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Abstract: Some sets of sequences on a time scale are introduced by considering the 
various sequences  t

  and  t
  in the class . Furthermore, some inclusion results on 

these sets are obtained. 
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INTRODUCTION  
 
The development of sequence spaces is nowadays effected by the introduction of various 

new convergence methods such as statistical convergence. The idea of statistical convergence goes 

back to a crucial study of Zygmund [1]. This notion was first defined for real sequences by 

Steinhaus [2] and Fast [3]. Schoenberg [4] called it D-convergence. Later on it was studied and 

linked with summability by Fridy [5], Çolak [6], Connor [7], Maddox [8], Rath and Tripathy [9], 

Šalát [10], Tripathy [11], Moricz [12] and many others [13-18]. Recently, the statistical 

convergence has many applications in different fields, e.g. measure theory, locally convex spaces, 

approximation theory, probability, and Banach spaces. The concept is described briefly. 

Statistical convergence is related to the density of subsets of N  . The natural density of a 

subset A  of N  is given by  

   Aknk
n

A
n




:
1

lim , 
 
if the limit exists, where .  indicates the cardinality of any set [10].  

A complex sequence  
1kkx  is statistically convergent to some number L , if for ,0  

     : Lxk kN  is zero. L  is necessarily unique and it is called the statistical limit of  kx , 

and written as  LxStat k  lim . The space of all statistically convergent sequences is denoted by 

S  [5,10].  Leindler [19] defined the generalised de la Vallée-Poussin mean as follows. 
Let  n    be a non-decreasing sequence of positive real numbers which approach   

with ,11  nn    .11   Then 
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  ,
1




nIk

k

n

n xxt


 

 
where   nnI nn ,1  .  Throughout this study  denotes the set of all such sequences. 

Borwein [20] and Maddox [21] introduced and studied strongly summable sequences of 

functions. Then Mursaleen [22] introduced  -density and  -statistical convergence by letting  

NK   and defining the  density of K  by  

   KknknK n

n
n




:1
1

lim 


 , 

 
where  K  transforms to the natural density  K  for nn   and Nn . The sequence  kx   is 

 -statistically convergent to L  if, for ,0   





LxIk kn
n n

:lim 1  has zero natural density 

[22]. After that Nuray [23] studied  -strong summable and  - statistically convergent functions by 

using the above notions. Now we need to give some information about the historical improvement 

of time scale calculus and its structure. 

A time scale T  is an arbitrary, non-empty and closed subset of R . Time scale calculus, 

introduced by Hilger [24], allows to the unification of the usual differential and integral calculus 

with one variable. One can replace the range of definition  R  of the functions under consideration 

by T . For Tt , the forward jump operator TT :  can be defined by 

 tsst  :inf)( T . 
 
The graininess function ),0[: T  is defined by .)()( ttt   Here, we put Tsupinf    

where   is an empty set. A closed interval of T  is given by    btatba  :, TT . Open 

intervals or half-open intervals can be defined similarly [25]. There are many studies on time scales 

for different areas [e.g. 26-27]. 

Let A  denote the family of all left-closed and right-open intervals of T of the form  .),[ Tba  

Let ),0[: Am  be a set function on A  such that   abbam T),[ . Here, it is known that m  is 

a countably additive measure on A . Now the Caratheodory extension of the set function m  
associated with family A  is said to be the Lebesque  measure on T  and is denoted by  . In this 

case it is known that if  ,max TT a  then the single-point set  a  is  measurable and 

.)()( aaa    If Tba,  and ba  , then   ).(),( abba   T  If  TT max, ba  , ba  , 

then   )()(],( abba   T  and   abba  )(]),[  T  [28].   

Let   ,0T  and there exists a subset   TN ktk : with ...0 210 ttt   and 




k
k

tlim .  The spaces of continuous functions are defined on a time scale by Batit [29]: 

   






 


 tfff

t T

RTT sup,: , 

                   somefor ,lim,: 


tfffc
t

RTT , 

                                                






 



0lim,:0 tfffc
t

RTT . 

 
Additionally, there are some studies about statistical convergence on time scales in the 

literature. For instance, Seyyidoglu and Tan [30] gave some new notations such as  

 convergence and  Cauchy by using  density and investigated their relations. Recently, 
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Turan and Duman [28] studied statistical convergence of  measurable real-valued functions 

defined on time scales. Furthermore, -density and  - statistical convergence have been explained 

by Yilmaz et al [31]. 
 

Definition 1.  Let   be a   measurable subset of .T   Then  ,t  is defined by 
  

     stttst t :,, 0 T
 , 

 
for Tt .  In this case the  density of   on T  is defined as follows: 
 

                                                  
  

  
T

T
ttt

t

t
t ,

,
lim

0








 






   ,                                              (1) 

 
if the above limit exists [31]. If one takes tt   in (1), the classical density of   on T is obtained 

as 

    
  

T

T
tt

t
t ,
lim

0











 , 

 
provided that the above limit exists [28, 30]. 
 
Definition 2. Let RT :f  be a  measurable function. Then f  is λ-statistically convergent 

to L  on T  if 

     
  

0
,

:,
lim

0

0











T

T

ttt

Lsfttts

t

t

t 





 , 

 
for 0 . In this case    .lim Ltf

t





Ts  The set of all λ-statistically convergent functions on T  is 

denoted by 
Ts [31].  

