows examples of some disease pairs. Afterwards, 

the histograms of all 2p LBP labels and the RI-LBP components are computed and used as texture 

descriptors and also for comparison purposes. Some pairs of images are shown in Figures 3 and 4. 

The average similarity score values, the standard deviations and the statistics associated with the 

histogram comparisons are shown in Tables 1-4. 
In the case of HD, some aberrant values were found and eliminated. Only the minimum 

values in the array of the histograms were affected. About 6% of the bins were classified as outliers 

according to the Chauvenet criterion.  

According to the data in Tables 1-3, we can conclude that all dementia diseases clearly are 

statistically different as the D1, D3 and D4 similarity scores are not equal to 0. D2 does not perform 

well and it was removed from our analysis. High D3 values exhibit the highest dissimilarity. The 

linear regression analysis of different pairs of analysed samples results in the correlation 

coefficients ranging from 0.72 to 0.99. The coefficient of determination shows how close the data 

are to the fitted regression line. It ranges between 0.53 and 0.97. The drawback of the correlation 

coefficients is that  they only take into account  the linear dependency  between a given feature  and  
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Figure 2.  Examples of spatial histogram comparison. The paired slices are carefully selected in 
terms of position, orientation and scale between NC and AD, HD and PD cases.   (x-Axis shows  
range of pixel values; y-axis counts pixels’ intensities.) 

 

  
Figure 3.  Examples of RI-LBP sparse histogram comparison  (x-axis shows  range of pixel values; 
y-axis counts pixels’ intensities.) 
 

 
Figure 4.  Examples of input histogram and feature sub-selection using LBP algorithm. RI-LBP 
tight histogram comparison for bins 1-35: a) NC; b) AD; c) HD; d) PD  (x-axis shows range of pixel 
values; y-axis counts pixels’ intensities.) 
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Table 1.  Statistical significance of histogram correlation regarding similarity scores between AD 
and NC cases 
 

Similarity 
score 

Mean 
Standard 
deviation 

Correlation 
coefficient r 

Coefficient of 

determination 
2r  

Spatial  RI-LBP 
sparse 

Spatial  RI-LBP 
sparse 

Spatial  RI-LBP 
sparse 

Spatial  RI-LBP 
sparse 

D1 0.9130 0.1717 0.0115 0.0040 -0.8244 -0.8370 0.6797 0.7007 

D2 0.0373 0.0288 0.0004 0.0023 -0.7551 -0.9741 0.5702 0.9490 

D3 0.5810 0.3239 0.0438 0.0132 -0.8419 -0.7944 0.7089 0.6311 

D4 0.3328 0.3136 0.0218 0.0359 -0.9987 -0.9889 0.9775 0.9780 

 

Table 2.  Statistical significance of histogram correlation regarding similarity scores between HD 
and NC cases 
 

Similarity 
score 

Mean 
Standard 
deviation 

Correlation 
coefficient r 

Coefficient of 

determination 
2r  

Spatial  RI-LBP 
sparse 

Spatial  RI-LBP 
sparse 

Spatial  RI-LBP 
sparse 

Spatial  RI-LBP 
sparse 

D1 0.5977 0.5532 0.0201 0.0211 +0.9688 +0.9790 0.9386 0.9586 

D2 0.0111 0.3065 0.0009 0.0235 -0.9017 +0.9778 0.8132 0.9561 

D3 1.3439 1.0632 0.0258 0.0397 +0.7842 +0.7293 0.6150 0.5320 

D4 0.4466 0.4102 0.0113 0.0201 -0.9778 -0.9796 0.9562 0.9598 

 

Table 3.  Statistical significance of histogram correlation regarding similarity scores between PD 
and NC cases 
 

Similarity 
score 

Mean 
Standard 
deviation 

Correlation 
coefficient r 

Coefficient of 

determination 
2r  

Spatial  RI-LBP 
sparse 

Spatial  RI-LBP 
sparse 

Spatial  RI-LBP 
sparse 

Spatial  RI-LBP 
sparse 

D1 0.1980 0.1674 0.0229 0.0216 -0.9753 -0.9678 0.9513 0.9368 

D2 0.0131 0.0598 0.0007 0.0099 -0.9331 -0.9820 0.8708 0.9644 

D3 0.3989 0.2808 0.0512 0.0387 -0.8743 -0.9792 0.7645 0.9589 

D4 0.2500 0.2663 0.0085 0.0187 -0.9786 -0.9837 0.9578 0.9678 

 

                            Table 4.  Average values of CCC for the cases under analysis 
 

 Histogram RI-LBP histogram 

NC vs. AD 0.9962 0.9895 

NC vs. HD* 0.3051 0.5662 

NC vs. PD 0.9992 0.9952 

AD vs. PD 0.9964 0.9968 

AD vs. HD* 0.3767 0.6944 

HD vs. PD* 0.3536 0.6419 
 
* The cases where the null hypothesis is rejected are denoted by the numbers in bold 
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the class label. An improved measure of information dependency (or degree of concordance 

between the two measures) arises from the concordance correlation coefficient (Table 4). 

