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Abstract:  Two-fluid convective flow between two infinitely long inclined parallel plates 

making an angle with the horizontal where the plates are maintained at different constant 

temperatures is studied. The upper phase is filled with a viscous fluid and also occupied by a 

porous material whereas the lower phase is filled with a different viscous fluid. It is assumed that 

both the fluids are incompressible with different viscosities, densities and thermal conductivities. 

The transport properties of the two fluids are taken to be constant. Further, the flow is assumed 

to be steady, laminar, fully developed and driven by a constant pressure gradient. The whole 

system is rotated with an angular velocity in a counter-clock-wise direction about an axis 

perpendicular to the plates. It is observed that the effect of increasing porous parameter is the 

decrease of temperature and primary and secondary velocities in both the phases.  

 
Keywords:  magnetohydrodynamics, two-fluid flow, heat transfer, rotating fluids, porous   
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INTRODUCTION 
 

As the problems of fluid flow and heat transfer in porous media have enormous applications in 

science, engineering and technology, they have been studied by many researchers, notably               

Bian et al. [1], McWhirter et al. [2, 3], Geindreau and Auriault [4], Seddeek [5], Chauhan and Jain [6],  

Hayat et al. [7, 8] and Sunil and Mahajan [9]. More specifically, the existence of a fluid layer adjacent 

to a layer of fluid-saturated porous medium is a common occurrence in both geophysical and 
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engineering environments. Convective flow and heat transfer between the fluid and porous layers had 

been studied by Prasad [10]. In 1998 Kuznetsov [11] studied Couette flow in a composite channel 

partially filled with a porous medium and partially with a clear fluid. Then in 2002 Krishna et al. [12] 

investigated hydromagnetic convection flow through a porous medium in a rotating channel. Effects of 

Hall current on magnetohydrodynamic flow in a rotating channel partially filled with a porous medium 

were analysed by Chauhan and Agrawal [13]. Recently, Chauhan and Rastogi [14, 15] considered Hall 

current and heat transfer effects on magnetohydrodynamic flow and magnetohydrodynamic Couette 

flow in a channel partially filled with a porous medium in a rotating system. Not much attention has 

been given to the flow and heat transfer in a fluid-superposed porous medium with inclined geometry 

except Malashetty and Umavathi [16] and Malashetty et al. [17, 18] even though the study is useful in 

many areas especially in geophysical systems. In this paper we undertake a study of hydromagnetic 

two-fluid flow with heat transfer aspects in an inclined channel containing a porous layer in the upper 

phase and a clear viscous fluid layer in the lower phase while the whole system is rotated about an axis 

perpendicular to the channel plates.  

 
NOMENCLATURE 

  ratio of coefficients of thermal expansion,  

  specific heat at constant pressure 

Ec  Eckert number,  

g  acceleration due to gravity 

h  ratio of heights of the two phases,  

                                                     

K   ratio of thermal conductivities,  

  thermal conductivities of phase I and II respectively 

k  permeability of porous medium 

  ratio of viscosities,  

  ratio of densities  

  non-dimensional pressure gradient,  

Pr                    Prandtl number,  

  Reynolds number,  

Gr  Grashof number, 



27 
Maejo Int. J. Sci. Technol.  2016, 10(01), 25-40; doi: 10.14456/mijst.2016.3 
 

  rotation parameter,  

  temperature 

 temperature of boundaries 

  primary velocity 

  secondary velocity 

  average velocity 

  space coordinates 

Greek symbols 

  coefficient of thermal expansion 

  angle of inclination  

  density 

  kinematic viscosity 

  viscosity 

λ  porous parameter 

  product of Prandtl number and Eckert number  

  difference in temperature  

  non dimensional temperature,  

  angular velocity 

Subscript 

  value for phase 

 
PROBLEM FORMULATION 
  

The hydromagnetic two-phase convective flow between two infinitely long inclined parallel 

plates making an angle  with the horizontal plane is considered, where the plates are maintained at 

