Maejo International Journal of Science and Technology

ISSN 1905-7873 Available online at www.mijst.mju.ac.th

Full Paper

A new study on generalised absolute matrix summability methods

Hikmet Seyhan Özarslan

Department of Mathematics, Erciyes University, 38039, Kayseri, Turkey

E-mail: seyhan@erciyes.edu.tr; hseyhan38@gmail.com

Received: 10 May 2017 / Accepted: 15 August 2018 / Published: 11 September 2018

Abstract: A theorem on $\varphi - |A; \delta|_k$ summability of infinite series, which generalises the result dealing with $|\overline{N}, p_n|_k$ summability of infinite series, has been proved. This theorem also contains some new results related to the $|A, p_n|_k$ and $|C, 1|_k$ summability methods for the special cases of δ , (p_n) , (φ_n) , and (a_n) .

Keywords: Riesz mean, summability factor, absolute matrix summability, almost increasing sequences, infinite series, Hölder inequality, Minkowski inequality

INTRODUCTION

A positive sequence (b_n) is said to be almost increasing if there exist a positive increasing sequence (c_n) and two positive constants A and B such that $Ac_n \le b_n \le Bc_n$ [1]. Obviously, every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking an example, viz. $b_n = ne^{(-1)^n}$.

Let $\sum_{v=0}^{\infty} a_v$ be an infinite numerical series with its partial sums $s_n = \sum_{v=0}^{n} a_v$. Let (p_n) be a sequence of positive numbers such that

$$P_{n} = \sum_{\nu=0}^{n} p_{\nu} \to \infty \text{ as } n \to \infty, \ (P_{-i} = p_{-i} = 0, \ i \ge 1).$$
(1)

The sequence-to-sequence transformation

$$\sigma_n = \frac{1}{P_n} \sum_{\nu=0}^n p_\nu s_\nu \tag{2}$$

defines the sequence (σ_n) of the (\overline{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) [2]. The series $\sum a_n$ is said to be summable $|\overline{N}, p_n|_k$, $k \ge 1$, if [3]

Maejo Int. J. Sci. Technol. 2018, 12(03), 199-205

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} \left|\sigma_n - \sigma_{n-1}\right|^k < \infty.$$
(3)

Let $A = (a_{nv})$ be a normal matrix, i.e. a lower triangular matrix of non-zero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$A_n(s) = \sum_{\nu=0}^n a_{n\nu} s_{\nu}, \quad n = 0, 1, \dots$$
(4)

Let (φ_n) be any sequence of positive real numbers. The series $\sum a_n$ is said to be summable $\varphi - |A; \delta|_k$, $k \ge 1$ and $\delta \ge 0$, if [4]

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k+k-1} \left| \overline{\Delta} A_n(s) \right|^k < \infty,$$
(5)

where

$$\overline{\Delta}A_n(s) = A_n(s) - A_{n-1}(s).$$
(6)

If we take $\varphi_n = P_n/p_n$, then $\varphi - |A; \delta|_k$ summability reduces to $|A, p_n; \delta|_k$ summability [5]. For $\delta = 0$ and $\varphi_n = P_n/p_n$, $\varphi - |A; \delta|_k$ summability reduces to $|A, p_n|_k$ summability [6]. Also, if we take $\delta = 0$ and $\varphi_n = n$ for all n, then $\varphi - |A; \delta|_k$ summability reduces to $|A|_k$ summability [7]. Additionally, when we take $\delta = 0$, $\varphi_n = P_n/p_n$ and $a_{nv} = p_v/P_n$, then we get $|\overline{N}, p_n|_k$ summability. Furthermore, by taking $\delta = 0$, $\varphi_n = n$, $a_{nv} = p_v/P_n$ and $p_n = 1$ for all values of n, we get $|C,1|_k$ summability [8].

