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Abstract: Some sets of sequences on a time scale are introduced by considering the
various sequences 1, () and Ha (1) in the class A . Furthermore, some inclusion results on

these sets are obtained.
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INTRODUCTION

The development of sequence spaces is nowadays effected by the introduction of various
new convergence methods such as statistical convergence. The idea of statistical convergence goes
back to a crucial study of Zygmund [1]. This notion was first defined for real sequences by
Steinhaus [2] and Fast [3]. Schoenberg [4] called it D-convergence. Later on it was studied and
linked with summability by Fridy [5], Colak [6], Connor [7], Maddox [8], Rath and Tripathy [9],
Salat [10], Tripathy [11], Moricz [12] and many others [13-18]. Recently, the statistical
convergence has many applications in different fields, e.g. measure theory, locally convex spaces,
approximation theory, probability, and Banach spaces. The concept is described briefly.

Statistical convergence is related to the density of subsets of N . The natural density of a
subset 4 of N is given by

5(A):1imi|{k3n L ke A}

n—>w n

b

if the limit exists, where || indicates the cardinality of any set [10].

00

k=1
5({k eN :|xk —L| > 5}) is zero. L is necessarily unique and it is called the statistical limit of (x, ),

A complex sequence (xk) is statistically convergent to some number L , if for V& >0,

and written as Stat —limx, = L. The space of all statistically convergent sequences is denoted by
S [5,10]. Leindler [19] defined the generalised de la Vallée-Poussin mean as follows.
Let A= (ﬂ.n) be a non-decreasing sequence of positive real numbers which approach oo

with 4, <A +1, 4 =1. Then
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()= x,,

ﬂ’n kGIn

where I, =[n—A, +1,n]. Throughout this study A denotes the set of all such sequences.

Borwein [20] and Maddox [21] introduced and studied strongly summable sequences of
functions. Then Mursaleen [22] introduced A -density and A -statistical convergence by letting
K < N and defining the A4 —density of K by

5

§A(K)=lim%|{n—/1n+1£k£n ckeK}

where &,(K) transforms to the natural density §(K) for 4, =n and Vn e N . The sequence (x,) is
A -statistically convergent to L if, for Ve >0, limﬂl‘ {k el, : |xk - L| > e}‘ has zero natural density

[22]. After that Nuray [23] studied A -strong summable and A - statistically convergent functions by
using the above notions. Now we need to give some information about the historical improvement
of time scale calculus and its structure.

A time scale T is an arbitrary, non-empty and closed subset of R. Time scale calculus,
introduced by Hilger [24], allows to the unification of the usual differential and integral calculus
with one variable. One can replace the range of definition (R) of the functions under consideration
by T.For t €T, the forward jump operator o : T — T can be defined by

o(t)=inf{seT:s>1}.
The graininess function ¢ : T —[0,00) is defined by u(t)=oc(¢t)—t. Here, we put infg=supT
where ¢ is an empty set. A closed interval of T is given by [a,b]. ={teT:a<t<b}. Open
intervals or half-open intervals can be defined similarly [25]. There are many studies on time scales
for different areas [e.g. 26-27].

Let A denote the family of all left-closed and right-open intervals of T of the form [a,b),.
Let m : 4—[0,0) be a set function on 4 such that m([a,b)T)z b—a . Here, it is known that m is

a countably additive measure on 4 . Now the Caratheodory extension of the set function m
associated with family 4 is said to be the Lebesque A —measure on T and is denoted by g, . In this

case it is known that if a €T —{maxT}, then the single-point set {a} is A— measurable and
u(@)=c(a)—a. If a,beT and a<b, then u,((a,b);)=b-o(a). If a,beT ~{maxT}, a<b,
then u,((a,b];)= o (b)—o(a) and u,([a,b]);)=c(b)—a [28]-

Let Tc[0,0) and there exists a subset {f, : keN}c T with 0=¢,<¢# <t,.. and

lim¢#, =co. The spaces of continuous functions are defined on a time scale by Batit [29]:

k—ow

ﬁw(T)z{ﬂf : T->R, s;1€1$|f(t]<oo},
c(T):if|f : TR, }ngf(t):ﬁ,forsomeﬁ},
cO(T):{f|f TR, limf(t)=0}.

