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Abstract:  This paper describes the application of statistical and soft computing methods for 
optimisation of cutting process parameters in high-speed milling by minimising the surface 
roughness. An analysis of variance is employed to generate empirical functions to 
demonstrate the effect of the cutting parameters on the cutting force, surface roughness and 
tool wear. Computational intelligence, viz. a soft computing method, was utilised in the 
manufacturing process to improve productivity and product quality. In this study experiments 
on and milling of AISI 1043 steel were performed using an HS Super MC500 machine based 
on a high-speed milling model. The experimental data were then used to generate empirical 
functions. A particle swarm optimisation algorithm is proposed to obtain the optimal cutting 
conditions by considering the boundary conditions that are determined from the empirical 
relationships of the factors that affect the machining process. The integration of statistical and 
soft computing methods facilitates the accurate and efficient generation of optimal cutting 
parameters for high-speed milling process. 

 
Keywords: high-speed milling, optimal cutting conditions, particle swarm optimisation, 
ANOVA 

_______________________________________________________________________________________ 
 

INTRODUCTION 
 

High-speed machining (HSM) has emerged as a key technology in manufacturing 
applications due to its advanced characteristics such as high material removal rates and improved 
productivity [1, 2]. In comparison with traditional machining, HSM is a more complex process. The 
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HSM cutting mechanism differs from that of traditional machining and the process is associated 
with high cutting speeds and feed rates [1]. In the literature numerous studies have been conducted 
on statistical methods and soft computing techniques for the HSM process to improve the quality of 
machined parts [3].  

Statistical approaches such as the factorial design, Taguchi method, response surface 
methodology (RSM), analysis of variance (ANOVA), grey relational analysis, and statistical 
regression have been used for the design of experiments and the generation of regression models. 
The signal-to-noise response analysis and Pareto ANOVA have been used to analyse the data from 
experimental runs. The Taguchi optimisation method was proposed to optimise the machining 
parameters to minimise the cutting force and to improve surface roughness in HSM cutting of 
stainless steel using a coated carbide tool [1]. This method was also used for modelling and 
optimising surface roughness in the end milling of aluminum silicon carbide composite plates 
(Al2024-SiCp) using carbide end mills [4]. Hashmi et al. [2] used the RSM to establish a 
relationship between the surface roughness as the output and the machining parameters for high-
speed milling of titanium alloy (Ti-6Al-4V) using carbide inserts tooling. A mathematical model for 
surface roughness was developed using the RSM with the cutting speed, feed and axial depth of cut 
as input parameters. The experimental data facilitated the development of a regression model for 
optimisation of the surface finish in end milling of titanium alloy under dry conditions [5]. The 
rotatable central composite design was used to analyse the experimental data to develop an 
empirical model that demonstrated the relationship between the surface roughness (outcome) and 
the spindle speed, feed rate, depth of cut and step over as machining variables [6].  

In machining processes, it is not possible to theoretically derive equations that accurately 
describe the effects of machining factors on the machining responses such as surface roughness, 
cutting force and tool wear. In this regard the aforementioned studies have demonstrated the 
effectiveness of using statistical methods to develop empirically derived equations. However, the 
study of the simultaneous effects of machining parameters (cutting speed, feed rate and depth of 
cut) on the surface roughness and cutting force is limited, and so is that of machining parameters 
and machining time on tool wear, as well as the application of empirically derived equations as an 
objective function (minimisation of surface roughness) or constraint function (cutting force and tool 
wear). Therefore, in our study experiments were conducted to acquire and analyse data to determine 
the relationships between cutting parameters (cutting speed, feed rate and radial depth of cut) and 
machining responses in the form of empirical functions. Once the mathematical relationships 
between the cutting parameters and machining responses are established, the underlying processes 
associated with HSM will be better understood. In addition, the optimisation process will be easier. 

