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Abstract: In this paper we introduce and investigate two new subclasses   ,q

H and   ,q
H  

of analytic and bi-univalent functions in the open unit disk U . Furthermore, we find non-sharp 
estimates on the first two Taylor-Maclaurin coefficients 2a  and 3a  for functions in these new 

subclasses. 
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INTRODUCTION 
 

Let A  be the class of all functions f that are analytic in the open unit disk: 
 

}1||     andC:{:  zzzU  
and normalised by  

.1)0(0)0(  ff  
 
In other words, the functions f  in A  have the Taylor-Maclaurin series expansion:  

 U 




zzazzf n
n

n

     )(
2

.    (1) 
 
Furthermore, by AS  we shall denote the class of all functions which are univalent in .U  

For two functions f  and g  which are analytic in U , we say that the function f  is subordinate to 
the function g  and write  

     Uzzgzf         
if there exists a function  

0Bw , 
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where 
      U zzwww     1 ,00 :0 AB , 

such that 
      U zzwgzf     . 

 
If g  is univalent in ,U  then it follows that 
 

           UUU gffzzgzf   and 00  ,      . 
 
Moreover, for the functions Af  given by (1) and Ag  given by 

 U 




zzbzzg n
n

n

     )(
2

, 
 
the convolution (or Hadamard product) of f  and g  is defined by 

.))((
2

n
nn

n

zbazzgf 




          (2) 
 
We next denote by P  the class of analytic functions p  which are normalised by 

  ,1
1

n
n

n

zpzp 




        (3) 

such that  
  0Re zp . 

 
Furthermore, it is well known that every univalent function f  has an inverse ,1f  defined 

by 
 U zzzff ))((1  

and 

wwff  ))(( 1  





 

4
1)(),( 00 frfrw , 

where 
      ...552 4

432
3
2

3
3

2
2

2
2  waaaawaawawwg .   (4) 

 
A function Af  is said to be bi-univalent in U  if both f  and 1f  are univalent in U . We 

denote the class of all such functions by .  The pioneering work of Srivastava et al. [1] actually 
revived the study of bi-univalent functions in recent years. In a substantially large number of work 
subsequent to the work of Srivastava et al. [1], several distinct subclasses of the bi-univalent 
function class were presented and examined similarly by many authors. For example, the function 
classes ܪ (߬, ,ߤ ,ߣ ;ߜ (ߙ  and ܪ (߬, ,ߤ ,ߣ ;ߛ (ߚ  were defined and the estimates on the Taylor-

Maclaurin coefficients |ܽଶ| and |ܽଷ| were obtained by Srivastava et al [2].  The upper bounds for 
the second Hankel determinant for certain subclasses of analytic and bi-univalent functions were 
obtained by Caglar et al [3].  Several new subclasses of the class of ݉-fold symmetric bi-univalent 
functions were introduced and the initial estimates of the Taylor-Maclaurin series as well as some 
Fekete-Szegö functional problems for each of their defined function classes were obtained by Tang 
et al. [4] and Srivastava et al [5]. Several other well-known mathematicians gave their findings on 
this subject [e.g. 6-16]. 

We now recall some basic definitions and concept details of the ݍ-calculus which are used in 
this paper. We suppose throughout the paper that 10  q  and 
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      ...3,2,1,0:N0\N...3,2,1N 00  . 
 
Definition 1.  Let  1,0q  and define the ݍ-number  q  by 

 
 
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
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


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1
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q
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Definition 2.  Let  1,0q  and define the ݍ-factorial   !qn  by 

 
 

   














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
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01
!

