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Abstract:  Let � = Q(√�) be a real quadratic field, where � is a positive square-free 

integer congruent to 1 modulo 4. In this paper we determine the first term of the 

symmetric part of the continued fraction expansion of the integral basis element �� =

(1 + √�)/2. Furthermore, we obtain a necessary and sufficient condition for Yokoi’s �-

invariant value to be zero and present some numerical results on the class number of such 

real quadratic fields. 
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INTRODUCTION 
 

Let � = ℚ(√�) be a real quadratic number field, where � is a positive square-free integer. 

The continued fraction expansion of the integral basis element �� in ℚ(√�) is denoted by �� =

��� , ��  ,… ,�� � � � ,2�� − 1�, where �� ,��,… ,�� � � �  are partial quotients and �� is the period length 

of ��. The fundamental unit �� of the real quadratic number field is also denoted by 
  

�� = �
�� �� � √�

�
� > 1,   where   � = �

2    �� � ≡ 1 ���(4)
 1    �� � ≡ 2,3 ���(4)

 . 

 
For any square-free integer �, Yokoi [1] defined some new invariants by taking the fundamental 

unit of ℚ(√�) as 

�� = �
� �

�

��
�  and �� = �

��

� �
�� , 

 
where ⟦�⟧ represents the greatest integer less than or equal to �. Yokoi also studied the relationship 

between these new invariants and the class number of real quadratic fields. 

The class-number-one problem for real quadratic fields is still a mysterious classical 

problem. It is also essential to determine the fundamental units and Yokoi’s invariants in order to 

examine the structures of real quadratic fields and study the class number problems. In an attempt to 
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identify Yokoi’s invariants and fundamental units, many studies have been made using various 

methods. Mollin and Williams [2] proved that if �� ≠ 0 , then �� < 8�/σ�  and 

ℎ� ≥ ����� ����� ⁄ , where �� is the least prime which splits in ℚ(√�). Also, Yokoi [3] provided 

the following bounds for fundamental units and class numbers when the norm of the fundamental 

unit is equal to − 1 : 

�� >
� − 4

�� + 1
     ���   ℎ� <

�

�
√�(2 + log�)

log�
�� �

�� ��
�

  . 

 
Furthermore, Yokoi [4] investigated the Diophantine equation �� − ��� = ± 2  and provided 

sufficient conditions for the solvability in terms of Yokoi’s �-invariants. 

On the other hand, some mathematicians have studied real quadratic fields which depend on 

the period length of the continued fraction expansion of  �� . Tomita [5, 6] investigated the 

fundamental units of real quadratic fields ℚ(√�) , where �  is a positive square-free integer 

congruent to 1 modulo 4, and described explicitly the form of fundamental units such that period �� 

is equal to 3, 4 and 5. He also provided some criteria on Yokoi’s �-invariants using these explicit 

forms of fundamental units. Similarly, it was determined that the form of fundamental units for �� 

is equal to 6,7 or 8 [7-10]. However, it is observed that the research on Yokoi's invariant for 

�� > 6  does not exist. This study aims to obtain a necessary and sufficient condition for Yokoi’s 

�-invariant �� to be zero with period �� = 8, using the explicit form of the fundamental unit in the 

literature [9]. It also aims to generalise the condition so that it is valid for all periods using a 

different method. This study helps in improving estimates of fundamental units and class numbers 

for real quadratic fields. It also provides conditions for the solvability of some Diophantine 

equations. 
 

PRELIMINARIES 
 

In this section some of the important preliminaries and lemmas are given. For any square-

free positive integer �, we can put � = �� + � with �,� ∈ ℤ,0 < � ≤ 2�. Here, since √� − 1 <

� < √� , the integers �  and �  are uniquely determined by  � . Let � = �� + �  be a square-free 

positive integer congruent to 1 modulo 4; then we consider the following two cases in which � is 

even or odd respectively: 

   Case 1.  If � is even, then � = 4� + 1 with � ∈ ℤ,� ≥ 0. 