Soft computing techniques such as artificial neural networks, fuzzy logic, particle swarm 
optimisation (PSO) and genetic algorithms are used to generate the optimal solutions for special 
applications such as the acquisition of optimal machining parameters [7, 8]. Artificial-intelligence- 
based modelling techniques have been used for high-speed milling processes [3]. These techniques 
can be grouped into several categories, e.g. Bayesian networks; fuzzy logic, neural and fuzzy-neural 
networks-based methods; evolutionary algorithms, genetic algorithms, genetic programming and 
particle swarm optimisation; hidden Markov models; clustering and classification methods. The 
artificial neural network (ANN) technique using MATLAB ANN Toolbox was utilised in the 
developing of a model to predict the surface roughness in milling operations [9]. The ANN 
technique was also used to predict the cutting forces during machining processes. PSO was then 
employed to generate the optimal cutting speed and feed rate [10, 11]. Regarding the technological 
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and economic aspects, the optimisation of parameters results in the best machining quality at the 
lowest manufacturing cost. Therefore, the optimisation of the process parameters of emerging HSM 
technologies is of significant interest. Robust optimisation algorithms with low computational cost, 
fast convergence and easy implementation can facilitate self-optimisation control of cutting 
parameters, a new trend in the development of intelligent and autonomous machine tools. 

There is a new trend of research in the integration of statistical methods and soft computing 
techniques to generate optimal machining processes. The quality of machined products is evaluated 
using several criteria and the surface roughness associated with the machining process is one of the 
most important requirements. During the machining process, numerous factors such as workpiece 
properties, cutting tools, machine tools and cutting parameters affect the surface roughness. Among 
these factors, the cutting parameters or process parameters are the ones that can be effectively 
controlled to achieve optimum machining outcome. Tseng et al. [12] used MinitabTM to perform 
ANOVA and regression analysis using the experimental data acquired during traditional milling of 
Aluminum 6061 T6. Fuzzy logic was then used to predict the surface roughness. Taguchi 
optimisation method and PSO have been used to predict surface roughness in face milling of 
AISI1045 steel parts [13]. In this case the Taguchi optimisation method was used to generate the 
regression model with a surface roughness response. Subsequent optimisation was based on PSO to 
generate the optimal machining parameters using MATLABTM software. 

Unlike these previous studies, we apply ANOVA to the development of mathematical 
models to demonstrate the following relationships during high-speed milling: surface roughness and 
cutting force with cutting parameters, and tool wear with cutting parameters and machining time. 
PSO is then used to generate the optimal cutting condition required to minimise the surface 
roughness (objective function), whereas the tool wear and cutting force are used as constraint 
functions. Therefore, two primary issues are addressed in this study: 

 Establishing empirical formulas that describe the relationship between cutting process 
parameters and surface roughness, cutting force and tool wear, using experimental data and 
ANOVA. 

 Determining optimal cutting parameters for minimising surface roughness by applying PSO. 
 
MATERIALS AND METHODS 
 

Figure 1 shows an engineering model developed for the optimisation of machining process 
parameters. Firstly, the experimental data such as cutting force, surface roughness, vibration and 
tool wear are measured for different cutting parameters, viz. cutting speed, feed rate and radial 
depth of cut. Secondly, according to the ANOVA of factorial experiments, the cutting parameters 
that significantly affect machining responses, viz. surface roughness, cutting force and tool wear, 
are identified. Thirdly, the mathematical models for machining responses based on the cutting 
parameters are established. The optimisation of the machining parameters is then performed to 
minimise the surface roughness using a PSO algorithm. Finally, the optimal cutting parameters are 
sent to the machine to control the operations such that the surface quality of the machined part is 
within the defined specifications    

To connect devices in a machining system to the application software, protocols such as 
MTConnect and OPC (process control protocol for linking and embedding objects) are used [14, 
15]. In this study the OPC protocol is used to connect the computer numerical control machine tools 
and other equipment in the machining system, such as robots, workpiece and transporter. 



 
Maejo Int. J. Sci. Technol. 2019, 13(02), 121-138  
 

 

124

 
 

 

Figure 1.  Engineering model for optimisation of cutting parameters 

 
Contour profile milling using a flat end mill tool without coolant was performed using a 

high-speed vertical machining centre (HS Super MC500, Fuhong Machinery Co., Taiwan), as 
shown in Figure 2. The workpiece was AISI 1043 carbon steel, which is a commonly used material 
in mechanical engineering. The cutting tool selected was a titanium aluminum nitride (TiAlN) 
Sandvik flat end mill (Ø20 mm, 4 teeth). 

Based on the theoretical study of high-speed cutting processes and the factors that affect the 
machining response, the experiments were performed using the following input cutting parameters: 

 Cutting speed on the high-speed milling machine, v (m/min.) 
 Radial depth of cut, ar (mm) 
 Axial depth of cut, (ap): 10 mm 
 Feed rate,  f (mm/min.) 

