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Abstract:   A  theorem  on  ; kA   summability  of   infinite series,  which  generalises the  

     result  dealing  with  , n k
N p  summability of  infinite series,  has been proved.    This theorem   

     also contains  some new results  related to the , n k
A p  and ,1

k
C  summability methods for the 

     special  cases of , ( ),np ( ),n  and ( )nva .   
 
     Keywords:  Riesz mean, summability factor, absolute matrix summability, almost increasing  
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INTRODUCTION  

A positive sequence  nb is said to be almost increasing if there exist a positive increasing 

sequence  nc  and two positive constants A  and B  such that  n n nAc b Bc  [1]. Obviously, every 
increasing sequence is almost increasing. However, the converse need not be true as can be seen by 
taking an example, viz. n

n neb )1( .  

Let 
0

v
v

a



  be an infinite numerical series with its partial sums 

0

n

n v
v

s a


 . Let )( np  be a 

sequence of positive numbers such that 

 
0

 as , ( 0 , 1).
n

n v i i
v

P p n P p i 


       (1) 

          The sequence-to-sequence transformation 

 
0

1 n

n
n

p s
P  






   (2) 

defines the sequence ( )n of the  , nN p mean of the sequence ( ),ns generated by the sequence of 

coefficients ( )np  [2].  The series  na is said to be summable 
knpN , , 1k , if  [3] 
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Let  nvA a  be a normal matrix, i.e. a lower triangular matrix of non-zero diagonal entries. 

Then A  defines the sequence-to-sequence transformation, mapping the sequence ( )ns s  to
( ( ))nAs A s , where 

  
0

,    0,1,...
n

n nv v
v

A s a s n


   (4) 
 

Let  n be any sequence of positive real numbers. The series  na is said to be  summable 

; kA  ,  1k  and 0  ,  if  [4] 

 1

1
( ) ,

kk k
n n

n
A s


 



     (5) 

where 
 1( ) ( ) ( ).n n nA s A s A s    (6) 
 

If we take n n nP p  , then ; kA   summability reduces to , ;n kA p  summability  [5]. 

For 0   and n n nP p  , ; kA   summability reduces to , n kA p summability [6]. Also, if we 

take 0   and n n  for all n , then ; kA   summability reduces to kA summability  [7]. 

Additionally, when we take 0  , n n nP p   and nv v na p P , then we get , n k
N p summability. 

Furthermore, by taking 0  , n n , nv v na p P  and 1np   for all values of n ,   we get ,1 kC
summability [8]. 

 
KNOWN RESULT  

Bor  [9]  has proved the following theorem for , n k
N p summability factors of infinite series. 

Theorem 1.  Let ( )nX  be an almost increasing sequence and  let there be sequences ( )n and ( )n
such that 
                                                                    ,n n       (7) 
 0    n as n  , (8) 

 
1

n n
n

n X




   , (9) 

 (1)n nX O  .                         (10) 
If                                                    

                                                     
1

( )    
kn

v
n

v

s
O X as n

v

                                                        (11)                            

and ( )np is a sequence such that  
                                                               ( )n nP O np ,                                                                      (12)                    
                                                           1( )n n n nP p O p p   ,                                                               (13)                         

then the series 
1

n n n

n n

a P
np




    is  summable , n k

N p , 1k  , where 1n n n      . 
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Remark. It should be noted that, from the hypotheses of Theorem 1, ( )n is bounded and
(1/ )n O n    [10]. 

 
MAIN RESULTS 
 

The aim of this paper is to generalise Theorem 1 for ; kA  summability method. Before 
stating the main theorem, we must first introduce some further notations. Given a normal matrix

 nvA a , we associate two lower semimatrices ( )nvA a and ˆ ˆ( )nvA a  as follows: 

 , , 0,1,...
n

nv ni
i v

a a n v


   (14) 

and 
 00 00 00 1,ˆ ˆ, , 1, 2,...nv nv n va a a a a a n      (15) 
 

It may be noted that A  and Â  are the well-known matrices of series-to-sequence and series-
to-series transformations  respectively. Then we have   

  
0 0

n n

n nv v nv v
v v

A s a s a a
 

    (16) 

and 

  
0

ˆ
n

n nv v
v

A s a a


  . (17) 
 
Now  the following theorem shall be proved. 
 

Theorem 2.  Let )( nvaA be a positive normal matrix such that 
 ,...,1,0,10  nan  (18) 
 1,  for 1,n v nva a n v     (19) 

 ,n
nn

n

pa O
P

 
  

 
 (20) 

                                                             , 1ˆ ˆ( ) ,n v v nva O v a                                                          (21) 

                                                     
1

1

ˆ( )
m

k k v
n v nv v
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1

, 1
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ˆ
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k k
n n v v
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    as   m .                                            (23) 

Let ( )nX  be an almost increasing sequence,  n n np O P  and 1 (1)n
n

O O
X


 

  
 

. If conditions 

(7)-(9) and (12)-(13) of  Theorem 1 and  

                                                           
1

( )     
kn

vk
v n

v

s
O X as n

v




                                            (24) 

are satisfied, then the series 
1

n n n

n n

a P
np




    is summable ; kA  ,  1k  and 0 1/ k  , where 

, 1ˆ ˆ ˆ( )v nv nv n va a a     . 
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       It should be noted that if we take  0  , n n nP p   and nv v na p P ,  then we get Theorem 1. 
In this case condition (24) reduces to condition (11). Also, conditions (18)-(23) are automatically 
satisfied.   
        We need the following lemmas for proof of Theorem 2. 
 
Lemma 1 [11].  If ( )nX   is an almost increasing sequence, then under conditions (8)-(9), we have  
 
                                                  (1)   ,n nnX O as n                                                                (25)   

                                                        
1

n n
n

X




  .                                                                          (26)                                 

 
Lemma 2 [12].  If conditions (12) and (13) are satisfied, then we have 
 

 1 .n

n

P O
np n

       
  

  (27) 

 
Proof of Theorem 2 

Let ( )nI  denote  the A -transform of the series n n n

n

a P
np
 . Then by (16) and  (17), we have 

 
1

ˆ .
n

v v v
n nv

v v

a PI a
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Applying Abel's transformation to this sum, we get that 
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To complete the proof of  Theorem 2, it is sufficient to show that  

                                     
1

,
1

,  for 1, 2,3, 4.
kk k
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n
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First, by using Abel's transformation, we have   

                

1 1 1 1
,1
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in view of (7), (10), (12), (20), (24) and (26). 

          Applying Hölder’s inequality with indices k and 'k , where 1k   and
'1 1 1,k k 

 
as in ,1nI , we have 
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Now using (14), (15) and (19), we get 
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                                                                                                    nnnn aaa   00,1 11  
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                                                                                                    nna .                                                                         (28)      
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    (1)    O as m  ,                            
 
 by virtue of the hypotheses of Theorem 2 and  Lemma 1. 

Now  using the fact that 1 1(( 1) )v vP O v p   by (12), and Hölder’s inequality, we have  
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Using (14), (15) and (19), we have  
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by virtue of the hypotheses of Theorem 2 and Lemma 1. 
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By using  (28), we get 
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by  (7), (10),  (23), (24) and (26). This completes the proof of  Theorem 2. 
 
CONCLUSIONS   
 

In this paper I have proved a main theorem dealing with a general absolute matrix 
summability method of factored infinite series. A new result can be obtained for the , n kA p  
summability method by taking 0   and n n nP p  . Also, if we take 0  ,  n n , nv v na p P  
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and 1np   for all n  in Theorem 2, then we get another new result dealing with the ,1 kC
summability method. 
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