   Case 2.  If � is odd, then � = 4� with � ∈ ℤ,� ≥ 1. 

Tomita [6] has defined set D�
� by 

  
��

� = {� ∈ ℤ� | � ≡ � ���(8), � ≡ � ���(8)}, 
 
where ℤ� is the set of all positive integers.  
 
Remark 1.  The integer � can be congruent to 1 or 5 modulo 8 when � is congruent to 1 modulo 4. 

   In the case of � = �� + � ≡ 1 ���(8), � can be congruent to 0, 1 or 5 modulo 8. Therefore, the 

set of all positive square-free integers congruent to 1 modulo 8 is equal to ��
� ∪ ��

� ∪ ��
� .  

   In the case of � = �� + � ≡ 5 ���(8), � can be congruent to 1, 4 or 5 modulo 8. Therefore, the 

set of all positive square-free integers congruent to 5 modulo 8 is equal to ��
� ∪ ��

� ∪ ��
�. 

 
Remark 2.  Let � = �� + � be a square-free positive integer congruent to 1 modulo 4. 
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   If � is even, then � ≡ 1 ���(4). Hence � can only be congruent to 1 or 5 modulo 8. Therefore, � 

belongs to ��
� ∪ ��

� ∪ ��
� ∪ ��

�  in the case in which � is even. 

   If � is odd, then � ≡ 0 ���(4). Hence � can only be congruent to 0 or 4 modulo 8. Therefore, � 

belongs to ��
� ∪ ��

� in the case in which � is odd. 
 
Remark 3.  The sets ��

� ,��
� ,��

� ,��
�,��

� and ��
� are represented as: 

��
� = {� ∈ � | � = �� + 8�, � ≡ 1 ���(2), 0 < 4� < �} , 

��
� = {� ∈ � | � = �� + 8� + 1, � ≡ 0 ���(4), 0 ≤ 4� < �} , 

��
� = {� ∈ � | � = �� + 8� + 5, � ≡ 2 ���(4), 0 ≤ 4� < � − 2} , 

��
� = {� ∈ � | � = �� + 8� + 1, � ≡ 2 ���(4), 0 ≤ 4� < �} , 

��
� = {� ∈ � | � = �� + 8� + 4, � ≡ 1 ���(2), 0 ≤ 4� < � − 2} , 

��
� = {� ∈ � | � = �� + 8� + 5, � ≡ 0 ���(4), 0 ≤ 4� < � − 2} . 

Let �(�) be the set of all quadratic irrational numbers in ℚ(√�). For an element � of �(�), if 

� > 1 and − 1 < �� < 0, then � is called reduced; �� is the conjugate of � with respect to ℚ. The set 

of all reduced quadratic irrational numbers in �(�) is denoted by �(�). It is well known that if an 

element � of �(�)  is in  �(�) , then the continued fractional expansion of � is purely periodic. 

Moreover, the denominator of its modular automorphism is equal to fundamental unit �� of ℚ(√�). 

In order to prove our theorems, we need the following lemmas. We will write � instead of 

�� for convenience.   
 

Lemma 1 [5].  For a square-free positive integer � > 5 congruent to 1 modulo 4, we put �� =
� �√�

�
, �� = ⟦��⟧, �� = �� − 1 + ��. Then �� ∉ �(�), but �� ∈ �(�) holds. Moreover, for the 

period �  of  �� , we get �� = � 2�� − 1, ��  ,… ,�� � � �  and  �� = ��� , ��  ,… ,�� � � ,2�� − 1� . 

Furthermore, let �� =
�� � � ���� �

� �� � �� �
= [2�� − 1,��  ,… ,�� � � ,�� ] be a modular automorphism of �� ; 

then the fundamental unit �� of ℚ(√�) is given by the following formula: 
 

�� = �
�� �� � √�

�
� > 1, 

�� = (2�� − 1)�� + 2�� � �   and  �� = ��  
 
where �� is determined by �� = 0, �� = 1, ���� = ���� + ��� � ,(� ≥ 1). 
 
