Maejo Int. J. Sci. Technol. 2019, 13(03), 245-256

Maejo International Journal of Science and Technology

ISSN 1905-7873 Available online at www.mijst.mju.ac.th

Full Paper

γ–Independent dominating graphs of paths and cycles

Roongrat Samanmoo¹, Nantapath Trakultraipruk^{1,*} and Nawarat Ananchuen²

¹ Department of Mathematics and Statistics, Faculty of Science and Technology,

Thammasat University, Pathum Thani 12120, Thailand

² Department of Mathematics, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand

* Corresponding author, e-mail: n.trakultraipruk@yahoo.com

Received: 5 June 2018 / Accepted: 10 December 2019 / Published: 18 December 2019

Abstract: An independent dominating set D of a graph G = (V(G), E(G)) is a set of pairwise non-adjacent vertices of G such that every vertex of G not in D is adjacent to at least one vertex in D. The independent domination number of G, denoted by $\gamma_i(G)$, is the minimum cardinality of an independent dominating set of G. An independent dominating set of cardinality $\gamma_i(G)$ is called a $\gamma_i(G)$ -set. We introduce the γ -independent dominating graph of G, denoted by $ID_{\gamma}(G)$, as the graph whose vertex set is the set of all $\gamma_i(G)$ -sets, and two $\gamma_i(G)$ -sets are adjacent in $ID_{\gamma}(G)$ if they differ by one vertex. In this paper we present the γ -independent dominating graphs of all paths and all cycles.

Keywords: independent dominating graph, independent dominating set, independent domination number

INTRODUCTION

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). A set $D \subseteq V(G)$ is a *dominating set* if every vertex not in D is adjacent to some vertex in D. The *domination number* $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set of cardinality $\gamma(G)$ is called a $\gamma(G)$ -set. For detailed literature on domination, see Haynes et al. [1, 2].

In 2010 Lakshmanan and Vijayakumar [3] defined a gamma graph γ . *G* of *G* as the graph whose vertex set is the set of all $\gamma(G)$ -sets. Two $\gamma(G)$ -sets D_1 and D_2 are adjacent in

 $\gamma.G$ if $D_1 = D_2 \setminus \{u\} \cup \{v\}$ for some vertices $u \in D_2$ and $v \notin D_2$. They discussed the relationship between the clique number and the independence number of a graph and its gamma graph. Later, Bień [4], Sridharan and Subramanian [5] and Sridharan et al. [6] studied and gave some properties of this gamma graph.

In 2011 Fricke et al. [7] also defined a gamma graph $G(\gamma)$ with slightly different meaning. The vertex set of $G(\gamma)$ is the same as one of $\gamma.G$. Two $\gamma(G)$ -sets D_1 and D_2 are adjacent in $G(\gamma)$ if $D_1 = D_2 \setminus \{u\} \cup \{v\}$ for some vertices $u \in D_2$ and $v \notin D_2$, and they must be adjacent in G. They considered the structure of $G(\gamma)$ for some graph G. Connelly et al. [8] gave a note on gamma graphs.

Another class of graphs whose vertices correspond to dominating sets was introduced by Haas and Seyffarth in 2014 [9]. They defined a *k*-dominating graph $D_k(G)$ as the graph whose vertex set contains all dominating sets D of G such that $|D| \le k$. Two dominating sets are adjacent in $D_k(G)$ if one can be obtained from the other by either adding or deleting a single vertex. They provided the conditions that ensure $D_k(G)$ is connected.

In 2017 Wongsriya and Trakultraipruk [10] introduced a γ -total dominating graph of a graph G, denoted by $TD_{\gamma}(G)$, as the graph whose vertices are γ -total dominating sets, and two γ -total dominating sets are adjacent in $TD_{\gamma}(G)$ if they differ by one vertex. They considered the γ -total dominating graphs of paths and cycles.