Additionally, there are some studies about statistical convergence on time scales in the
literature. For instance, Seyyidoglu and Tan [30] gave some new notations such as
A —convergence and A —Cauchy by using A —density and investigated their relations. Recently,
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Turan and Duman [28] studied statistical convergence of A — measurable real-valued functions
defined on time scales. Furthermore, 4 -density and A - statistical convergence have been explained
by Yilmaz et al [31].

Definition 1. Let Q bea A, —measurable subset of T. Then Q(f,4) is defined by
Qt, 1) = {s elt-4, +t0,t].r D se Q},
for t € T . In this case the A —density of Q on T is defined as follows:

o) M, (@ 2))
SOt ) ®

if the above limit exists [31]. If one takes A4, =¢ in (1), the classical density of Q on T is obtained
as

= imM
(@)= lim B,

provided that the above limit exists [28, 30].

Definition 2. Let /' : T — R be a A, —measurable function. Then f is A-statistically convergent
to L on T if

i A ({s elt—4 + to,t]T : |f(s)—L| > 5})
o Hy, ([t_lz +t0’t]T)

forVe > 0. In this case s — }Lrg( £(£))= L. The set of all J-statistically convergent functions on T is
denoted by s7[31].

=0,

MAIN RESULTS

In this section the connections between s and s?; [w, A]. and [w,A].; and S} and [w, 8]
for various sequences x, () and Hy, () are determined in the class A . Also, the results of Colak [6]
are generalised to a time scale.

Theorem 1. Let p, ,u, € A suchthat g, ~<u, —forallze T.

i) If
liminf AM([t_/l’ +hoth) >0, )
ooy, (=84 00])
then s7 < s7.
i) If
m/uAi(,)([t_/it—FtO’t]T)_l 3)

h - s
ooy (=B +t.1];)
then s7  s7.

Proof. 1) Suppose that x4, = < Mo, for all e T and (2) is satisfied. Then /, = J,, and so for
£>0, wehave

,uAﬁ(/)({se[t—ﬂt+t0,t]T : |f(s)—L|25})Z,LzAﬁ(l>({se[t—/1,+t0,t]T : |f(s)—L|Zg}).

Therefore,



93
Maejo Int. J. Sci. Technol. 2017, 11(01), 90-96

uy, (s eli—j +ily < |fs)-1]2 )
wy,, (=B +1.];)
ﬂAH([ — 2, +1,,t]) 1
Oy, ([ — B, +1y,t]. )/zA (=2 +1,.t];

for VteT, where J, :[t— ﬂt+1,t]. Hence by using (2) and taking the limit 7 — oo, we get

p A
ST C 87

)X'L‘AM({S € [t—ﬂ.t +to,t]T : |f(s)—L| 25})

ii) Let f be a A, —measurable function and s7 —lim f (s): L. Since [, J, for all te T, we can
write

o (5 eli-prndl 1r6)-L2e) w (1-p v <s<i: |(6)-1]2¢)
m,,, ([ —,3, "'th tl) B wy,, [e= B, +10.1))
+ﬂAﬂ(’)({S€[t—ﬂ[+t0,t]T : |f(5)—L|2<9})
#Aﬁ(z)([t_ﬁt"'to’t]T)

- ,uAM(S € [t—,b’, +t0,t]T)—/1AM(S € [t—/lt +t0,t]T) s ,uAM({s € [t—/it +t0,t]T : |f(s)—L| > 5})
- /uA/,(,)([t_ﬂt +t0’t]T) ,L‘Al(,)([t—ﬂt+t0,t].r)

S{l_ﬂAﬂ(t)([l‘/it+to,t]T)J+ ({se[t Attt |f(s)-1]> &)

/’lAﬂ(t)([t_ﬂt_i_tO’t]T) ﬂAﬂ(,)([t /1t+t09t]-r) ,

Hay(e) ([[ Attt ] )

for VteT. Since limmm 1 by (3), the term in the above inequality tends to O.
Aﬁt 0

t—o
Furthermore, since s7 —lim f (s): L, the second term of the right hand side of the above inequality
goes to 0 as t —> oo, Therefore, s; < s’.

From Theorem 1, we can give the following corollaries.

Corollary 1. Let 4, ,u,, € A suchthat g, <u, forall zeT.If (3)holds, then s;=st.

If we take My, = i(t), t € T in the above corollary, we get the following corollary.

([f /II‘HOJ]T)

Corollary 2. Let u, ~eA.Iflim ol

— l _
P, 0 =1, then we have s7 =s;.
Now we give the concept of strong A4 — Cesaro summability on T .