Lemma 2 [11].  For a square-free positive integer �, we put � = �� + �  (0 < � ≤ 2�), �,� ∈ ℤ. 

Moreover, let �� = ℓ� +
�

� �� �
 (ℓ� = ⟦��⟧, � ≥ 0) be the continued fraction expansion of � = ��  

in �(�). Then each ��  is expressed in the form �� = (� − �� + √�) ���  ,(��,�� ∈ ℤ), and ℓ�,��,�� 
can be obtained from the following recurrence formula: 
 

�� = (� − �� + √�) ���  , 

2� − �� = ��ℓ� + ����  , 

���� = ��� � + (���� − ��)ℓ�  (� ≥ 0), � ℎ��� 0 ≤ ���� < �� ,  

�� � = (� + 2��� + ��
�) ��⁄  . 

 
Moreover, for the period � ≥ 1 of �� , we get 
 

ℓ� = ℓ� � �  (1 ≤ � ≤ � − 1) , 

�� = �� � ��� ,    �� = �� � � (1 ≤ � ≤ �). 
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Lemma 3 [5].  For a square-free positive integer � congruent to 1 modulo 4, we put �� =
� �√�

�
,

�� = ⟦��⟧, �� = �� − 1 + �� . If we put � = ��  in Lemma 2, then we have the following 
recurrence formula:  
 

�� = �� = � − ℓ� = � − 2�� + 1 , 

�� = 2,    �� = �� � = (� + 2��� + ��
�)/��  , 

ℓ� = 2�� − 1 ,   ℓ� = ��    (1 ≤ � ≤ � − 1). 
 
Lemma 4 [9].  Let � = �� + � ≡ 1 ���(4) be a square-free integer for positive integers � and � 

satisfying 0 < � ≤ 2�. Let the period �� of the integral basis element of �� =
� �√�

�
 in ℚ(√�) be 8. 

If � is odd, then 
 

�� = �
� + 1

2
,ℓ� ,ℓ�,ℓ�,

�� (� + ℓ��) − 2ℓ�� − ��

�(� − �� ℓ�) + ��
,ℓ�,ℓ�,ℓ� ,� � , 

 
where ℓ� ≥ 1 (� = 1,2,3,4). Then the coefficients �� and �� of ��, where 
 

�� = (�� + �� ℓ� )(��ℓ� + 2��) + 2(�(�ℓ� + ℓ�) + �),    �� = �(�ℓ� + 2�) 

and 

� = (�� + �� ℓ� )� + 4�ℓ� + 4��  , 
 
hold.  �,�,� are determined by � = ℓ� ℓ� + 1, � = ℓ�ℓ� + 1 and � = ℓ� + �ℓ�. Moreover, � and � 

are uniquely determined with the equalities � = �� + �� ℓ�  and 
 

�(�ℓ� + 2ℓ�) = �� [�(1 + ℓ�ℓ�) + �ℓ�]− �(� + �ℓ�). 
 
Lemma 5 [9].  Let � = �� + � ≡ 1 ���(4) be a square-free integer for positive integers � and � 

satisfying 0 < � ≤ 2�. Let the period �� of the integral basis element of �� =
� �√�

�
 in ℚ(√�) be 8. 