different constant temperatures. The region 0 ≤ y ≤ h1 (Figure1) is filled with a viscous fluid and also 

occupied by a porous material having permeability k. The lower region –h2 ≤ y ≤ 0 is filled with a 

different viscous fluid. It is assumed that both the fluids are incompressible with different 

viscosities , densities  and thermal conductivities Ki. Figure 1 represents the physical model of the 

problem.  
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The transport properties of the two fluids are taken to be constant. Further, the flow is assumed 

to be steady, laminar, fully developed and driven by a constant pressure gradient (-p/x).  The whole 

system is rotated with an angular velocity Ω about the y-axis. The governing equations of motion and 

energy for phase I (porous medium) and phase II (clear viscous fluid) are formulated with the above 

assumptions. 

In phase I we use the Darcy-Brinkman equations of motion for the flow through the porous 

medium so that no-slip conditions can be satisfied at the impermeable bounding wall for the porous 

layer and also for the compatibility conditions at the fluid _ porous layer interface. The governing 

equations of motion and energy for Boussinesq fluid (following Malashetty et al. [18]) are: 
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In phase II the governing equations of motion and energy for Boussinesq fluid (following 

Malashetty and Umavathi [16]) are:  
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(6) 

where ui and wi are the primary and secondary velocity components along x and z directions 

respectively, Ti is the temperature, βi is the coefficient of thermal expansion and g is the acceleration 

due to gravity. The no-slip condition requires that the velocity must vanish at the walls. The suffixes 1 

and 2 denote the values for phase I and phase II respectively. Following Beckermann et al. [19] and 

considering that the velocities, stresses, temperatures and heat fluxes are continuous across the 

fluid/porous medium with no slip of velocity, the boundary and interface conditions are: 

;0)(,0)( 1111  hwhu );0()0(),0()0( 2121 wwuu  ;0)(,0)( 2222  hwhu                 (7) 
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Since the walls are maintained at constant different temperatures  and  at  and 

 respectively, the boundary conditions on T1 and T2 are: 
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In making these equations dimensionless the following transformations are used: 
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With the above transformations, the governing equations (1-3) for phase I transform to: 
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Similarly, the governing equations (4-6) for phase II transform to: 
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The non-dimensional forms of the boundary and interface conditions (7-9) convert to: 
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The asterisks have been dropped for simplicity. Further, writing  equations (10-12) 

for phase I can be written in complex forms as: 
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Using , equations (13-15) for phase II can be written in complex forms as: 
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The corresponding boundary and interface conditions are:  
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SOLUTIONS OF THE PROBLEM 
 

The governing equations of motion (19), (21) and of energy (20), (22) are to be solved subject 

to the boundary and interface conditions (23) and (24). Due to the inclusion of the dissipation terms, 

the equations are coupled and non-linear, and their solutions are obtained using perturbation technique. 

Since the Eckert number is of order 10-5 and is very small, the product Pr Ec (=ε) is very small and is 

used in the regular perturbation method. The solutions are assumed in the following forms: 

                                    
......),(),(),( 1111101011   qqq
                                                 (25) 

                                    
......),(),(),( 2121202022   qqq
                                                (26)

 

where q10, q20 and θ10, θ20 are solutions for the case ε equal to zero, and q11, q21 and θ11, θ21 are perturbed 

quantities related to q10, q20 and θ10, θ20 respectively. Substituting the above solutions in equations (19-

22) and then equating the coefficients of similar powers of ε to zero, we get equations of zeroth-order 

and first-order approximations for phase I and phase II as follows.   
 
 Equations of zeroth-order approximation for phase I: 
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 Equations of first-order approximation for phase I:  
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            Equations of zeroth-order approximation for phase II: 
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 Equations of first-order approximation for phase II: 
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            The corresponding boundary conditions (23) and (24) transform to: 
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It is noted that 101010 iwuq  , 202020 iwuq  , 111111 iwuq   and 212121 iwuq  . 
 