1
nk

n
n

q

n

k

q  

 
Definition 3 [17,18].  The ݍ-derivative (or ݍ-difference) qD  of a function f  is defined  in a given 
subset of C  by 

 
   
   

   















.00

01

zf

z
zfD

zq
zfqzf

q        (5) 

 
We note from Definition 3 that the difference operator fDq  converges to the ordinary 

differential operator: 

      
   zf

zq
zfqzfzfD

q
q

q






  1

limlim
11

 
 
for a differentiable function f  in a given subset of .C  It is readily deduced from (1) and (5) that 

    .1 1

2





 n

qn
n

q znazfD  
 
In Geometric Function Theory several subclasses belonging to the class of normalised 

analytic functions A  have been examined already. The ݍ -calculus defined above provides 
significant tools that have been widely used for investigating several subclasses of A . Ismail et al. 
[19] were the first to use the ݍ-derivative operator qD  in order to study a certain ݍ-analogue of the 

class ܵ∗ of starlike functions in U . In fact, historically speaking, a remarkably significant usage of 
the ݍ-calculus in the context of Geometric Function Theory of Complex Analysis was basically 
furnished  and the basic (or q -) hypergeometric functions were first used in Geometric Function 
Theory in a book chapter by Srivastava [20]. See also Srivastava and Bansal [21]. 

Motivated by the work of Frasin [12], Bulut [22] and the above-mentioned work, we here 
introduce two new subclasses of the function class   and find non-sharp estimates on the first two 
Taylor-Maclaurin coefficients 2a  and 3a  for functions in these new subclasses of the function 

class .  
In order to derive our main results, the following Lemma will be required. 
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Lemma 1 [23].  If Pp , then 2kp  for each ,k  where P  is the family of all functions p  
analytic in U  for which 

     ...1    and    0Re 2
21  zpzpzpzp  

for Uz  . 
 
Throughout in this paper, we assume that   

0   and1010   . 
 
COEFFICIENT BOUNDS FOR FUNCTION CLASS   ,q

H                                         
 
Definition 4.  A function Af  of the form given by (1) is in the function class   ,q

H  if the 
following conditions are satisfied: 

       U zzfDDzzfDf qqq 2
arg   and        (6) 

and 

       U wwgDDwwgD qqq 2
arg    ,      (7) 

where function g  is given by (4). 
 
Remark 1.  Firstly,  it is easily seen that  

    ,,lim
1 





HHq

q
, 

where   ,H  is the function class introduced and studied by Frasin [12].  Secondly, we have  
 

     





HHH 0,lim
1

q

q
, 

where 
H  is the function class introduced and studied by Srivastava et al. [13]. Thirdly, 

 
     ,0, qqq

  HHH , 
 
where ,q

H  is the function class introduced and studied by Bulut [22]. 
 
Theorem 1.  Let the function Af  of the form given by (1) be in the function class   ,q

H  . 
Then 

          1122132

2
222








qqq

a      (8) 

and 

  
        






qqq

a
213

2
12

4
22

2

3 



 .         (9) 

 
Proof.  It can be seen from conditions (6) and (7) that  

        zPzfDDzzfD qqq         (10) 
and 

        wQwgDDwwgD qqq  ,       (11) 
where 

    ...1   and...1 2
21

2
21  wqwqwQzpzpzP  

 
in P . Now equating the coefficients in (10) and (11), we have  

    ,12 12 paq           (12) 
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       ,
2

1213 2
123 ppaqq

       (13) 

    1212 qaq           (14) 
and 

        .
2

12213 2
123

2
2 qqaaqq

       (15) 

From (12) and (14), we have  
11 qp          (16) 

and  
     2

1
2
1

22
2

22 122 qpaq   .      (17) 
 
Also, from  15),13(  and  ,17  we find, after some simplification, that 

           
 2222

2
2
2 1122132

qpa
qqq







 .    (18) 

 
Finally, by applying Lemma 1 in conjunction with  18 , we obtain the desired estimate on the 
coefficient 2a  as stated in (8). Next, in order to prove (9), we subtract  15  from  13 . Indeed, we 
find that 

               2
1

2
122

2
23 2

121322132 qpqpaa qqqq 



 .   (19) 

It follows from    17,16  and  19  that  
 

 
   

 
    .2132122

22
22

2
1

2
1

2

3
qqq

qpqpa













       (20) 
 
Finally, by using Lemma 1 and  20 , we find the desired estimate on the coefficient 3a  as stated in 
(9). 
 
Remark 2.  By substituting 0  in Theorem 1, we obtain the coefficient bounds for 2a  and 3a  

given by Bulut [22]. Then by putting 0  and letting ,1q  we have the following known 
result. 
 