If � is even, then 
 

�� = �
�

2
,ℓ� ,ℓ�,ℓ�,

�� + �� − 2ℓ�

ℓ�
� − ��

,ℓ�,ℓ�,ℓ� ,� − 1 � , ℓ� ≥ 1 (� = 2,3) 

 
and then the coefficients �� and �� of ��, where 
 

�� = [(�(� + 1) + � − 2)� + 2(� − ℓ�)](�ℓ� + 2�) + 2�ℓ� , 

�� = �(�ℓ� + 2�) 

and 

� = [�(� + 1) + � − 1]� + 2[�(� + 1) + � − 2� − 2]− 1 , 
 
hold. � = ℓ� + 1 , � = 2� − � , � = 1 + �ℓ� , � = �ℓ� − � − 1 , � = ℓ� + 1 , and �  and �  are 

uniquely determined with the equalitions � = �(� + 1) + � − 1 and 
  

ℓ�(ℓ�ℓ� + 2) = �� + �� + 2��ℓ�. 

 
MAIN RESULTS 
 
Theorem 1.  Let � = �� + � ≡ 1 ���(4) be a square-free integer for positive integers � and � 

satisfying 0 < � ≤ 2� . Let the period of the continued fraction expansion of the integral basis 

element of �� =
� �√�

�
 in ℚ(√�) be denoted by ��. For every �� > 1, 

i) If � is odd, then ℓ� ≠ 1, i.e.  ℓ� ≥ 2 ; 

ii) If � is even, then ℓ� = 1. 
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Proof.  If � = �� + � ≡ 1 ���(4), then � ∈ ��
� ∪ ��

� ∪ ��
� ∪ ��

� ∪ ��
� ∪ ��

�  . 

i) Let �  be odd. Then �� = ⟦��⟧ = �
� �√�

�
� =

���

�
 and the continued fraction expansion of the 

integral basis element of �� in ℚ(√�) is  

�� = �
���

�
,ℓ� ,ℓ�,ℓ�,… .,ℓ�,ℓ�,ℓ� ,� � , ℓ� ≥ 1 (� = 1,2,3,… ). 

From Lemma 3 it is obtained that 

�� = �� = � − 2�� + 1 = 0, 

�� = 2, 

�� = �� � = (� + 2��� + ��
�)/�� = �/2, 

ℓ� = 2�� − 1 = �. 
 
Since � is odd, � belongs to ��

� ∪ ��
�. 

We first assume that  � ∈ ��
� = {� ∈ � ∶  � = �� + 8� ,� ≡ 1 ���(2),0 < 4� < �} . 

Then � = 8�  and so �� � = �� = 4�. For � = 1 in Lemma 2, it is obtained that 
 

�� = 2� − 4�ℓ� . 
 
Using 0 ≤ �� < �� , it can be written that � < 2�(1 + ℓ� ). On the other hand, we have 0 < 4� < � 

from the assumption. Hence the following inequality is clear: 
 

0 < 4� < � < 2�(1 + ℓ� ). 
 
If we write ℓ� = 1 in the last inequality, then we get a contradiction. Thus, �� ≠ 1 is obtained. 

Now we assume that � ∈ ��
� = {� ∈ � ∶  � = �� + 8� + 4, � ≡ 1 ���(2), 0 ≤ 4� <

� − 2}. Then � = 8� + 4 and so �� � = �� = 4� + 2. For � = 1 in Lemma 2, it is obtained that 
 

�� = 2� − (4� + 2)ℓ�  . 
 
Using 0 ≤ �� < �� , it can be written that 
 

� − 2 < 2� + 2�ℓ� + ℓ� − 1. 
 
On the other hand, we have 0 ≤ 4� < � − 2 from the assumption. Hence the following inequality 

is clear: 

2� < 2�ℓ� + ℓ� − 1. 
 
If we write ℓ� = 1 in the last inequality, then we get a contradiction. Thus, ℓ� ≠ 1 is obtained. 

Therefore, the first part of proof is completed. 
 

 ii) Let �  be even. Then  �� = ⟦��⟧ = �
� �√�

�
� =

�

�
 and the continued fraction expansion of the 

integral basis element of �� in ℚ(√�) is 
                                                                                                                     

�� = �
�

�
,ℓ� ,ℓ�,ℓ�,… .,ℓ�,ℓ�,ℓ� ,� − 1 � , ℓ� ≥ 1 (� = 1,2,3,… ). 