  Based on the experimental planning, we chose the range of input cutting parameters as 
follows: 

vmin = 370m/min., vmax = 595 m/min. 
fmin = 2357mm/min.,  fmax = 3790 mm/min. 
ar min = 0.1mm, ar max = 0.95 mm  
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Figure 2.  Model used to perform the experiments: (a) high-speed vertical machining centre,  
(b) milling diagram, (c) experimental workpieces 
 

  

Figure 3.  Experimental set-up 

 
 

(a) 

(b) 

(c) 
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The aim of the experiment is to assess the effect of cutting parameters on the cutting force, 
surface roughness and tool wear during high-speed milling. These acquired results will serve as the 
basis for developing the mathematical models that describe the relationships between the cutting 
parameters and the cutting forces (Fx, Fy, and Fz), surface roughness (Ra) and tool wear (VB). 

The experimental set-up, as shown in Figure 3, was used to obtain the experimental data. A 
surface roughness tester (Mitutoyo Surftest SV-2100, Mitutoyo Corporation, Japan) was used to 
measure the surface roughness and a Kistler 9257B force sensor (Kistler Instrument AG, 
Switzerland) was used to measure the cutting force. The signals from the sensor to the computer 
were converted using an A/D converter and the data were processed using DASY Lab 10.0 
software.  

The acceleration amplitude of vibration of the workpiece was measured using a Triaxial 
DeltaTron Accelerometer with TEDS-Type 4525-B-001, LAN-XI (Brüel & Kjær, Denmark) for 
data acquisition and a PULSE FFT 7770 (Brüel & Kjær, Denmark) to analyse the data. The tool 
wear was measured using a profile projector (V12B-Nikon digital protractor, Nikon, Japan). 

 
Regression Model 
 

This study used ANOVA to generate the empirical functions to show the effects of the 
cutting parameters on the cutting force, surface roughness and tool wear. To minimise the number 
of experiments, an optimal design is required. In this study eight experiments are required with 
three variables (or factors): cutting speed, feed rate and radial depth of cut for full factorial design. 
The allowable deviation of variables that does not affect the response is less than 10%. The centre 
point (coded 0) is quite often the centre of the domain of factors [16]. The design is improved by 
adding three centre points (or null point) [17]. The centre points appear in rows 9, 10 and 11 in 
Table 1. With a linear response or a linear relationship, the centre point value is the mid value 
between the low and high settings for each factor [18]. In the case of a nonlinear relationship or the 
response surface, the centre point value is above or below the plane, which is indicative of curvature 
of the response surface [19]. In this investigation the value of the centre point is rounded and not in 
the middle of the factors, as shown in Table 1, to make it easier to set the parameters as well as for 
nonlinear relationships. Results were obtained for 11 experiments and the values and codes are as 
shown in Table 1. The axial depth of cut, ap, was kept constant (10 mm) during the experiment. 

Several factors affect the surface quality of the workpiece, including tool life and machining 
performance. In this study we focused on the controlled factors and their effects on the machining 
process while other parameters are considered as boundary conditions or disturbance signals. When 
milling a profile using a flat end mill, the machining responses during and after cutting, such as 
cutting force, surface roughness and tool wear, are measured and evaluated. These outputs depend 
primarily on the cutting parameters, i.e. cutting speed, feed rate and radial depth of cut.  

The mathematical functions of the machining output responses in relation to the cutting 
parameters are as follows: 

 Cutting force: F = f (v, f, ar) 
 Surface roughness: Ra = f (v, f, ar) 
 Tool wear: VB = f (v, f, ar, t), where t is machining time 
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Table 1.  Experimental values of input parameters 

 

The study of the simultaneous effects of cutting speed, feed rate and radial depth of cut on 
the output parameters indicates that the relationship is nonlinear [5]. The mathematical models of 
surface roughness, cutting force and tool wear during high-speed milling in terms of the cutting 
parameters, can be expressed as follows: 

Ra = C1 v k1 f l1 ar
m1        (1) 

F = C2 v k2 f l2 ar
m2        (2) 

VB = C3 vk3 f l3 ar
m3 t h3       (3) 

where v is cutting speed (m/min.); f is feed rate (mm/min.); ar is radial depth of cut (mm); t is 
machining time (min.), and Ci, ki, li, mi (i=1÷3) and h3 are estimated experimental coefficients. 
 