Solutions of equations of zeroth-order approximation (27), (28) and (31), (32) using boundary 

conditions (35) and (36) are: 
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Solutions of equations of first-order approximation (29), (30) and (33), (34) using boundary 

conditions (37) and (38) are: 
 

   ymememymmemcyc
ymymym

6189
2

1296128
2

127302911 cos2cos{ 555 




 
                           

     ymemymemymem
ymymym

619261916190 sincossin 555 


 
                            

     ymyemymyemymyem
ymymym

619561946193 cossincos 555 


 

                           
   ymmiymymymymyem

ym
6164

2
163

3
162

4
1616196 2sin}sin5 



 

                           
     }cossincos{ 619961986197

555 ymemymemymemi
ymymym 


 

                          
     }sincossin{ 620262016200

555 ymyemymyemymemi
ymymym




 

                               ,}sincos{ 62046203
55 ymyemymyemi

ymym 


                                                     
 (45) 

 

   RyememRymemcyc RyRyRy sin2cos{ 218
2

217216
2

215323121
   



33 
Maejo Int. J. Sci. Technol.  2016, 10(01), 25-40; doi: 10.14456/mijst.2016.3 
 

                             
      }cossincos

2
220219219218 ymRyemRyemRyem

RyRyRy




 

                           
       }sincossin2sin{ 224223223222 RyemRyemRyemRymi

RyRyRy 


 

                                         },cos{ 224 Ryemi
Ry

                                                                                                    (46) 

 

   ymnenenymececu ymymymym
694

2
93

2
926343311 2coscos)( 5555    

                         ymyenymyenymyenymn
ymymym

698697696695 sincossin2sin 555 
  

                               ymyenymyenymyen
ymymym

6
2

1016
2

100699 cossincos 555 


 

                                         3
105

4
1046

2
1036

2
102 cossin 55 ynynymyenymyen

ymym




 

                                     
,108107

2
106 nynyn 

                                                                                              
  (47)  

 

   ymnenenymececw ymymymym
6111

2
110

2
1096333411 2cossin)( 5555    

                               ymyenymyenymyenymn ymymym
6115611461136112 sincossin2sin 555                           

                             ymyenymyenymyen
ymymym

6
2

1186
2

1176116 cossincos 555 
  

                                       
    3

122
4

1216
2

1206
2

119 cossin 55 ynynymyenymyen
ymym




      

                                       
,125124

2
123 nynyn                                                                                                 (48) 

 

     RynenenRyecRyecu RyRyRyRy 2coscoscos 144
2

143
2

142363521    

                      
      ,coscos2sin 148147146145 nRyyenRyyenRyn RyRy  

                                      
   (49) 

                       
     RynenenRyecRyecw RyRyRyRy 2cossinsin 151

2
150

2
149353621    

                   
      .sinsin2sin 157156

2
155154153152 nynynRyyenRyyenRyn RyRy  

 
(50) 

The constants involved in equations (41-50) are not given for the sake of brevity. Solutions for 

equations of zeroth- and first-order approximations (27-34) are solved numerically by fixing some of 

the parameters, namely P = - 5, b = 1, Re = 5 and n = 1.5. The varying parameters are λ, Gr, , m, h, R 

and K. As the solutions of zeroth-order approximation are linear, only for first-order approximation the 

temperature profiles are drawn. This shows that the heat transfer up to zeroth -order approximation is 

due to the conduction only. In Figures 2-20, all the other parameters except the varying one are chosen 

from the set (λ, Gr, , m, h, R, K) = (2, 5, 30°, 0.5, 1, 1, 1). 