 
From Lemma 3 it is obtained that 

�� = �� = � − 2�� + 1 = 1, 

�� = 2, 

�� = �� � = (� + 2��� + ��
�)/�� = (� + 2� + 1)/2, 

ℓ� = 2�� − 1 = � − 1. 
 
Since � is even, � belongs to ��

� ∪ ��
� ∪ ��

� ∪ ��
� . 
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We assume that � ∈ ��
� ∪ ��

� ; then � = 8� + 1 (� ≥ 0) and so �� � = �� = 4� + � + 1. 

For � = 1 in Lemma 2, it is obtained that �(2 − ℓ� ) = 4�ℓ� + ℓ� + �� + 1, which implies that 2 >

ℓ� . Since 2 > ℓ�  and ℓ� ≥ 1, we get ℓ� = 1. 

We assume that � ∈ ��
� ∪ ��

� ; then � = 8� + 5 (� ≥ 0) and so �� � = �� = 4� + � + 3. 

For � = 1  in Lemma 2, it is obtained that  �(2 − ℓ� ) = 4�ℓ� + 3ℓ� + �� + 1 , which implies 

that 2 > ℓ� . Similarly, we get ℓ� = 1. Therefore, the proof of Theorem 1 is completed. 
 

Theorem 2.  Suppose that � = �� + � ≡ 1 ���(4) is a square-free integer for positive integers � 

and �  satisfying  0 < � ≤ 2� . Let the period ��  of the integral basis element of �� =
� �√�

�
 in 

ℚ(√�) be 8.  In the case that � is odd,  
�� = 0 �� ��� ���� �� �� > � . 

 

Proof.  Note that �� = �
��

� �
�� = 0 if and only if ��

� − �� > 0. Now let �� = 0. Using coefficients 

�� and �� in Lemma 4, the following can be written:  
 

��
� − �� = ��(�� − �) − 2[��ℓ� + �ℓ� + �]> 0. 

 
Thus, �� − � must be a positive integer. Therefore, we get �� > �. 

Conversely, suppose that �� > �. We know that ℓ� ≠ 1 from Theorem 1 in the case that � is 

odd. We define �� − � = �. Since �� > �, we get �� − � = � > 0. It follows that 
 
��

� − �� = ��(�� − �) − 2[��ℓ� + �ℓ� + �]= �ℓ�[�� − 2�]+ 2[��� − �ℓ� − �]. 
 

Now we will show that �� − 2� > 0 and ��� − �ℓ� − � > 0. If we put  � = ℓ� ℓ� + 1, � =

ℓ�ℓ� + 1 and � = ℓ� + �ℓ� , then we get 
 

�� − 2� = �(ℓ� + ℓ� + ℓ� ℓ�ℓ�) − 2ℓ�ℓ� − 2 

                                              = ℓ�ℓ�(�ℓ� − 2) + (�ℓ� − 2) + �ℓ�. 
 
Since � > 0 and ℓ� ≠ 1, it is obtained that  �ℓ� − 2 ≥ 0, and so �� − 2� > 0. On the other hand, 

the following can be written: 
 

��� − �ℓ� − � = ��(ℓ� ℓ� + 1) − �ℓ� − ℓ�ℓ� − 1 

                                                     = �ℓ�(�ℓ� − 1) + (�ℓ� − 1) + ℓ�ℓ�(�ℓ� − 1) + �ℓ�. 
 
Since � > 0 and ℓ� ≠ 1, then it is obtained that �ℓ� − 1 > 0. Therefore, ��

� − �� > 0 holds and 

this finishes the proof. 
 
Theorem 3.  Suppose that � = �� + � ≡ 1 ���(4) is a square-free integer for positive integers � 

and �  satisfying  0 < � ≤ 2� . Let the period ��  of the integral basis element of �� =
� �√�

�
 in 

ℚ(√�) be 8. In the case that � is even,  
i) If �� = 0, then �� > � ; 

ii) If �� > � and ℓ�ℓ� ≥ ℓ�, then  �� = 0. 
 