An *independent set* of a graph G is a set of pairwise non-adjacent vertices of G. A set $D \subseteq V(G)$ is an *independent dominating set* of G if it is both an independent set and a dominating set of G. The theory of independent domination was formalised by Berge [11] and Ore [12] in 1962. The *independent domination number* of G, denoted by $\gamma_i(G)$, is the minimum cardinality of an independent dominating set of G. An independent dominating set of cardinality $\gamma_i(G)$ is called a $\gamma_i(G)$ -set. Independent dominating sets and independent dominating sets of graphs are extensively studied in the literature; see for example Allan and Laskar [13] and Topp and Volkmann [14]. We introduce the γ -independent dominating graph of G, denoted by $ID_{\gamma}(G)$, as the graph whose vertex set is the set of all $\gamma_i(G)$ -sets, and two $\gamma_i(G)$ -sets D_1 and D_2 are adjacent in $ID_{\gamma}(G)$ if $D_1 = D_2 \setminus \{u\} \cup \{v\}$ for some vertices $u \in D_2$ and $v \notin D_2$. For instance, the γ -independent dominating graphs of the path $P_5 = v_1v_2 \cdots v_5$ and the path $P_7 = v_1v_2 \cdots v_7$ are shown in Figures 1 and 2 respectively.

Figure 1. The γ -independent dominating graph of P_5

Figure 2. The γ -independent dominating graph of P_7

In this paper we consider the γ -independent dominating graphs of all paths and all cycles. For notations and terminology, we in general follow West [15].

RESULTS

γ-Independent Dominating Graphs of Paths

In this section we consider the γ -independent dominating graphs of paths. Let *n* be a positive integer. Let $P_n = v_1v_2 \cdots v_n$ be a path with *n* vertices. The *Cartesian product* of graphs *G* and *H*, denoted by $G \square H$, is the graph whose vertex set is $V(G) \times V(H)$, and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G \square H$ if $u_1 = u_2$ and v_1 is adjacent to v_2 in *H*, or $v_1 = v_2$ and u_1 is adjacent to u_2 in *G*. The $m \times n$ grid graph is the Cartesian product graph $P_m \square P_n$, whose vertices correspond to the points in the plane with integer coordinates *x* and *y*. Let *k* be a positive integer. For $i, j \in \{1, 2, ..., k\}$, let $v_{i,j}$ be the vertex at position (i, j) of a $k \times k$ grid graph. We define a stairgrid of size *k*, denoted by S_k , to be the subgraph of $P_k \square P_k$ induced by $\{v_{i,j} \mid 1 \le i \le j \le k\}$. For instance, the stairgrids S_1, S_2, S_3 and S_k are shown in Figure 3.

Goddard and Henning [16] provided the independent domination numbers of paths and cycles, which are shown in the following proposition.

Proposition 1. Let $n \ge 3$ be an integer. Then $\gamma_i(P_n) = \gamma_i(C_n) = \left[\frac{n}{3}\right]$.

Let *n* be a positive integer. We consider the γ -independent dominating graph of a path with *n* vertices in three cases. If *n* is divisible by three, then the γ -independent dominating graph of P_n contains only one vertex. If n = 3k+2 for some non-negative integer *k*, then the γ -independent dominating graph of P_n is a path with k+2 vertices. Finally if n = 3k+1 for some non-negative integer *k*, then the γ -independent dominating graph of P_n is a stairgrid of size k+1.

Theorem 1. Let $k \ge 1$ be an integer. Then $ID_{\gamma}(P_{3k}) \cong K_1$.

Proof. Let $P_{3k} = v_1v_2 \cdots v_{3k}$ be a path with 3k vertices. Each dominating vertex in a path can dominate at most three vertices. By Proposition 1, $\gamma_i(P_{3k}) = k$. Then each vertex in a $\gamma_i(P_{3k})$ -set must dominate exactly three different vertices. Thus, there is only one $\gamma_i(P_{3k})$ -set which is $\{v_2, v_5, \dots, v_{3k-1}\}$. This completes the proof.

Figure 3. The stairgrids S_1 , S_2 , S_3 , and S_k respectively

Next, we give some properties of a $\gamma_i(P_{3k+2})$ -set to study the γ -independent dominating graph of a path with 3k+2 vertices.

Lemma 1. Let $k \ge 0$ be an integer. Then there is only one $\gamma_i(P_{3k+2})$ -set that contains v_{3k+2} and the only one $\gamma_i(P_{3k+2})$ -set that contains v_1 . Moreover, both sets are of degree one in $ID_{\gamma}(P_{3k+2})$.