KNOWN RESULT

Bor [9] has proved the following theorem for $|\overline{N}, p_n|_k$ summability factors of infinite series. **Theorem 1.** Let (X_n) be an almost increasing sequence and let there be sequences (β_n) and (λ_n) such that

$$\left|\Delta\lambda_{n}\right| \leq \beta_{n},\tag{7}$$

$$\beta_n \to 0 \quad as \quad n \to \infty,$$
 (8)

$$\sum_{n=1}^{\infty} n \left| \Delta \beta_n \right| X_n < \infty \,, \tag{9}$$

$$\left|\lambda_{n}\right|X_{n} = O(1). \tag{10}$$

If

$$\sum_{\nu=1}^{n} \frac{\left|S_{\nu}\right|^{k}}{\nu} = O(X_{n}) \quad as \quad n \to \infty$$
(11)

and (p_n) is a sequence such that

$$P_n = O(np_n), \tag{12}$$

$$P_n \Delta p_n = O(p_n p_{n+1}), \qquad (13)$$

then the series $\sum_{n=1}^{\infty} \frac{a_n P_n \lambda_n}{n p_n}$ is summable $\left| \overline{N}, p_n \right|_k$, $k \ge 1$, where $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$.

Remark. It should be noted that, from the hypotheses of Theorem 1, (λ_n) is bounded and $\Delta \lambda_n = O(1/n)$ [10].

MAIN RESULTS

The aim of this paper is to generalise Theorem 1 for $\varphi - |A; \delta|_k$ summability method. Before stating the main theorem, we must first introduce some further notations. Given a normal matrix $A = (a_{nv})$, we associate two lower semimatrices $\overline{A} = (\overline{a}_{nv})$ and $\hat{A} = (\hat{a}_{nv})$ as follows:

$$\overline{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \dots$$
(14)

and

$$\hat{a}_{00} = \overline{a}_{00} = a_{00}, \ \hat{a}_{nv} = \overline{a}_{nv} - \overline{a}_{n-1,v}, \ n = 1, 2, \dots$$
 (15)

It may be noted that \overline{A} and \hat{A} are the well-known matrices of series-to-sequence and seriesto-series transformations respectively. Then we have

$$A_{n}(s) = \sum_{\nu=0}^{n} a_{n\nu} s_{\nu} = \sum_{\nu=0}^{n} \overline{a}_{n\nu} a_{\nu}$$
(16)

and

$$\overline{\Delta} A_n(s) = \sum_{\nu=0}^n \hat{a}_{n\nu} a_{\nu} \,. \tag{17}$$

Now the following theorem shall be proved.

Theorem 2. Let $A = (a_{nv})$ be a positive normal matrix such that

$$\overline{a}_{n0} = 1$$
, $n = 0, 1, ...,$ (18)

$$a_{n-1,\nu} \ge a_{n\nu} \text{ for } n \ge \nu + 1, \tag{19}$$

$$a_{nn} = O\left(\frac{p_n}{P_n}\right),\tag{20}$$

$$\left|\hat{a}_{n,\nu+1}\right| = O\left(\nu \left|\Delta_{\nu}(\hat{a}_{n\nu})\right|\right),\tag{21}$$

$$\sum_{n=\nu+1}^{m+1} \varphi_n^{\delta k} \left| \Delta_{\nu}(\hat{a}_{n\nu}) \right| = O\left(\varphi_{\nu}^{\delta k} \frac{P_{\nu}}{P_{\nu}} \right) as \quad m \to \infty,$$
(22)

$$\sum_{n=\nu+1}^{m+1} \varphi_n^{\delta k} \left| \hat{a}_{n,\nu+1} \right| = O\left(\varphi_{\nu}^{\delta k}\right) \quad as \quad m \to \infty \,.$$
(23)

Let (X_n) be an almost increasing sequence, $\varphi_n p_n = O(P_n)$ and $|\lambda_n| = O\left(\frac{1}{X_n}\right) = O(1)$. If conditions (7)-(9) and (12)-(13) of Theorem 1 and

$$\sum_{\nu=1}^{n} \varphi_{\nu}^{\delta k} \frac{\left|s_{\nu}\right|^{k}}{\nu} = O(X_{n}) \quad as \quad n \to \infty$$
(24)

are satisfied, then the series $\sum_{n=1}^{\infty} \frac{a_n P_n \lambda_n}{n p_n}$ is summable $\varphi - |A; \delta|_k$, $k \ge 1$ and $0 \le \delta < 1/k$, where $\Delta_v(\hat{a}_{nv}) = \hat{a}_{nv} - \hat{a}_{n,v+1}$.