PSO Algorithm for Optimising Cutting Parameters 

  Soft computing techniques such as artificial neural networks, PSO, fuzzy logic, genetic 
algorithms, simulated annealing, ant colony optimisation and artificial bee colony algorithms have 
been applied to the study of artificial intelligence in manufacturing fields [7, 8, 10].  
  Many tools have been developed for visualisation and monitoring of the progress of these 
algorithms. These tools run on different platforms using both commercial and non-commercial 
software. To generate solutions based on the PSO algorithm, SwarmViz, VISPLORE and PSOLeT 
software have been developed and applied as reported in the literature. SwarmViz is a visualisation 
tool for PSO and is used for teaching and research in swarm intelligence techniques. This tool is an 
open-source software written in C++ with the goal of simulating robotic learning and benchmark 
functions [20]. VISPLORE, which runs on Mathematica, is a toolkit that is used to run and analyse 

Experi-
ment no. 

Coding 

Cutting speed 
v (m/min.) 

Feed rate 
f (mm/min.) 

Radial depth of 
cut  

ar (mm) 
x1 

(Cutting 
speed) 

x2 

(Feed 
rate) 

x3 

(Radial depth 
of cut) 

1 -1 -1 -1 370 2357 0.1 

2 +1 -1 -1 595 2357 0.1 

3 -1 +1 -1 370 3790 0.1 

4 +1 +1 -1 595 3790 0.1 

5 -1 -1 +1 370 2357 0.95 

6 +1 -1 +1 595 2357 0.95 

7 -1 +1 +1 370 3790 0.95 

8 +1 +1 +1 595 3790 0.95 

9 0 0 0 495 3153 0.6 

10 0 0 0 495 3153 0.6 

11 0 0 0 495 3153 0.6 
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PSO experiments. This toolkit facilitates visualising solutions from particle swarm optimisation for 
different levels including individual, population, experimental and collection of experiments [21]. 
PSOLeT, running on MATLABTM, is a tool for learning and evaluating basic optimisation designs. 
This tool facilitates the changing of the PSO parameters, such as the number of existing particles in 
the population and the maximum velocity allowed for each particle, to generate an optimisation 
design [22]. 
  In this study the PSO algorithm is used to optimise the cutting parameters (v, f and ar) in 
high-speed milling such that the objective function is minimised. We developed an application to 
predict surface roughness and generate the optimal cutting parameters using MATLABTM. The 
objective function is the surface roughness: 

Y = Ra = C1 v k1 f l1 ar
m1  

The boundary conditions as well as the limitations of the machining system are also 
considered in the determination of the cutting parameter values. The boundary conditions are as 
follows: 
 Cutting power: 

v Fy ≤ Pη6000,        
where P is cutting power (kW), ɳ is coefficient of efficiency, Fy is cutting force in Y-direction 
(N), and v is cutting speed (m/min.). The cutting force component in the Y-direction has the 
largest effect on the cutting process.  

 Cutting speed: 
vmin ≤ v ≤ vmax        

 Feed rate: 
fmin ≤ f ≤ fmax       

 Radial depth of cut: 
armin ≤ ar ≤ armax        

 
In order to implement the application using the PSO algorithm, the MATLABTM software was 

used for programming. An outline of the proposed algorithm is shown in Figure 4 and the following 
parameters are used: 

+ w: inertia constant; 
+ rand1 and rand2: random vectors that assume values in the range [0÷1], which are 

generated at each iteration step; 
+ pbesti: best position up to the present time of the ith individual in the population;  
+ gbest: best location for the entire population at the present moment. 

The steps of the algorithm as shown in Figure 4 are explained as follows: 
 Step 1: Initialise the population with position vector xi and velocity vector vi for ith 

individual, where i = 1÷n (for each Pi in the population P(n)); calculate the position vector xi 
(vi, fi, ari) for each value of vi, fi, and ari in population P; and define the boundary conditions. 

 Step 2: Initialise the information for the best location of individuals and the entire 
population: 
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Figure 4.  PSO algorithm for the optimisation of cutting parameters 
 

+ pbesti = xi; initialisation of the best position of ith instance (current initial position); 
+ gbest = min(Ra(xi)), i = 1÷n; initialisation of the best position of entire population for 

the smallest position in all positions for all initial instances. 
 Step 3: Find the best position in the population.  