Proof. By Proposition 1, we get $\gamma_i(P_{3k+2}) = k+1$. Since v_{3k+2} dominates v_{3k+2} and v_{3k+1} , the other k dominating vertices in this $\gamma_i(P_{3k+2})$ -set must dominate v_1, v_2, \dots, v_{3k} . We may consider these 3k vertices as a path with 3k vertices. Since $\gamma_i(P_{3k}) = k$, these k dominating vertices form a $\gamma_i(P_{3k})$ -set. By Theorem 1, $D = \{v_2, v_5, \dots, v_{3k-1}\}$ is the unique $\gamma_i(P_{3k})$ -set. Hence $X = D \cup \{v_{3k+2}\}$ is the only one $\gamma_i(P_{3k+2})$ -set containing v_{3k+2} . Next, we show that the degree of X in $ID_{\gamma}(P_{3k+2})$ is one. Since each $\gamma_i(P_{3k+2})$ -set must contain either v_{3k+2} or v_{3k+1} , the other $\gamma_i(P_{3k+2})$ -sets of X must contain v_{3k+1} . Hence $D \cup \{v_{3k+1}\}$ is the only one neighbour of X in $ID_{\gamma}(P_{3k+2})$, so the degree of X is one. Similarly, there is only one $\gamma_i(P_{3k+2})$ -set that contains v_1 , and its degree in $ID_{\gamma}(P_{3k+2})$ is one.

Theorem 2. Let $k \ge 0$ be an integer. Then $ID_{\gamma}(P_{3k+2}) \cong P_{k+2}$.

Proof. Let $P_{3k+2} = v_1v_2 \cdots v_{3k+2}$ be a path with 3k+2 vertices. We prove by induction on k. It is easy to see that there are two $\gamma_i(P_2)$ -sets, which are $\{v_1\}$ and $\{v_2\}$, so $ID_{\gamma}(P_2) \cong P_2$. We

assume that $ID_{\gamma}(P_{3k+2}) \cong P_{k+2} \cong D_1D_2 \cdots D_{k+2}$, where D_i is a $\gamma_i(P_{3k+2})$ -set for all *i*. By Lemma 1, without loss of generality, we may assume that D_{k+2} contains v_{3k+2} , and the other $\gamma_i(P_{3k+2})$ -sets contain v_{3k+1} . We prove that $ID_{\gamma}(P_{3k+5}) \cong P_{k+3}$. Recall that $P_{3k+5} = v_1v_2 \cdots$ $v_{3k+2}v_{3k+3}v_{3k+4}v_{3k+5}$ and $\gamma_i(P_{3k+5}) = k+2$. Clearly, each $\gamma_i(P_{3k+5})$ -set cannot contain all of v_{3k+3} , v_{3k+4} and v_{3k+5} . Next, we show that the $\gamma_i(P_{3k+5})$ -set must contain only one vertex from them. Suppose for a contradiction there is a $\gamma_i(P_{3k+5})$ -set that contains two vertices from them, so they are v_{3k+3} and v_{3k+5} . Thus, these two vertices dominate v_{3k+2} , v_{3k+3} , v_{3k+4} and v_{3k+5} . Hence the other k dominating vertices in this $\gamma_i(P_{3k+5})$ -set must dominate at least 3k+1 vertices. This contradicts the fact that k vertices can dominate at most 3k vertices on the path. Since each $\gamma_i(P_{3k+5})$ -set must dominate v_{3k+5} , it contains one vertex from $\{v_{3k+4}, v_{3k+5}\}$. The other k+1dominating vertices must dominate $v_1, v_2, \ldots, v_{3k+2}$. Since $\gamma_i(P_{3k+2}) = k+1$, these k+1dominating vertices form a $\gamma_i(P_{3k+2})$ -set. Hence each $\gamma_i(P_{3k+5})$ -set is a union of a $\gamma_i(P_{3k+2})$ -set and a vertex from $\{v_{3k+4}, v_{3k+5}\}$. By the induction hypothesis, there are $k+2 \gamma_i(P_{3k+2})$ -sets, which are $D_1, D_2, \ldots, D_{k+2}$. We first consider all $\gamma_i(P_{3k+5})$ -sets that contain v_{3k+4} . For each $i \in$ $\{1, 2, \dots, k+2\}$, let $X_i = D_i \cup \{v_{3k+4}\}$. Thus, these X_i 's are all $\gamma_i(P_{3k+5})$ -sets that contain v_{3k+4} , and they form a path $X_1X_2 \cdots X_{k+2}$ in $ID_{\gamma}(P_{3k+5})$. Note that D_{k+2} is only $\gamma_i(P_{3k+2})$ -set containing v_{3k+2} . Then the set $X_{k+3} = D_{k+2} \cup \{v_{3k+5}\}$ is the unique $\gamma_i(P_{3k+5})$ -set that contains v_{3k+5} , and it is adjacent to only X_{k+2} in $ID_{\gamma}(P_{3k+5})$. This completes the proof.