Maejo Int. J. Sci. Technol. 2018, 12(03), 199-205

It should be noted that if we take $\delta = 0$, $\varphi_n = P_n/p_n$ and $a_{nv} = p_v/P_n$, then we get Theorem 1. In this case condition (24) reduces to condition (11). Also, conditions (18)-(23) are automatically satisfied.

We need the following lemmas for proof of Theorem 2.

Lemma 1 [11]. If (X_n) is an almost increasing sequence, then under conditions (8)-(9), we have

$$nX_n\beta_n = O(1) \text{ as } n \to \infty, \tag{25}$$

$$\sum_{n=1}^{\infty} \beta_n X_n < \infty .$$
(26)

Lemma 2 [12]. If conditions (12) and (13) are satisfied, then we have

$$\Delta\left(\frac{P_n}{np_n}\right) = O\left(\frac{1}{n}\right). \tag{27}$$

Proof of Theorem 2

Let (I_n) denote the *A*-transform of the series $\sum \frac{a_n \lambda_n P_n}{np_n}$. Then by (16) and (17), we have

$$\overline{\Delta}I_n = \sum_{\nu=1}^n \hat{a}_{n\nu} \frac{a_{\nu} \lambda_{\nu} P_{\nu}}{\nu p_{\nu}}.$$

Applying Abel's transformation to this sum, we get that

$$\begin{split} \overline{\Delta}I_n &= \sum_{\nu=1}^{n-1} \Delta_{\nu} \left(\frac{\hat{a}_{n\nu} \lambda_{\nu} P_{\nu}}{\nu p_{\nu}} \right) \sum_{r=1}^{\nu} a_r + \frac{\hat{a}_{nn} P_n \lambda_n}{n p_n} \sum_{\nu=1}^n a_{\nu} \\ &= \sum_{\nu=1}^{n-1} \Delta_{\nu} \left(\frac{\hat{a}_{n\nu} \lambda_{\nu} P_{\nu}}{\nu p_{\nu}} \right) s_{\nu} + \frac{\hat{a}_{nn} P_n \lambda_n}{n p_n} s_n \\ &= \frac{a_{nn} P_n \lambda_n}{n p_n} s_n + \sum_{\nu=1}^{n-1} \frac{P_{\nu} \lambda_{\nu} \Delta_{\nu} (\hat{a}_{n\nu})}{\nu p_{\nu}} s_{\nu} + \sum_{\nu=1}^{n-1} \frac{\hat{a}_{n,\nu+1} \Delta \lambda_{\nu} P_{\nu+1}}{(\nu+1) p_{\nu+1}} s_{\nu} + \sum_{\nu=1}^{n-1} \hat{a}_{n,\nu+1} \lambda_{\nu} \Delta \left(\frac{P_{\nu}}{\nu p_{\nu}} \right) s_{\nu} \\ &= I_{n,1} + I_{n,2} + I_{n,3} + I_{n,4}. \end{split}$$

To complete the proof of Theorem 2, it is sufficient to show that

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k+k-1} \left| I_{n,r} \right|^k < \infty, \text{ for } r = 1, 2, 3, 4.$$

First, by using Abel's transformation, we have

$$\begin{split} \sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1} \left| I_{n,1} \right|^{k} &= \sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1} \left| \frac{a_{nn} P_{n} \lambda_{n}}{n p_{n}} s_{n} \right|^{k} = O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1} \left(\frac{p_{n}}{P_{n}} \right)^{k} \frac{1}{n^{k}} \left(\frac{P_{n}}{p_{n}} \right)^{k} \left| \lambda_{n} \right|^{k-1} |\lambda_{n}| |s_{n}|^{k} \\ &= O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k} \left(\frac{P_{n}}{p_{n}} \right)^{k-1} \frac{1}{n^{k}} |\lambda_{n}| |s_{n}|^{k} = O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k} \left| \lambda_{n} \right| \frac{|s_{n}|^{k}}{n} \\ &= O(1) \sum_{n=1}^{m-1} \Delta \left| \lambda_{n} \right| \sum_{r=1}^{n} \varphi_{r}^{\delta k} \frac{|s_{r}|^{k}}{r} + O(1) \left| \lambda_{m} \right| \sum_{n=1}^{m} \varphi_{n}^{\delta k} \frac{|s_{n}|^{k}}{n} \end{split}$$

$$= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_n| X_n + O(1) |\lambda_m| X_m$$

= $O(1) \sum_{n=1}^{m-1} \beta_n X_n + O(1) |\lambda_m| X_m = O(1) \text{ as } m \to \infty,$

in view of (7), (10), (12), (20), (24) and (26).