Proof.  i) Let  �� = 0 , that is  ��

� − �� > 0 . Using coefficients ��  and ��  in Lemma 5, the 

following can be written:  
 

��
� − �� = ��

� − ��� − �� + 2ℓ�(�ℓ� + 2�) − 2�ℓ� > 0. 
 
Define � = − �� + 2ℓ�(�ℓ� + 2�) − 2�ℓ�. Then 

 
� = (2ℓ� − �)(�ℓ� + 2�) − 2�ℓ�     

           = (2 − 2�)ℓ�ℓ�+(2 − �)�ℓ�
�ℓ� + (2 − �)2�ℓ� − ℓ� − 2� − 2ℓ� − 2�ℓ�ℓ� 
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holds. Since  ℓ� ≥ 1 , we get  � = ℓ� + 1 ≥ 2 . Therefore ,2 − 2� ≤ − 2  and so � < 0 . Hence 

�� − � > 0 holds since ��
� − �� = ��(�� − �) + � > 0 and � < 0. This implies �� > �. 

 
ii)  Now suppose that �� > � and ℓ�ℓ� ≥ ℓ�. Since �� > � , we can write �� − � − 1 ≥ 0. Define 
 

� = ℓ�(�ℓ� + 2�) − �ℓ� = �(ℓ�ℓ� − ℓ�) + 2�ℓ�. 
 
Since ℓ�ℓ� ≥ ℓ�, we get � > 0. Consequently, we obtain ��

� − �� =  ��( �� − � − 1) + 2� > 0,  

i.e. �� = 0.                               ∎ 
 

The following theorem is a generalisation of Theorem 2 and Theorem 3. 
 
Theorem 4.  Let � = �� + � ≡ 1 ���(4) be a square-free integer for positive integers � and � 

satisfying  0 < � ≤ 2� . Let the period of the integral basis element of �� =
� �√�

�
 in ℚ(√�) be 

denoted by ��. For every �� ≥ 1, 
�� = 0 if and only if �� > � . 

 
Proof.  We examine two cases: 

Case I.  � is odd: 

Suppose that �� = 0, that is ��
� − �� > 0. We write simply � instead of ��. Since � is odd, 

we get �� = ⟦��⟧ = �
� �√�

�
� =

���

�
  and �� = ��� + 2�� � � , �� = ��  from Lemma 1. Thus, it can 

be written that 

��
� − �� = ��

� − ��� − 2�� � � = �� (�� − �) − 2�� � � > 0. 
 
This implies that �� = �� > �.  

Conversely, let �� > �. By taking equation ���� = ���� + ��� � ,(� ≥ 1) in Lemma 1, for 

� = � − 1 the following can be written:  

�� = �� � � �� � � + �� � �. 
 
From equation  ℓ� = ��    (1 ≤ � ≤ � − 1) in Lemma 3, for � = � − 1, 

ℓ� � � = �� � � . 
 
In Lemma 2 by writing � = � − 1 in equation ℓ� = ℓ� � �  (1 ≤ � ≤ � − 1), we obtain 
 

ℓ� � � = ℓ� � � �� = ℓ� . 
 
From Theorem 1 we know that ℓ� ≥ 2 when � is odd. Thus, 
 

�� = �� � � �� � � + �� � � = ℓ� �� � � + �� � � ≥ 2�� � � + �� � � , 
 
and so �� > 2�� � �  holds. Since we assume that �� = �� > �, 
 

�� (�� − �) ≥ �� > 2�� � �  and  ��
� − �� = ��

� − ��� − 2�� � � > 0 
 
hold. Consequently,  �� = 0  is obtained. 
 