RESULTS AND DISCUSSION 
 

Magnetohydrodynamic two-fluid flow with heat transfer aspects between two infinitely long 

inclined parallel plates in a rotating system was studied analytically. The resulting differential 

equations were solved using perturbation method for obtaining approximate solutions for temperature 

and primary and secondary velocity distributions.  
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Figures 2 and 3 represent the effect of porous parameter λ on primary and secondary velocities 

respectively. It can be observed that the effect of increasing porous parameter is the decrease in 

primary and secondary velocities in both the phases. This is because the drag caused by the porous 

matrix on the flow of the first phase also affects the flow of the free viscous fluid phase. It is also 

observed that the effect of large λ on the velocity field is more pronounced as compared to the small λ. 

Figures 4 and 5 show the effect of rotation parameter R on primary and secondary velocity distributions 

respectively. As the rotation parameter R increases, the primary velocity decreases because increasing 

rotation parameter increases the Coriolis force, which in turn opposes the buoyancy force. Hence the 

primary velocity is reduced. From Figure 5, it is noticed that as the rotation parameter R increases from 

(0.5, 1.5) and the secondary velocity w also increases, but outside this range as R increases, it 

decreases.  
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The effect of Grashof number Gr on primary and secondary velocities is shown in Figures 6 and 

7 respectively. As Grashof number increases both the velocities also increase because increasing 

Grashof number enhances the buoyancy force, which in turn supports the flow. The effect of 

inclination angle  on primary and secondary velocities is represented in Figures 8 and 9. We observe 

that as the inclination angle  increases, the primary and secondary velocities also increase in both 

phases. Figures 10 and 11 represent the effect of ratio of heights h on primary and secondary velocities 

respectively. It is noticed that increasing values of h increases both the velocities. This is because 

increasing the height of the clear viscous fluid increases both primary and secondary flows. The effect 

of ratio of viscosities m on primary and secondary velocities is shown in Figures 12 and 13. It is 

observed that both the velocities increase with increasing values of m. 
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The effect of porous parameter λ on temperature distribution θ is shown in Figure 14. It is 

observed that, similar to its effect on the fluid flow, increasing the value of λ decreases the temperature 

field. Figure 15 represents the effect of rotation parameter R on temperature θ. As the rotation 

parameter R increases, the temperature decreases because increasing rotation increases the Coriolis 

force, which in turn opposes the buoyancy force. Thus, the velocity will be decreased, leading to a 

reduction in the temperature.  

The effect of inclination angle  on temperature is represented in Figure 16: as the inclination 

angle  increases, the temperature also increases. Figure 17 exhibits the effect of the ratio of heights h 

on the temperature θ: increasing the value of h increases the temperature. The effect of Grashof number 

Gr on temperature θ is shown in Figure 18: an increase in Gr increases the temperature field in both 

phases. The effect of ratio of viscosities m of the two phases on temperature is the same as its effect on 

the velocities, as evident from Figure 19. Figure 20 shows the effect of the ratio of thermal 
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conductivities K on temperature θ: the larger the ratio of thermal conductivities, the greater the amount 

of heat transfer.    
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CONCLUSIONS 
  
 The problem of magnetohydrodynamic two-fluid convective flow and heat transfer in an 

inclined channel containing a viscous fluid superposed by the porous medium with constant 

permeability in a rotating system has been investigated analytically. Approximate solutions for 

temperature and primary and secondary velocities have been obtained using regular perturbation 

method. The important results from this study are: 

 The effect of porous parameter is to retard the temperature and primary and secondary velocities in 

both phases.  

 The increase in buoyancy force incorporated through Grashof number and angle of inclination is to 

enhance the temperature and primary and secondary velocities for both porous and viscous layers. 



39 
Maejo Int. J. Sci. Technol.  2016, 10(01), 25-40; doi: 10.14456/mijst.2016.3 
 

 The increase in Coriolis force incorporated through the rotation parameter is to reduce the 

temperature and primary velocity of the flow in both phases. 

  The flow and thermal aspects of the fluids in the channel are enhanced by an increase in the ratio 

of viscosities of the fluids and the ratio of heights of the two phases.  

 The results of the two-layered flow containing both the fluid and porous layers could be useful in  

recharge/discharge problems like the flow of geophysical fluids, packed-bed energy storage, etc.   
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