For i = 1÷n; for each instance: 
vi+1 = w vi + c1rand1(pbesti– xi) + c2rand2(gbest– xi); update of the motion of the next 
generation according to the best current motion of the individual and the motion of the 
best individual in the population; 
xi+1 = xi + vi+1; update the location based on the current location and the latest 
movement direction; 
if Ra(xi) < Ra(pbesti), then pbesti = xi; update the best position of each individual by 
comparison with the current position. 
For i = 1÷n; for the population: 
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if Ra(xk) < Ra(gbest), then gbest = xk; update the best location of the population by 
comparison with the best present individual; 
For each xi value, the boundary conditions are compared. If satisfied, go to step 4; do 
not continue to step 3. 

 Step 4: Finish, return the best gbest value.   
 
RESULTS AND DISCUSSION 
 

Table 2 presents the results for the measured cutting force and surface roughness. The 
experimental measurements show that the force in the Y-direction is greater than that in the X- and 
Z-directions. Therefore, in this study the force component in the Y-direction is used to analyse the 
effects on the surface roughness and tool wear. Table 3 presents the results obtained for tool wear. 
Given that four factors (or variables), namely cutting speed, feed rate, radial depth of cut and 
machining time, are considered in tool wear, the required number of experiments for full factorial 
design is 16. The centre point that appears in row 17 in Table 3 was added to improve the 
experimental design. 

 
       Table 2.  Experimental values of the cutting force (Fy) and surface roughness (Ra) 

 
 
 
 
 
 
 

Experi-
ment no. 

Cutting speed 
v (m/min.) 

Feed rate 
f (mm/min.) 

Radial depth of 
cut  

ar (mm) 

 
Fy (N) 

 
Ra (m) 

1 370 2357 0.1 128.91 0.389 

2 595 2357 0.1 97.57 0.325 

3 370 3790 0.1 148.44 0.537 

4 595 3790 0.1 104.57 0.494 

5 370 2357 0.95 397.34 0.518 

6 595 2357 0.95 347.99 0.488 

7 370 3790 0.95 485.50 0.566 

8 595 3790 0.95 367.64 0.471 

9 495 3153 0.6 296.10 0.421 

10 495 3153 0.6 296.90 0.422 

11 495 3153 0.6 296.72 0.425 
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       Table 3.  Experimental values for the extent of tool wear (VB) 

 

  In Table 4 with n observations and k variables the regression degrees of freedom (DFR), 
the error degrees of freedom (DFE) and the total degrees of freedom (DFT) are calculated. For 
calculating total sum of squares (SST), regression sum of squares (SSR) and error sum of squares 
(SSE), the mean of the n observations (ӯ) and the estimated values obtained using the regression 
model (ŷ) must be determined. From the sum of squares (SS) and degree of freedom (DF) values, 
the mean square (MS) is calculated. F-statistic (F) is equal to the ratio of the regression mean square 
(MSR) to the error mean square (MSE). 
 
 
 
 
 

         

Experi-
ment no. 

Cutting speed 
v (m/min.) 

Feed rate 
f (mm/min.) 

Radial depth of 
cut  

ar (mm) 

 
Machining 

time t (min.) 

 
VB (µm) 

1 370 2357 0.1 3.5 17 

2 595 2357 0.1 3.5 39 

3 370 3790 0.1 5.4 51 

4 595 3790 0.1 5.4 70 

5 370 2357 0.95 8.7 90 

6 595 2357 0.95 8.7 102 

7 370 3790 0.95 13 161 

8 595 3790 0.95 13 267 

9 370 2357 0.1 19.2 153 

10 595 2357 0.1 19.2 285 

11 370 3790 0.1 25 368 

12 595 3790 0.1 25 456 

13 370 2357 0.95 19.2 294 

14 595 2357 0.95 19.2 366 

15 370 3790 0.95 17.4 288 

16 595 3790 0.95 18.4 468 

17 495 3153 0.6 20.9 489 
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  Table 4.  Corresponding factors in ANOVA table 
 

Degree of 
freedom 

(DF) 
Sum of squares 

(SS) 

Mean 
square  
(MS) 

F-statistic 
(F) 

Regression DFR = k 
SSR =(ŷ୧ − ӯ)ଶ



ୀଵ

 MSR= 
SSR/DFR MSR/MSE 

Residual error DFE= n-k-1 
SSE =(y୧ − ŷ୧)ଶ



ୀଵ

 MSE= 
SSE/DFE 

Total DFT = n-1 
SST =(y୧ − ӯ)ଶ



ୀଵ

 

 