Definition 3. /' : T — R is strongly 4 —Cesaro summable on T if there exists some L € R such
that

1
lim fls)=L|As =0,
= IUAA-(,) ([t - /lt + tO’ t]T ) [t—ﬂ,-vi—fto,t]-r | ( ) |

where f is a A, —measurable function.

In this case [W /1]T —lim f ( ) [31]. The set of all strongly A-Cesaro summable functions

on T is denoted by [#,1].. The Lebesque A —integral on time scales was introduced by Cabada
and Vivero [32].
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Theorem 2. Let My, My, € A such that M,y S M, forall €T . Then we get:
i) If (2) holds, then [, A]. < [W, B, ;
ii) If (3) holds, then ¢_(T)n[w, A}, < [w,5]; .

Proof. 1) Suppose that M, S Hay, forall 1T .Then /,cJ, forall teT so that we may write

1 1
fls)—L|As > fls)—L|As,
ﬂAﬁ(,)([t _ﬂt + tO’t]T)[t—ﬂ,:[O,t]T| ( ) | /UA;,(,)([Z _/’i’t + t07t]T)[t—ﬂ,-.!.t0,t]T| ( ) |

for all e T . This implies that
1 I
:uA/,(,) ([t - ﬂt + 1, t]T ) [t=B+t0.t);
S /uAi(,}([t_/lt-’_tO’t]T) 1 j |
- ﬂA/,(,) ([t - IBI + tO’ t]T ) ﬂAi(,) ([t - /11 + tO’ t]T ) [z—/1,+t0,t]-r

Then by taking the limit £ — oo in the last inequality, we obtain [7, 1}, < [W, g]. .

|f(s)—L|As

fs)—L|As.

i1) Let f eﬁw(T)m[W,/l]T and (3) hold. Since f eﬁw(T), then there exists M >0 such that

|f(sXSM for Vs e T. Also, now since Ha,, S Hy,, and v <—— HM() , I, cJ, for VteT, and we
may write
1
fls)—L{As
/uAﬂ(,)([t_ﬂt +t0’t]T)[tﬂ,.+|.t0,t]T| ( ) |
1 1
< fls)=L|As+ 7(s)-L|As
:uAﬁ(,)([t_ﬂz+to’t]T)J,'[1,| () | :uAﬁ( ([ ﬂt+t0’t]T)}':| () |
< ,LlAﬁ(l)([t—ﬂt +t0’t]'r)_:uAl(,)([t_ﬂ“t +t0’t]T) M+ 1 I|f(s)_L|AS
Ha (t- B +tp.t}) ’uA/l(z)([t_ﬂ’t_i_tO’t]T)],

forVt e T . Since hmﬁ%—)j l and f € [W /1].r the first and second terms of the right hand

t—oo
:UAM,)([ -4, +t0’t]T)
/IAﬂ(,)([t_ﬂz +t0’t]T)

side of the above inequality tends to 0 as t — o, wherel — >0forallzeT.

This implies that ¢_(T)n[7,A]. <[w, g

From Theorem 2, we can give the following corollary.
Corollary 3. Let My, My, € A such that M,y < My, for all reT . If (3) holds, then
MWk =0T pl.

CONCLUSIONS

For the summability theory, generalisation of some concepts, notations and theorems is an
important issue. So we extend the study of Colak [6] to an arbitrary time scale.



95

Maejo Int. J. Sci. Technol. 2017, 11(01), 90-96

REFERENCES

N —

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.

A. Zygmund, “Trigonometric Series”, Cambridge University Press, Cambridge, 1979.

H. Steinhaus, “Sur la convergence ordinaire et la convergence asymptotique”, Collog. Math.,
1951, 2, 73-74.

H. Fast, “Sur la convergence statistique”, Collog. Math., 1951, 2, 241-244.

I. J. Schoenberg, “The integrability of certain functions and related summability methods”,
Amer. Math. Month., 1959, 66, 361-375.

J. A. Fridy, “On statistical convergence”, Analysis (Munich), 1985, 5, 301-313.

R. Colak, “On A -statistical convergence”, Proceedings of Conference on Summability and
Applications, 2011, Istanbul, Turkey, p.4-5.

J. S. Connor, “The statistical and strong ,- Cesaro convergence of sequences”, Analysis
(Munich), 1988, 8, 47-63.

I. J. Maddox, “Statistical convergence in a locally convex space”, Math. Proc. Cambridge
Philos. Soc., 1988, 104, 141-145.