Applying Hölder's inequality with indices k and k', where k > 1 and 1/k + 1/k' = 1, as in $I_{n,1}$, we have

$$\begin{split} \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \left| I_{n,2} \right|^{k} &= \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \left| \sum_{\nu=1}^{n-1} \frac{P_{\nu} \lambda_{\nu} \Delta_{\nu} \left(\hat{a}_{n\nu} \right)}{\nu p_{\nu}} s_{\nu} \right|^{k} \leq \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \left\{ \sum_{\nu=1}^{n-1} \frac{P_{\nu}}{\nu p_{\nu}} \left| \Delta_{\nu} \left(\hat{a}_{n\nu} \right) \right| \left| \lambda_{\nu} \right| s_{\nu} \right| \right\}^{k} \\ &\leq \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \sum_{\nu=1}^{n-1} \left(\frac{P_{\nu}}{\nu p_{\nu}} \right)^{k} \left| \Delta_{\nu} \left(\hat{a}_{n\nu} \right) \right| \left| \lambda_{\nu} \right|^{k} \left| s_{\nu} \right|^{k} \times \left\{ \sum_{\nu=1}^{n-1} \left| \Delta_{\nu} \left(\hat{a}_{n\nu} \right) \right| \right\}^{k-1}. \end{split}$$

Now using (14), (15) and (19), we get

$$\sum_{\nu=1}^{n-1} |\Delta_{\nu}(\hat{a}_{n\nu})| = \sum_{\nu=1}^{n-1} |a_{n\nu} - a_{n-1,\nu}| = \sum_{\nu=1}^{n-1} (a_{n-1,\nu} - a_{n\nu}) = \overline{a}_{n-1,0} - a_{n-1,0} - \overline{a}_{n0} + a_{n0} + a_{nn}$$
$$= 1 - a_{n-1,0} - 1 + a_{n0} + a_{nn}$$
$$= a_{n0} - a_{n-1,0} + a_{nn}$$
$$\leq a_{nn}.$$
(28)

Hence

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} \left| I_{n,2} \right|^k &\leq \sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} a_{nn}^{k-1} \left\{ \sum_{\nu=1}^{n-1} \left(\frac{P_{\nu}}{\nu p_{\nu}} \right)^k \left| \Delta_{\nu}(\hat{a}_{n\nu}) \right| \left| \lambda_{\nu} \right|^k \left| s_{\nu} \right|^k \right\} \\ &= O(1) \sum_{\nu=1}^m \left(\frac{P_{\nu}}{p_{\nu}} \right)^k \frac{1}{\nu^k} \left| \lambda_{\nu} \right|^k \left| s_{\nu} \right|^k \sum_{n=\nu+1}^{m+1} \varphi_n^{\delta k} \left| \Delta_{\nu}(\hat{a}_{n\nu}) \right| \\ &= O(1) \sum_{\nu=1}^m \varphi_{\nu}^{\delta k} \frac{P_{\nu}}{P_{\nu}} \left(\frac{P_{\nu}}{p_{\nu}} \right)^k \frac{1}{\nu^k} \left| \lambda_{\nu} \right|^{k-1} \left| \lambda_{\nu} \right| \left| s_{\nu} \right|^k \\ &= O(1) \sum_{\nu=1}^m \varphi_{\nu}^{\delta k} \left| \lambda_{\nu} \right| \frac{\left| s_{\nu} \right|^k}{\nu} = O(1) \quad as \quad m \to \infty \,, \end{split}$$

by virtue of the hypotheses of Theorem 2 and Lemma 1.