 
MAIN RESULTS  

 
In this section the connections between 

Ts  and ;
Ts   T,w  and  T,w ; and 

TS  and  T,w  

for various sequences  t
  and  t

  are determined in the class  . Also, the results of Çolak [6] 

are generalised to a time scale. 
 
Theorem 1.  Let  )()(

,
tt 

    such that 
   tt 

    for all Tt .  

i)  If  

                                                      
  

 
  

0
,

,
inflim

0

0











T

T

ttt

ttt

t

t

t
t

t







   ,                                          (2) 

then  .
TT ss    

 
ii)  If  

                                                                
  

 
  

1
,

,
lim

0

0











T

T

ttt

ttt

t

t

t
t

t







  ,                                         (3) 

 then .
TT ss    

 
Proof.  i)  Suppose that 

   tt 
    for all Tt  and (2) is satisfied. Then tt JI  , and so for  

,0   we have 
 

 
     

 
     


  LsftttsLsfttts tt tt

:,:, 00 TT
. 

 
Therefore,  
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 
     

 
  

 
  

 
  

 
    

     






































Lsfttts
tttttt

ttt

ttt

Lsfttjts

t

tt

t

t

t

t

tt

t

t

t

:,
,

1

,

,

,

:,

0

00

0

0

0

T

TT

T

T

T

 

 
for ,Tt  where  ttJ tt ,1  . Hence by using (2) and taking the limit ,t we get  

.
TT ss    

 
 ii)  Let f  be a  measurable function and   .lim Lsf 

Ts  Since tt JI   for all ,Tt  we can 

write  
 

 
     

 
  

 
   

 
  

TT

T

ttt

Lsftstt

ttt

Lsfttts

t

t

t

t

t

t

t

t

,

:

,

:,

0

0

0

0
































  

                                                                                    
     

 
  

T

T

ttt

Lsfttts

t

t

t

t

,

:,

0

0
















  

 

 
  

 
  

 
  

T

TT

ttt

tttsttts

t

tt

t

tt

,

,,

0

00
















  
     

 
  

T

T

ttt

Lsfttts

t

t

t

t

,

:,

0

0
















  

 

      
  

 
  

 
     

 
  

T

T

T

T

ttt

Lsfttts

ttt

ttt

t

t

t

t

t

t

t

t

,

:,

,

,
1

0

0

0

0















































 , 

 

for .Tt  Since     

     1lim
,

,

0

0






 



T

T

ttt

ttt

t tt

tt







  by (3), the term in the above inequality tends to 0. 

Furthermore, since   ,lim Lsf 
Ts  the second term of the right hand side of the above inequality 

goes to 0 as .t   Therefore,  .
TT ss    

 
From Theorem 1, we can give the following corollaries. 

 
Corollary 1. Let  )()(

,
tt 

    such that 
   tt 

    for all Tt . If  (3) holds, then 
TT ss  . 

 
If we take  t

t



 )(

, Tt in the above corollary, we get the following corollary. 
 

Corollary 2.  Let     
1limIf.

)(

,0

)(









t

ttt

t

tt

t 





 T  , then we have TT ss  .  

 
Now we give the concept of strong  Cesàro summability on T . 

 
Definition 3. RT :f   is strongly  Cesàro summable on T  if there exists some RL  such 
that   

 
    

  0
,

1
lim

,0 0


 




sLsf
ttt

tttt
t

tt TT 


, 

 
where f  is  a   measurable function. 

 
In this case     LsfW  lim, T  [31]. The set of all strongly λ-Cesàro summable functions 

on T  is denoted by   ., TW  The Lebesque  integral on time scales was introduced by Cabada 

and Vivero [32].  
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Theorem 2.  Let  )()(
,

tt 
     such that 

   tt 
    for all Tt . Then we get: 

i) If (2) holds, then    TT  ,, WW  ; 

ii) If (3) holds, then      TTT  ,, WW  . 
 
Proof.   i)  Suppose that 

   tt 
    for all  Tt . Then tt JI   for all Tt  so that we may write 

 
    

 
 
    

  sLsf
ttt

sLsf
ttt

tttttttt tttt





 


TT TT ,0,0 00

,

1

,

1

 


, 

 
for all  Tt . This implies that 

 

 
    

 

 
  

 
  

 
    

  .
,

1

,

,

,

1

,00

0

,0

0

0

sLsf
tttttt

ttt

sLsf
ttt

ttttt

t

tttt

ttt

t
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


















T

T

TT

T

T

















 

 
Then by taking the  limit t  in the last inequality, we obtain    TT  ,, WW  . 
 
 ii) Let    TT ,Wf    and (3) hold. Since  Tf , then there exists 0M  such that 

  Msf   for Ts .  Also, now since 
   tt 

    and 
   tt 

 
 11  , tt JI   for Tt , and we 

may write  

                    
 
    

  sLsf
ttt

tttt tt


 


TT ,0 0

,

1



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  

 
 
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ttt

ttttt ItIJt



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

 
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1

,

1

0/0 
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                 
  

 
  

 
  

 
  
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for Tt . Since     

     1lim
,

,

0

0






 



T

T

ttt

ttt

t tt

tt






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0
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



 .  

This implies that      TTT  ,, WW  . 
 

From Theorem 2, we can give the following corollary. 
  
Corollary 3. Let  )()(

,
tt 

    such that 
   tt 

   for all Tt . If (3) holds, then 

       TT TT  ,, WW    .  

 
CONCLUSIONS 
 
 For the summability theory, generalisation of some concepts, notations and theorems is an 

important issue.  So we extend the study of Çolak [6] to an arbitrary time scale. 
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