D. Rath and B. C. Tripathy, “Matrix maps on sequence spaces associated with sets of
integers ”, Indian J. Pure Appl. Math., 1996, 27, 197-206.

T. Salat, “On statistically convergent sequences of real numbers”, Math. Slovaca, 1980, 30,
139-150.

B. C. Tripathy, “On generalized difference paranormed statistically convergent sequences”,
Indian J. Pure Appl. Math., 2004, 35, 655-663.

F. Moricz, “Statistical limits of measurable functions”, Analysis (Munich), 2004, 24, 207-219.
M. A. Alghamdi, M. Mursaleen and A. Alotaibi, “Logarithmic density and logarithmic
statistical convergence”, Adv. Differ. Equ., 2013, doi: 10.1186/1687-1847-2013-227.

M. A. Alghamdi and M. Mursaleen, “A — statistical convergence in paranormed space”, Abstr.
Appl. Anal., 2013, doi: 10.1155/2013/264520.

A. Alotaibi and M. Mursaleen, “Statistical convergence in random paranormed space”, J.
Comput. Anal. Appl., 2014, 17,297-304.

A. Alotaibi and M. Mursaleen, “Generalized statistical convergence of difference sequences”,
Adv. Differ. Equ., 2013, doi: 10.1186/1687-1847-2013-212.

S. A. Mohiuddine, A. Alotaibi and M. Mursaleen, “A new variant of statistical convergence”,
J. Inequal. Appl., 2013, doi: 10.1186/1029-242X-2013-3009.

S. A. Mohiuddine, A. Alotaibi and M. Mursaleen, “Statistical convergence through de la
Vallée-Poussin mean in locally solid Riesz spaces”, Adv. Differ. Equ., 2013, doi:10.1186/1687-
1847-2013-66.

L. Leindler, “Uber die de Ila Vallee-Pousinsche Summierbarkeit allgemeiner
Orthogonalreihen”, Acta Math. Acad. Sci. Hungar., 1965, 16, 375-387.

D. Borwein, “Linear functionals connected with strong Cesaro summability”, J. London Math.
Soc., 1965, s1-40, 628-634.

I. J. Maddox, “Spaces of strongly summable sequences”, Quart. J. Math., 1967, 18, 345-355.
M. Mursaleen, A — statistical convergence”, Math. Slovaca, 2000, 50, 111-115.

F. Nuray, “A - strongly summable and A — statistically convergent functions”, Iran. J. Sci.
Technol. Trans. A Sci., 2010, 34, 335-338.



96

Maejo Int. J. Sci. Technol. 2017, 11(01), 90-96

24.

25.
26.

27.

28.

29.

30.

31.

32.

S. Hilger, “Analysis on measure chains - A unified approach to continuous and discrete
calculus”, Results Math., 1990, 18, 18-56.

G. Guseinov, “Integration on time scales”, J. Math. Anal. Appl., 2003, 285, 107-127.

M. Bohner and A. Peterson, “Dynamic Equations on Time Scales, an Introduction with
Applications”, Birkhauser Boston, Cambridge (MA), 2001.

T. Gulsen and E. Yilmaz, “Spectral theory of Dirac system on time scales”, Appl. Anal., 2016,
doi: 10.1080/00036811.2016.1236923.

C. Turan and O. Duman, “Statistical convergence on timescales and its characterizations”, in
“Advances in Applied Mathematics and Approximation Theory” (Ed. G. A.
Anastassiou and O. Duman), Springer, New York, 2013, pp.57-71.

O. Batit, “Function spaces and their dual spaces on time scales”, Int. J. Differ. Equ., 2007, 2,
13-23.

M. S. Seyyidoglu and N. O. Tan, “A note on statistical convergence on time scale”, J. Inequal.
Appl., 2012, doi: 10.1186/1029-242X-2012-219.

E. Yilmaz, Y. Altin and H. Koyunbakan, “A -Statistical convergence on time scales”, Dyn.
Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2016, 23, 69-78.

A. Cabada and D. R. Vivero, "Expression of the Lebesgue A —integral on time scales as a usual
Lebesgue integral: Application to the calculus of A —antiderivatives”, Math. Comput. Model.,
20006, 43, 194-207.

© 2017 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for

noncommercial purposes.