Corollary 1 [13].  Let function  zf  given by the Taylor-Maclaurin series expansion (1) be in the 
class 

H   .10   Then  
 

 .
3

23   and   
2

2
32










 aa  

 
Theorem 2.  Let function f   ,q

H  and be of the form given by (1). Then 
 

       
    

    
     
    







































qq

q

qq

qq

qh

aa

2132
112

213
2

2132
112

2
23

22

22

11

,114

             (21) 

where 

   
          







1122132
1

22

2

qqq

h .    (22) 
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Proof.  We can show that the inequalities in (21) hold true for   ,qf H . After some 
straightforward simplification of (17), (18) and (19), the following is obtained :  

              ,
21322132 22

2
23 qhphaa

qqqq































   (23)

  
where  h  is given by (22). From (23), we now conclude the assertion of our Theorem. 
 
COEFFICIENT BOUNDS FOR FUNCTION CLASS   ,q

H   
 
Definition 5.  A function Af  of the form given by (1) is in the function class   ,q

H  if the 
following conditions are satisfied:  

       U zzfDDzzfDf qqq Re   and      (24) 
and 

       U wwgDDwwgD qqq Re ,    (25) 
 
where function g  is define by (4). 
 
Remark 3.  Firstly,  it is readily observed that  

    ,,lim
1 





HHq

q
, 

where   ,H  is the function class introduced and studied by Frasin [12]. Secondly, we have 
  

    





HH 0,lim
1

q

q
, 

where  H  is the function class introduced and studied by Srivastava et al. [13]. Thirdly, 
 

    qq
  HH 0, , 

 
where  q

H  is the function class introduced and studied by Bulut [22]. 
  
Theorem 3.  Let the function Af  of the form given by (1) be in the function class  .,q

H  
Then 

 
   

 
     


















qqq

a
213

12,
12

12min2 



      (26) 

and 
 

    .213
12

3
qq

a






         (27) 

 
Proof.  Firstly,  it follows from conditions (24) and (25) that   

          U zzPzfDDzzfD qqq  1    (28) 
and 

          U wwQwgDDwwgD qqq  1 ,   (29) 
where 

    ...1   and...1 2
21

2
21  wqwqwQzpzpzP  

 
in P . Now equating the coefficients in (28) and (29), we have  

      ,112 12 paq          (30) 
       23 1213 paqq   ,      (31) 
      12 112 qaq          (32) 
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and 

                                           .12213 23
2
2 qaaqq                                                               (33) 

 
From (30) and (32) we have  

11 qp           (34) 
and  

       2
1

2
1

22
2

22 1122 qpaq   .      (35) 
 
Also, from (31) and (33) we have  

       22
2
2 12132 qpaqq   .     (36) 

 
Finally, by applying Lemma 1 in conjunction with (35) and (36), we obtain the desired estimate on 
the coefficient 2a  as stated in  .26  

Next, in order to prove (27) we subtract (33) from (31). We have  
            22

2
23 121322132 qpaa qqqq   ,    (37) 

 
which, upon substitution of the value of 2

2a  from (35), yields 
 

  
   

  
    qqq

qpqpa
2132

1
122

1 22
22

2
1

2
1

3 












 .      (38) 

 
On the other hand, by using the equation (36) on (37), we have  

  
    qq

pa
2132

1 2
3 





 .         (39) 

  
Finally, by applying Lemma 1 to (38) and  ,39 we obtain the desired estimate on the coefficient 

3a  as stated in (27).  
 
Taking ,0  we obtain the following known result. 
 

Corollary 2 [22].  Let the function Af  of the form given by  1  be in the function class   .q
H  

Then 
 
 

 
  









 


qq

a
3

12,
2

12min2
  

and 

         
  .
3

12
3

q

a 
  

 
CONCLUSIONS  
 

This research work presents some properties of certain new subclasses of analytic and bi-
univalent functions in the open unit disk U . Coefficient estimates for these newly function classes 
have been discussed. Also, we have pointed out some known results deduced from our main results. 
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