Case II.  � is even: 

Since �  is even, we get �� = ⟦��⟧ = �
� �√�

�
� =

�

�
 and  �� = (� − 1)�� + 2�� � �  , while  

�� = ��  from Lemma 1 and ℓ� = 1  from Theorem 1. By taking equation ���� = ���� +

��� � ,(� ≥ 1) in Lemma 1, we obtain 
 

�� = �� � � �� � � + �� � � = ℓ� �� � � + �� � � = �� � � + �� � � for � = � − 1. 
 
Then the following can be written: 
 

��
� − �� = ��

� − (� − 1)�� − 2�� � � = �� (�� − �) + �� − 2�� � �  

                            = �� (�� − �) + �� � � − �� � � . 
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On the other hand, for � = � − 2 in Lemma 1, 
 

�� � � = �� � ��� � � + �� � � = ℓ��� � � + �� � � 
 
holds. Thus, we get �� > �� � � > �� � �, so 0 > �� � � − �� � � . 

Now suppose that  �� = 0 , that is ��
� − �� = �� (�� − �) + �� � � − �� � � > 0 . This 

implies that �� = �� > � since 0 > �� � � − �� � � . 

Conversely, let �� > �. We will investigate �� > � + 1 and �� = � + 1 separately. In the 

case of �� = �� > � + 1, we can write �� − � + 1 > 2. Thus,  
 

(�� − � + 1)�� > 2�� > 2�� � �  

or 

��
� − (� − 1)�� − 2�� � � > 0 

holds.  Hence it is obtained that 

��
� − �� = �� (�� − �) − �� � � + �� � � > 0,  i.e. �� = 0 . 

 
In the case of �� = �� = � + 1 , we have 
 

��
� − �� = ��

� − (� − 1)�� − 2�� � � = 2� + 2 − 2�� � �  . 
 
Since �� = �� � � + �� � � , we get  � + 1 = �� > �� � �  and 
 

��
� − �� = 2� + 2 − 2�� � � > 2�� � � − 2�� � � = 0 . 

 
Consequently, this implies that �� = 0. Therefore, the proof is completed. 
 
SOME NUMERICAL RESULTS ON THE CLASS NUMBER  
 

In this section we give some numerical results on the class number ℎ� of the real quadratic 

field ℚ(√�). Let � = �� + � ≡ 1 ���(4) be a square-free integer for positive integers �  and � 

satisfying 0 < � ≤ 2�. 
  

Corollary 1.  For any �  satisfying  3533 < � < 10� , we may confirm that �� ≤ � (�� ≠ 0) 

implies ℎ� > 1 using computer algebra systems such as Mathematica. For � ≤ 3533, there exist 

exactly 38 real quadratic fields ℚ(√�) satisfying �� ≤ � (�� ≠ 0 ) and ℎ� = 1. All such �’s are 

listed in Table 1. 

Real quadratic fields satisfying �� ≠ 0 and  ℎ� = 1  have been previously attained in the 

literature. However, we have obtained the same fields according to �� ≤ �  criteria without 

calculating �� . When we tabulated �  values satisfying �� ≤ �  and  ℎ� = 1  with periods ��  and 

coefficients of fundamental units, we have observed the following interesting results: 
 

Corollary 2.  If �� ≤ � (�� ≠ 0 ) and ℎ� = 1, then the period of the continued fraction expansion 

of �� is less than or equal to 7. 
 
Corollary 3.  Let � ≡ 1 ���(4) be a square-free integer. Let �� be the period of the continued 

fraction expansion of ��. By using computer algebra systems, for 1 < � < 10�, it can be seen that  

i) If � is a prime integer, then �� is odd; 

ii) If � is a prime integer, then ℎ� is odd; 

iii) If ℎ� is odd and �� is odd, then � is a prime integer. 
 