To determine the constants and exponents of equations 1, 2 and 3, the mathematical models 
are linearised using a logarithmic function, and rewritten as follows: 

 
ln Ra = ln C1 + k1 ln v+ l1 ln f + m1 ln ar;      (4) 
ln Fy = ln C2 + k2 ln v + l2 ln f + m2 ln ar;       (5) 
ln VB = ln C3+ k3 ln v + l3 ln f + m3 ln ar + h3 ln t.     (6) 

 
The linear models of the above equations are as follows: 

y1 = b01 + b11 x1 + b21 x2 + b31 x3;       (7) 
y2 = b02 + b12 x1 + b22 x2 + b32 x3;       (8) 
y3 = b03 + b13 x1 + b23 x2 + b33 x3 + b43 x4,      (9) 

 
where y1, y2, and y3 are the true responses of the surface roughness, cutting force and tool wear 
respectively; bij (i = 0÷4, j = 1÷3) are the parameters to be estimated; and x1, x2, and x3 are the 
logarithmic transformations of the cutting speed, feed rate and radial depth of cut respectively. The 
problem becomes an empirical regression when the experiments are performed. Tables 5, 7 and 9 
present the results of the regression statistics, and Tables 6, 8 and 10 summarises the effects of the 
cutting parameters on the cutting force, surface roughness and tool wear respectively.  
 

   Table 5.  Results of regression statistics on Fy  
Regression statistics 

Multiple R 0.987860295 

R square 0.985725168 

Standard error 0.045020821 

Observations 11 
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Table 6.  Effects of cutting parameters on Fy  
 DF  SS  MS  F Significance F 

Regression 3 3.3048 1.1016 543.497109 1.18718E-08 

Residual error 7 0.01419 0.002027 

Total 10 3.31899 

Coefficients Standard error 
 

P-value 
 

Intercept 7.490523586 0.67048 1.026E-05 

x1 -0.55326353 0.0666 7.1581E-05 

x2 0.238912613 0.06661 0.00889547 

x3 0.533985076 0.01353 1.7426E-09 

 

  Table 7.  Results of regression statistics on Ra 
 

Regression statistics 

Multiple R 0.956340479 

R square 0.937205092 

Standard error 0.125808478 

Observations 11 

 

Table 8.  Effects of cutting parameters on Ra 
 

DF SS MS F Significance F 

Regression 3 0.148101838 0.049367279 3.119028745 0.007349575 

Residual error 7 0.110794412 0.015827773 

Total 10 0.258896250 

Coefficients Standard error 
 

P-value 
 

Intercept -1.937080761 1.872516072 0.335321521 

x1 -0.302270348 0.186072584 0.148302540 

x2 0.382423871 0.186106481 0.078961233 

x3 0.057248255 0.035951295 0.155326056 
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   Table 9.  Results of regression statistics on VB 
 

Regression statistics 

Multiple R 0.9850 

R square 0.9702 

Standard error 0.2197 

Observations 17 

 

Table 10.  Effects of cutting parameters on VB 
 

  DF SS MS F Significance F 

Regression 4 18.83143752 4.70785938 97.53452945 4.81594E-09 

Residual error 12 0.579223716 0.048268643 

Total 16 19.41066123       

  Coefficients Standard error P-value 

Intercept -4.053885999 2.330512121 0.10751012 

x1 0.620523746 0.230995237 0.019804696 

x2 0.240912233 0.232434691 0.320417164 

x3 0.082289036 0.049579456 0.12285262 

x4 1.387586098 0.075312788 3.62771E-10 

 

From the values of DF, SS, MS and R square, the P-values from Tables 5-10 indicate that at 
least one of the regression coefficients is nonzero and represents a high level of statistical 
significance. The expressions for yi (i = 1-3) are as follows: 

y1 = 7.4905 - 0.5533 x1 + 0.2389 x2 + 0.5340 x3     (10) 
y2 = -1.9371 - 0.3023 x1 + 0.3824 x2 + 0.0572 x3     (11) 
y3 = -4.0539 + 0.6205 x1 + 0.2409 x2 + 0.0823 x3 + 1.3876 x4   (12) 
 
From equations 1-3, and 10-12, the cutting force component in the Y-direction, surface 

roughness and tool wear as a function of v, f and ar are respectively expressed as follows: 

Fy = 1791 v -0.5533 f 0.2389 ar
0.5340       (13) 

Ra = 0.1441 v -0.3023 f 0.3824 ar
0.0572       (14) 