Observation 1. Each $\gamma_i(P_{3k+5})$ -set can be written as a union of a $\gamma_i(P_{3k+2})$ -set and a vertex from $\{v_{3k+4}, v_{3k+5}\}$.

In Theorem 3, we present the γ -independent dominating graph of a path with 3k+1 vertices, where k is a non-negative integer. To prove this, we use the following lemma and observation.

Lemma 2. Let $k \ge 1$ be an integer. Then there are $k+1 \gamma_i(P_{3k+1})$ -sets that contain v_{3k+1} , and they form a path in $ID_{\gamma}(P_{3k+1})$. Moreover, on this path the internal vertices are of degree three, one end-vertex is of degree one, and the other end-vertex is of degree two. The same results hold for the $\gamma_i(P_{3k+1})$ -sets that contain v_1 .

Proof. Note that $\gamma_i(P_{3k+1}) = k+1$. If v_{3k+1} is in a $\gamma_i(P_{3k+1})$ -set, the other *k* dominating vertices must dominate $v_1, v_2, \ldots, v_{3k-1}$. We may consider these 3k-1 vertices as a path with 3k-1 vertices. Since $\gamma_i(P_{3k-1}) = k$, these *k* dominating vertices form a $\gamma_i(P_{3k-1})$ -set. Thus, such a $\gamma_i(P_{3k+1})$ -set is a union of a $\gamma_i(P_{3k-1})$ -set and $\{v_{3k+1}\}$. By Theorem 2, $ID_{\gamma}(P_{3k-1}) \cong P_{k+1} \cong X_1X_2 \cdots X_{k+1}$, where X_i is a $\gamma_i(P_{3k-1})$ -set for all *i*. For each $i \in \{1, 2, \ldots, k+1\}$, let $Y_i = X_i \cup \{v_{3k+1}\}$. Then $Y_1, Y_2, \ldots, Y_{k+1}$ are all $\gamma_i(P_{3k+1})$ -sets that contain v_{3k+1} , and they form a path $Y_1Y_2 \cdots Y_{k+1}$ in $ID_{\gamma}(P_{3k+1})$. Note that in $ID_{\gamma}(P_{3k+1})$, the vertices Y_1 and Y_{k+1} have the only neighbour containing v_{3k+1} , and the internal vertices Y_2, Y_3, \ldots, Y_k have two neighbours containing v_{3k+1} . By Lemma 1, there is only one $\gamma_i(P_{3k-1})$ -set that contains v_{3k-1} . Assume that X_{k+1} contains v_{3k-1} , so X_1, X_2, \ldots, X_k contain v_{3k-2} . Hence $Y_{k+1} = X_{k+1} \cup \{v_{3k+1}\}$ has no neighbour containing v_{3k} , and it has degree one in $ID_{\gamma}(P_{3k+1})$. Furthermore, for each $i \in \{1, 2, \ldots, k\}$, the set $X_i \cup \{v_{3k}\}$ is the only neighbour of Y_i containing v_{3k} . Then Y_1 has degree two and Y_2, Y_3, \ldots, Y_k are of degree three in $ID_{\gamma}(P_{3k+1})$.

Observation 2. Each $\gamma_i(P_{3k+1})$ -set that contains v_{3k+1} can be written as a union of a $\gamma_i(P_{3k-1})$ -set and $\{v_{3k+1}\}$.

Theorem 3. Let $k \ge 0$ be an integer. Then $ID_{\gamma}(P_{3k+1}) \cong S_{k+1}$.

Proof. Let $P_{3k+1} = v_1v_2 \cdots v_{3k+1}$ be a path with 3k+1 vertices. We prove by induction on k. There is only one $\gamma_i(P_1)$ -set which is $\{v_1\}$, so $ID_{\gamma}(P_1) \cong P_1 \cong S_1$. Since there are three $\gamma_i(P_4)$ -sets which are $\{v_1, v_3\}$, $\{v_1, v_4\}$ and $\{v_2, v_4\}$, $ID_{\gamma}(P_4) \cong P_3 \cong S_2$. Let $k \ge 1$. We assume that $ID_{\gamma}(P_{3k+1}) \cong S_{k+1}$. For $1 \le i \le j \le k+1$, let $Y_{i,j}$ be the $\gamma_i(P_{3k+1})$ -set at position (i, j) of S_{k+1} as shown in Figure 4.