Now using the fact that $P_{v+1} = O((v+1)p_{v+1})$ by (12), and Hölder's inequality, we have

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} \left| I_{n,3} \right|^k &= \sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} \left| \sum_{\nu=1}^{n-1} \frac{\hat{a}_{n,\nu+1} \Delta \lambda_{\nu} P_{\nu+1}}{(\nu+1) p_{\nu+1}} s_{\nu} \right|^k \\ &= O(1) \sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} \sum_{\nu=1}^{n-1} |\hat{a}_{n,\nu+1}| \| \Delta \lambda_{\nu} \| |s_{\nu}|^k \times \left\{ \sum_{\nu=1}^{n-1} |\hat{a}_{n,\nu+1}| \| \Delta \lambda_{\nu} \| \right\}^{k-1}. \end{split}$$

Using (14), (15) and (19), we have

$$\hat{a}_{n,\nu+1} = \overline{a}_{n,\nu+1} - \overline{a}_{n-1,\nu+1} = \sum_{i=\nu+1}^{n} a_{ni} - \sum_{i=\nu+1}^{n-1} a_{n-1,i} = a_{nn} + \sum_{i=\nu+1}^{n-1} (a_{ni} - a_{n-1,i}) \le a_{nn}.$$

Then

Maejo Int. J. Sci. Technol. 2018, 12(03), 199-205

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} \left| I_{n,3} \right|^k &= O(1) \sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} a_{nn}^{k-1} \sum_{\nu=1}^{n-1} \left| \hat{a}_{n,\nu+1} \left| \beta_{\nu} \right| s_{\nu} \right|^k \\ &= O(1) \sum_{\nu=1}^m \beta_{\nu} \left| s_{\nu} \right|^k \sum_{n=\nu+1}^{m+1} \varphi_n^{\delta k} \left| \hat{a}_{n,\nu+1} \right| = O(1) \sum_{\nu=1}^m \varphi_{\nu}^{\delta k} \nu \beta_{\nu} \frac{\left| s_{\nu} \right|^k}{\nu} \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta(\nu \beta_{\nu}) \sum_{r=1}^{\nu} \varphi_r^{\delta k} \frac{\left| s_{r} \right|^k}{r} + O(1) m \beta_m \sum_{\nu=1}^m \varphi_{\nu}^{\delta k} \frac{\left| s_{\nu} \right|^k}{\nu} \\ &= O(1) \sum_{\nu=1}^{m-1} \left| \Delta(\nu \beta_{\nu}) \right| X_{\nu} + O(1) m \beta_m X_m \\ &= O(1) \sum_{\nu=1}^{m-1} \nu \left| \Delta \beta_{\nu} \right| X_{\nu} + O(1) \sum_{\nu=1}^{m-1} \beta_{\nu} X_{\nu} + O(1) m \beta_m X_m = O(1) \ as \ m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 2 and Lemma 1.

Now since
$$\Delta\left(\frac{P_{v}}{vp_{v}}\right) = O\left(\frac{1}{v}\right)$$
 by Lemma 2, we have

$$\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \left|I_{n,4}\right|^{k} = \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \left|\sum_{v=1}^{n-1} \hat{a}_{n,v+1} \lambda_{v} \Delta\left(\frac{P_{v}}{vp_{v}}\right) s_{v}\right|^{k} = O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \left\{\sum_{v=1}^{n-1} \frac{1}{v} \left|\hat{a}_{n,v+1} \right| \left|\lambda_{v}\right|\right| s_{v}\right\}^{k}$$

$$= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \sum_{v=1}^{n-1} \frac{1}{v} \left|\hat{a}_{n,v+1}\right| \left|\lambda_{v}\right|^{k} \left|s_{v}\right|^{k} \times \left\{\sum_{v=1}^{n-1} \left|\Delta_{v}(\hat{a}_{nv})\right|\right\}^{k-1}.$$