VB = 0.0174 v 0.6205 f 0.2409 ar
0.0823 t 1.3876      (15) 

 
According to the established formulas (13)-(15), if the cutting speed increases during the 

high-speed milling process, the magnitude of the surface roughness and cutting force is reduced; 
however, the tool wear increases. Therefore, the selection of the most appropriate cutting 
parameters to meet the machining requirements is a difficult process. This study uses the PSO 
algorithm to determine the optimal cutting parameters to minimise surface roughness and tool wear 
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by considering the cutting force required to achieve allowable limits. The module for optimising the 
cutting parameters was programmed using MATLABTM. A screenshot of the developed module is 
shown in Figure 5. This figure also shows an example that demonstrates the functionality of the 
developed system, in which the population size is 200 individuals, the iteration number is 500, and 
the acceleration coefficient is 1.49445 (denoted by 1 in Figure 5). The boundary conditions 
(denoted by 2) are as follows:  

 Minimum cutting speed (G2): 370 m/min.  
 Maximum cutting speed (G3): 595 m/min. 
 Minimum feed rate (G4): 2357 mm/min. 
 Maximum feed rate (G5): 3790 mm/min. 
 Minimum radial depth of cut (G6): 0.1 mm  
 Maximum radial depth of cut (G7): 0.95 mm 
 Maximum acceleration amplitude of vibration (G8): 2 (10-3 m/s2)  
 Maximum tool deformation (G9): 0.02 mm 
 Maximum tool wear (VB): 300 µm 
 Maximum surface roughness: 0.38 µm 

 
The maximum tool wear, surface roughness and inertia constant are inputted from the 

interface of the developed system (denoted by 3 in Figure 5).The initial cutting parameters are feed 
rate (2357.0004 mm/min.), cutting speed (595 m/min.) and radial depth of cut (0.1 mm). After 4 
min. of machining, the system predicts that the amount of tool wear is 43.779 μm and the surface 
roughness is 0.368 μm (denoted by 4). Based on the information of tool wear and surface 
roughness, the optimal cutting parameters are updated as 2398.43 mm/min. for the feed rate and 
549.962 m/min. for the cutting speed (denoted by 4). 

The initial cutting parameters were calculated for the fresh cutting tool (extent of tool wear = 
zero). Considering the finished machining that requires minimum surface roughness, tool wear was 
used as the constraint function, as shown in empirical equation (15), to generate new optimal cutting 
parameters. 

To verify the correct output of the developed system, the PSO algorithm was also compared 
with the experimental results, as shown in Table 11. Using the same boundary conditions and only 
varying in the cutting speed or feed rate, the experimental results and predictions are within the 
allowed limits. 

 
       Table 11.  Surface roughness from PSO algorithm predictions and experimental results 
 

Experiment  v 
(m/min.) 

f 
(mm/min.) 

ar 

(mm) 

Experimental 
measurement 

Ra (µm) 

PSO 
prediction 
Ra (µm) 

Error 
(%) 

Test 1 594.999 2357.0004 0.1 0.353 0.35687 1.1 
Test 2 595.001 2357 0.1 0.341 0.35595 4.4 
Test 3 595 2357 0.1 0.332 0.35675 7.5 

Average 595 2357.0001 0.1 0.342 0.35652 4.2 
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Figure 5.  Screenshot of the module used to optimise cutting parameters 
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CONCLUSIONS 
 

In this study the mathematical relationships between cutting parameters in the high-speed 
milling process and surface roughness, cutting force and tool wear have been established using 
ANOVA. The engineering model and experiment have been systematically designed. The 
empirically-derived formulas were used as the objective function (surface roughness) or constraint 
functions (tool wear, cutting force) for determining the optimal cutting parameters to minimise 
surface roughness. The optimum cutting parameters were obtained by using the PSO algorithm. The 
module for predicting surface roughness and generating the optimal cutting parameters was 
developed using MATLABTM.  

The accuracy of the developed module was validated by comparing the experimental values 
of surface roughness with the predicted ones obtained by PSO algorithm. The integration of the 
statistical and soft computing methods enabled the generation of the optimal cutting parameters for 
accurate and efficient high-speed milling. The application of these results to the development of a 
system for online monitoring and adjustment of the cutting conditions to achieve the desired 
machined part quality during the HSM process will be pursued in future studies. This study has 
contributed to the development of intelligent control techniques for machining processes.     
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