Figure 4. The γ -independent dominating graph of P_{3k+1}

We see that the vertices in the first row and ones in the last column of S_{k+1} form the paths with k+1 vertices. By Lemma 2, without loss of generality, we may assume that the vertices in the last column of S_{k+1} are the $\gamma_i(P_{3k+1})$ -sets that contain v_{3k+1} . By Observation 2, for each $i \in \{1, 2, ..., k+1\}$, the set $Y_{i,k+1} = X_i \cup \{v_{3k+1}\}$, where X_i is a $\gamma_i(P_{3k-1})$ -set. Furthermore, the vertices in the first row of S_{k+1} are the $\gamma_i(P_{3k+1})$ -sets that contain v_1 . Since $Y_{1,k+1} = X_1 \cup \{v_{3k+1}\}$, the set X_1 contains v_1 . By Lemma 1, the set X_{k+1} contains v_{3k-1} .

We prove that $ID_{\gamma}(P_{3k+4}) \cong S_{k+2}$, where $P_{3k+4} = v_1v_2 \cdots v_{3k+1}v_{3k+2}v_{3k+3}v_{3k+4}$. Note that $\gamma_i(P_{3k+4}) = k+2$, and each $\gamma_i(P_{3k+4})$ -set contains exactly one of v_{3k+3} and v_{3k+4} . We first consider all $\gamma_i(P_{3k+4})$ -sets that contain v_{3k+3} . Since v_{3k+3} dominates v_{3k+2} , v_{3k+3} and v_{3k+4} , the other k+1 dominating vertices in this $\gamma_i(P_{3k+4})$ -set must dominate $v_1, v_2, \ldots, v_{3k+1}$. Since $\gamma_i(P_{3k+1}) = k+1$, these k+1 dominating vertices form a $\gamma_i(P_{3k+1})$ -set. Then such a $\gamma_i(P_{3k+4})$ -set is a union of a $\gamma_i(P_{3k+1})$ -set and $\{v_{3k+3}\}$. By the induction hypothesis, all $\gamma_i(P_{3k+1})$ -sets form a stairgrid of size k+1. For $1 \le i \le j \le k+1$, let $Y'_{i,j} = Y_{i,j} \cup \{v_{3k+3}\}$. Then these $Y'_{i,j}$'s are all $\gamma_i(P_{3k+4})$ -sets that contain v_{3k+3} , and they form the stairgrid having the same size.

Next, we consider all $\gamma_i(P_{3k+4})$ -sets that contain v_{3k+4} . By Lemma 2, there are k+2 $\gamma_i(P_{3k+4})$ -sets that contain v_{3k+4} , and they form a path in $ID_{\gamma}(P_{3k+4})$. Recall that in the last column of $ID_{\gamma}(P_{3k+1})$, for each $i \in \{1, 2, ..., k+1\}$, the set $Y_{i,k+1}$ is a $\gamma_i(P_{3k+4})$ -set that contains v_{3k+1} . We let $Y'_{i,k+2} = Y_{i,k+1} \cup \{v_{3k+4}\}$ for all i. Then we have $k+1 \gamma_i(P_{3k+4})$ -sets containing v_{3k+4} , and these sets form a path $Y'_{1,k+2} Y'_{2,k+2} \cdots Y'_{k+1,k+2}$. Furthermore, for each $i \in \{1, 2, ..., k+1\}$, the set $Y'_{i,k+2}$ is adjacent to $Y'_{i,k+1}$ in $ID_{\gamma}(P_{3k+4})$. Next, we construct the remaining $\gamma_i(P_{3k+4})$ -set that contains v_{3k+4} . Recall that in $ID_{\gamma}(P_{3k+1})$, $Y_{k+1,k+1} = X_{k+1} \cup \{v_{3k+1}\}$, where X_{k+1} is the unique $\gamma_i(P_{3k-1})$ -set that contains v_{3k-1} . Then the set $Y'_{k+1,k+2} = Y_{k+1,k+1} \cup \{v_{3k+4}\} = X_{k+1} \cup \{v_{3k+4}\} \cup \{v_{3k+4}\} \cup \{v_{3k+4}\}$ contains v_{3k-1}, v_{3k+1} and v_{3k+4} . Let $Y'_{k+2,k+2} = X_{k+1} \cup \{v_{3k+2}\} \cup \{v_{3k+4}\}$, so it is another $\gamma_i(P_{3k+4})$ -set that contains v_{3k+4} , the set $Y'_{k+2,k+2} = X_{k+1} \cup \{v_{3k+4}\} \cup \{v_{3k+4}\}$ has no neighbours that contain v_{3k+3} . This completes the proof.