Corollary 4.  If �� is odd and the � ≡ 1 ���(4) square-free integer is not prime, then ℎ� is even, 

i.e. ℎ� ≠ 1. 
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         Table 1.  All �’s with �� ≤ � and ℎ� = 1 

 

 � 
Continued fraction of  

�� = (1 + √�)/2 
�� � �� �� �� ℎ� 

* 5 �1,1 � 1 2 1 1 1 1 

* 13 �2,3 � 1 3 1 3 3 1 

* 17 �2,1,1,3 � 3 4 2 8 2 1 

 21 �2,1,3 � 2 4 1 5 5 1 

* 29 �3,5 � 1 5 1 5 5 1 

* 37 �3,1,1,5 � 3 6 2 12 3 1 

* 53 �4,7 � 1 7 1 7 7 1 

* 61 �4,2,2,7 � 3 7 5 39 1 1 

 69 �4,1,1,1,7 � 4 8 3 25 2 1 

 77 �4,1,7 � 2 8 1 9 9 1 

 93 �5,3,9 � 2 9 3 29 3 1 

* 101 �5,1,1,9 � 3 10 2 20 5 1 

* 149 �6,1,1,1,1,11 � 5 12 5 61 2 1 

* 173 �7,13 � 1 13 1 13 13 1 

* 197 �7,1,1,13 � 3 14 2 28 7 1 

 213 �7,1,3,1,13 � 4 14 5 73 2 1 

 237 �8,5,15 � 2 15 5 77 3 1 

* 269 �8,1,2,2,1,15 � 5 16 10 164 1 1 

* 293 �9,17 � 1 17 1 17 17 1 

* 317 �9,2,2,17 � 3 17 5 89 3 1 

 341 �9,1,2,1,2,1,17 � 6 18 15 277 1 1 

 413 �10,1,1,1,19 � 4 20 3 61 6 1 

 437 �10,1,19 � 2 20 1 21 21 1 

 453 �11,7,21 � 2 21 7 149 3 1 

* 461 �11,4,4,21 � 3 21 17 365 1 1 

* 557 �12,3,3,23 � 3 23 10 236 2 1 

* 677 �13,1,1,25 � 3 26 2 52 13 1 

 717 �13,1,7,1,25 � 4 26 9 241 2 1 

* 773 �14,2,2,27 � 3 27 5 139 5 1 

* 797 �14,1,1,1,1,1,1,27 � 7 28 13 367 2 1 

* 1013 �16,2,2,2,2,31 � 5 31 29 923 1 1 

 1077 �16,1,9,1,31 � 4 32 11 361 2 1 
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         Table 1.  (Continued) 
 

 � 
Continued fraction of  

�� = (1 + √�)/2 
�� � �� �� �� ℎ� 

 1133 �17,3,33 � 2 33 3 101 11 1 

 1253 �18,5,35 � 2 35 5 177 7 1 

 1757 �21,2,5,2,41 � 4 41 24 1006 1 1 

* 1877 �22,6,6,43 � 3 43 37 1603 1 1 

* 2477 �25,2,1,1,2,49 � 5 49 13 647 3 1 

 

 
3533 �30,4,1,1,4,59 � 5 59 41 2437 1 1 

 
  Note: 

   �� = period length of �� ; 

   �� = ��� + ��√��/2 > 1 :  fundamental unit of ℚ(√�) ; 

   �� = ���/��
�� ; 

   ℎ� = class number of ℚ(√�) ; 

               * denotes prime. 

 
 
CONCLUSIONS 
 

In this paper we have studied  ��, Yokoi’s �-invariant value, in terms of continued fractions 

where � = �� + � ≡ 1 (��� 4)  is a square-free integer and have provided a necessary and 

sufficient condition for �� to be zero for every �� ≥ 1 period. Furthermore, according to the case of 

� being odd or even, we have also investigated the first term of the symmetric part of the continued 

fraction expansion of the integral basis element �� = (1 + √�)/2. These findings could establish 

more effective bounds on the fundamental unit and class number and contribute to the solvability of 

some Diophantine equations. 
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