By using (28), we get

$$\sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} \left| I_{n,4} \right|^k = O(1) \sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} a_{nn}^{k-1} \sum_{\nu=1}^{n-1} \frac{1}{\nu} \left| \hat{a}_{n,\nu+1} \right| \left| \lambda_{\nu} \right|^k \left| s_{\nu} \right|^k;$$

then by (20), we obtain

$$\begin{split} \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \left| I_{n,4} \right|^{k} &= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k} \left(\frac{\varphi_{n} p_{n}}{P_{n}} \right)^{k-1} \sum_{\nu=1}^{n-1} \frac{1}{\nu} \left| \hat{a}_{n,\nu+1} \right| \left| \lambda_{\nu} \right|^{k} \left| s_{\nu} \right|^{k} \\ &= O(1) \sum_{\nu=1}^{m} \frac{1}{\nu} \left| \lambda_{\nu} \right|^{k-1} \left| \lambda_{\nu} \right| \left| s_{\nu} \right|^{k} \sum_{n=\nu+1}^{m+1} \varphi_{n}^{\delta k} \left| \hat{a}_{n,\nu+1} \right| \\ &= O(1) \sum_{\nu=1}^{m} \varphi_{\nu}^{\delta k} \left| \lambda_{\nu} \right| \frac{\left| s_{\nu} \right|^{k}}{\nu} \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta \left| \lambda_{\nu} \right| \sum_{r=1}^{\nu} \varphi_{r}^{\delta k} \frac{\left| s_{r} \right|^{k}}{r} + O(1) \left| \lambda_{m} \right| \sum_{\nu=1}^{m} \varphi_{\nu}^{\delta k} \frac{\left| s_{\nu} \right|^{k}}{\nu} \\ &= O(1) \sum_{\nu=1}^{m-1} \left| \Delta \lambda_{\nu} \right| X_{\nu} + O(1) \left| \lambda_{m} \right| X_{m} \\ &= O(1) \sum_{\nu=1}^{m-1} \beta_{\nu} X_{\nu} + O(1) \left| \lambda_{m} \right| X_{m} = O(1) \quad as \quad m \to \infty, \end{split}$$

by (7), (10), (23), (24) and (26). This completes the proof of Theorem 2.

CONCLUSIONS

In this paper I have proved a main theorem dealing with a general absolute matrix summability method of factored infinite series. A new result can be obtained for the $|A, p_n|_k$ summability method by taking $\delta = 0$ and $\varphi_n = P_n/p_n$. Also, if we take $\delta = 0$, $\varphi_n = n$, $a_{nv} = p_v/P_n$

and $p_n = 1$ for all *n* in Theorem 2, then we get another new result dealing with the $|C, 1|_k$ summability method.

REFERENCES

- 1. N. K. Bari and S. B. Stećkin, "Best approximations and differential properties of two conjugate functions", *Trudy Moskov. Mat. Obsc.*, **1956**, *5*, 483-522.
- 2. G. H. Hardy, "Divergent Series", Oxford University Press, Oxford, 1949.
- 3. H. Bor, "On two summability methods", *Math. Proc. Cambridge Philos. Soc.*, **1985**, *97*, 147-149.
- 4. H. S. Özarslan and T. Ari, "Absolute matrix summability methods", *Appl. Math. Lett.*, **2011**, *24*, 2102-2106.
- 5. H. S. Özarslan and H. N. Öğdük, "Generalizations of two theorems on absolute summability methods", *Aust. J. Math. Anal. Appl.*, **2004**, *1*, 1-7.
- 6. W. T. Sulaiman, "Inclusion theorems for absolute matrix summability methods of an infinite series, IV", *Indian J. Pure Appl. Math.*, **2003**, *34*, 1547-1557.
- 7. N. Tanovič-Miller, "On strong summability", *Glasnik Mat.*, 1979, 34, 87-97.
- 8. T. M. Flett, "On an extension of absolute summability and some theorems of Littlewood and Paley", *Proc. London Math. Soc.*, **1957**, *7*, 113-141.
- 9. H. Bor, "A new application of almost increasing sequences", *J. Comput. Anal. Appl.*, **2008**, *10*, 17-23.
- 10. H. Bor, "A note on $|\overline{N}, p_n|_k$ summability factors of infinite series", *Indian J. Pure Appl. Math.*, **1987**, *18*, 330-336.
- 11. S. M. Mazhar, "A note on absolute summability factors", *Bull. Inst. Math. Acad. Sinica*, **1997**, 25, 233-242.
- 12. K. N. Mishra and R. S. L. Srivastava, "On $|\overline{N}, p_n|$ summability factors of infinite series", *Indian J. Pure Appl. Math.*, **1984**, *15*, 651-656.
- © 2018 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for noncommercial purposes.