Our null hypothesis of the comparison test is that the image variables are independent of the 

health condition (NC case). The data for NC vs. AD, NC vs. PD and AD vs. PD indicate that the 

differentiation is significantly realistic at 5% confidence level.  For the cases NC vs. HD, AD vs. 

HD and HD vs. PD, at any reasonable confidence level, the null hypothesis is rejected. There is 

sufficient evidence to indicate the impossibility of differentiating between HD and the rest of the 

samples under analysis, even if the results have been improved in the case of RI-LBP.  

The CCC quantifies the agreement between two measures of the same variable. This data 

analysis strategy allows us to simplify the texture analysis approach when there is a concordance 

correlation between the grey level intensities of the bins, or to reveal the disagreement between 

them. Although all the dementia diseases analysed are characterised by changes in tissue volume 

and structure, our results based on histogram comparison by means of the probability of different 

grey-level appearance for dissimilarity studies are found to be accurate in discriminating between 

AD, PD and NC subjects. Two textural surfaces are significantly dissimilar if the test fails to reject 

the null hypothesis of resemblance, or resemble each other if the null hypothesis is rejected. The 

pairs NC vs. AD, NC vs. PD and AD vs. PD demonstrate considerable equivalent correlations and 

acceptable values for D1, D3 and D4 similarity scores. Despite the fact that D3 has higher values, 

which points to the highest dissimilarity for HD, the pairs NC vs. HD, AD vs. HD and HD vs. PD 

exhibit lower concordance.  

Notably, after applying the RI-LBP operator, there is no significant difference between 

results in the cases of NC vs. AD, NC vs. PD and AD vs. PD, although there is an improvement for 

HD vs. NC, AD and PD. The CCC values increase when the rotation invariance and uniformity are 

introduced to the LBP. This observation is coherent with the fact that the rotation invariance and the 

uniform LBP patterns correspond to the primitive micro-features of the image (such as edges, 

corners and spots) [19]. Models using histograms computed from the whole-brain region show 

higher accuracy for AD and PD. Thus, the measures of association seem to carry many of the 

important differences between AD and PD, which is consistent with prior findings [8, 33]. 

An important issue needs to be specified. The brain MR images of all patients already have 

the same orientation (slides in axial view were analysed), so the rotation invariance is not used to 

achieve the maximum possible discrimination. It only allows the reduction of the number of 

possible patterns. Meanwhile, the histogram analysis clearly indicates its discriminative potential in 

this study. The histogram descriptor has different signatures for different neurological degenerative 

diseases, which shows its discriminative ability in the classification task.  

Following the results reported by Montagne et al. [23], we use the distribution of whole-

brain features. These authors reported lower accuracy for the test parcellation or region-of-interest 

strategies. Our results indicate that histograms computed from the whole-brain region show higher 

accuracy than models based on the region-of-interest extraction.  

Our results are based on the regional morphological brain changes. It is well known that the 

parts of the brain affected by HD are a group of nerve cells at the base of the brain known as basal 

ganglia (whose major components are the caudate nuclei, putamen and pallidum subcortical nuclei), 

the frontal and temporal lobes, and the ventricles. In the case of AD, shrinkage is especially severe 

in the hippocampus, and in addition the ventricles (fluid-filled spaces within the brain) grow larger. 

PD or fronto-temporal dementia affects the frontal and/or temporal lobes of the brain. According to 

Gemmell et al. [34] and Giorgio et al. [35], hippocampal atrophy does not strictly occur during the 
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normal aging processes, but is also manifest in AD. These specific regions of the brain that are 

usually affected by the dementia diseases under study are the answer to our attempt to differentiate 

the type of disease. 

Our approach based on structural images and spatial context information shows potential use 

in the clinical environment, although we clearly state that this method alone cannot be used to 

diagnose the types of dementia. A diagnosis can be made if MR scans can ascertain the histogram 

pattern of morphological brain changes. Nevertheless, the method can assist radiologists and 

neurologists by identifying spatial grey level intensity models producing similar and dissimilar 

results, and thereby may help to validate clinical findings.  This work can of course be improved in 

the future. 
 

CONCLUSIONS 
 

In this paper we have focused on a quite simple and quick method that can inform the end 

user about the differences in the textures of brain MR images showing different dementia diseases. 

Joint RI-LBP and intensity histograms are used to characterise whole brain images. The RI-LBP 

performs slightly better than the spatial histogram. A simple statistical analysis appears to be 

sufficient for this comparative analysis. We do not claim that our study is entirely consistent, but we 

further expect to increase its relevance by enlarging the image database. At this moment, there are 

large and very well documented databases for AD, but HD and PD are less represented in MR 

image databases. The role of neuroscientists of course remains crucial. They provide their scientific 

judgment based on a wide range of symptoms. However, signal processing and statistical methods 

have gained an increasing role in MR imaging in neuroscience and spatial texture features remain a 

powerful tool in revealing complex patterns of brain surfaces. 
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