γ-Independent Dominating Graphs of Cycles

In this section we consider the γ -independent dominating graphs of cycles. Let *k* be a positive integer. For *i*, *j* \in {1, 2, ..., 2*k*+1}, let $v_{i,j}$ be the vertex at position (*i*, *j*) of $P_{2k+1} \square P_{2k+1}$. We define a *twisting stair* of size *k*, denoted by T_k , to be the graph with the following three properties.

(i) The vertex set $V(T_k)$ is the set of all vertices $v_{i,j}$ in $P_{2k+1} \square P_{2k+1}$ such that $0 \le j - i \le k-1$.

(ii) The edge set $E(T_k)$ contains all edges in $P_{2k+1} \square P_{2k+1}$ that have both end points in $V(T_k)$.

(iii) For all $i \in \{1, 2, ..., k\}$, the vertices $v_{1,i}$ and $v_{i+k+1,2k+1}$ are the same.

For instance, the twisting stairs T_1 , T_2 and T_4 are shown in Figure 5.

For an integer $n \ge 3$, we let $C_n = v_0v_1 \cdots v_{n-1}v_0$ be a cycle with *n* vertices. It is easy to see that there are three $\gamma_i(C_3)$ -sets, which are $\{v_0\}$, $\{v_1\}$ and $\{v_2\}$, so $ID_{\gamma}(C_3) \cong C_3$. We next consider the γ -independent dominating graphs of cycles with $n \ge 4$ vertices in three cases. If *n* is divisible by three, then the γ -independent dominating graph of C_n contains only three isolated vertices. If n = 3k+1 for some positive integer *k*, then the γ -independent dominating graph of C_n is a twisting stair of size *k*. Finally if n = 3k+2 for some positive integer *k*, then the γ -independent dominating graph of C_n is a cycle with 3k+2 vertices.

Theorem 4. Let $k \ge 2$ be an integer. Then $ID_{\gamma}(C_{3k}) \cong 3K_1$.

Proof. Let $C_{3k} = v_0v_1 \cdots v_{3k-1}v_0$ be a cycle with 3k vertices. Note that $\gamma_i(C_{3k}) = k$. Then each dominating vertex must dominate exactly three different vertices of the cycle. For each $i \in \{0, 1, 2\}$, let $D_i = \{v_{3m+i} \mid 0 \le m \le k-1\}$. It is clear that they are the only $\gamma_i(C_{3k})$ -sets. Since they are pairwise disjoint, $ID_{\gamma}(C_{3k}) \ge 3K_1$.

Before we prove Theorem 5, we provide some notation and some properties that we use in the proof. For a positive integer *n* and a non-negative integer *i*, we define $P_n(v_i : v_{i+n-1})$ to be the path $v_iv_{i+1} \cdots v_{i+n-1}$, and the path $P_n(v_1 : v_n)$ is always denoted by P_n .

Let $k \ge 3$ be a positive integer. By Theorem 3, we have $ID_{\gamma}(P_{3k-2}) \cong S_k$. Let $Y_{i,j}$ be the $\gamma_i(P_{3k-2}(v_a : v_b))$ -set at position (i, j) in S_k , where a and b = a + 3k-3 are non-negative integers. By Lemma 2, without loss of generality, we may assume that all $\gamma_i(P_{3k-2}(v_a : v_b))$ -sets in the first row of this S_k contain v_a and all $\gamma_i(P_{3k-2}(v_a : v_b))$ -sets in the last column contain v_b . Furthermore, we can apply Observation 2 to derive $Y_{1,j} = \{v_a\} \cup X_j$, where X_j is a $\gamma_i(P_{3k-4}(v_{a+2} : v_b))$ -set and $Y_{i,k} = \overline{X}_i \cup \{v_b\}$, where \overline{X}_i is a $\gamma_i(P_{3k-4}(v_a : v_{b-2}))$ -set for each $i, j \in \{1, 2, ..., k\}$. Since the set $Y_{1,k}$ is both in the first row and the last column of S_k , we have $Y_{1,k} = \{v_a\} \cup X_k = \overline{X}_1 \cup \{v_b\}$. Hence X_k must contain v_b , and \overline{X}_1 must contain v_a . By Lemma 1,

only X_k contains v_b and only X_1 contains v_{a+2} . Similarly, only \overline{X}_1 contains v_a and only \overline{X}_k contains v_{b-2} . To summarise, we have the following properties:

- (*p*1) for each $j \in \{1, 2, ..., k\}$, the set $Y_{1,j} = \{v_a\} \cup X_j$, where X_j is a $\gamma_i(P_{3k-4}(v_{a+2} : v_b))$ -set such that only X_1 contains v_{a+2} and only X_k contains v_b ;
- (*p*2) for all $i \neq 1$, the set $Y_{i,j}$ contains v_{a+1} ;
- (p3) for each $i \in \{1, 2, ..., k\}$, the set $Y_{i,k} = \overline{X}_i \cup \{v_b\}$, where \overline{X}_i is a $\gamma_i(P_{3k-4}(v_a : v_{b-2}))$ -set such that only \overline{X}_1 contains v_a and only \overline{X}_k contains v_{b-2} ; and
- (*p*4) for all $j \neq k$, the set $Y_{i,j}$ contains v_{b-1} .

Figure 5. The twisting stairs T_1 , T_2 and T_4

Theorem 5. Let $k \ge 1$ be an integer. Then $ID_{\gamma}(C_{3k+1}) \cong T_k$.

Proof. Let $C_{3k+1} = v_0v_1 \cdots v_{3k}v_0$ be a cycle with 3k+1 vertices. For k = 1, there are two $\gamma_i(C_4)$ -sets, which are $\{v_1, v_3\}$ and $\{v_2, v_4\}$, so $ID_{\gamma}(C_4) \cong 2K_1 \cong T_1$. For k = 2, there are seven $\gamma_i(C_7)$ -sets, which are $\{v_1, v_3, v_5\}$, $\{v_1, v_3, v_6\}$, $\{v_1, v_4, v_6\}$, $\{v_2, v_4, v_6\}$, $\{v_2, v_4, v_7\}$, $\{v_2, v_5, v_7\}$ and $\{v_3, v_5, v_7\}$, so $ID_{\gamma}(C_7) \cong C_7 \cong T_2$. Let $k \ge 3$. Since each $\gamma_i(C_{3k+1})$ -set has to dominate the vertex v_0 , it contains either v_{3k} , v_0 or v_1 . First, we consider all $\gamma_i(C_{3k+1})$ -sets that contain v_{3k} . Note that $\gamma_i(C_{3k+1}) = k+1$. If v_{3k} is in a $\gamma_i(C_{3k+1})$ -set, the other k dominating vertices in this $\gamma_i(C_{3k+1})$ -set must dominate $v_1, v_2, \ldots, v_{3k-2}$. Since $\gamma_i(P_{3k-2}) = k$, these k dominating vertices form a $\gamma_i(P_{3k-2})$ -set. Thus, such a $\gamma_i(C_{3k+1})$ -set is a union of a $\gamma_i(P_{3k-2})$ -set and $\{v_{3k}\}$. By Theorem 3, $ID_{\gamma}(P_{3k-2}) \cong S_k$. For all *i*, *j*, let $Y_{i,j}$ be the $\gamma_i(P_{3k-2})$ -set at position (i, j) in S_k , and $Z_{i,i}^{(1)} = Y_{i,j} \cup \{v_{3k}\}$. Then $Z_{i,i}^{(1)}$'s are all $\gamma_i(C_{3k+1})$ -sets that contain v_{3k} , and they form a stairgrid of size k in $ID_{\gamma}(C_{3k+1})$. Let $S_k^{(1)}$ be the subgraph of $ID_{\gamma}(C_{3k+1})$ induced by these $Z_{i,j}^{(1)}$'s. Similarly, all $\gamma_i(C_{3k+1})$ -sets that contain v_0 form a stairgrid of size k. Let $Z_{i,i}^{(2)}$ be the $\gamma_i(C_{3k+1})$ -set that contains v_0 at position (i, j), and $S_k^{(2)}$ the subgraph of $ID_{\gamma}(C_{3k+1})$ induced by these $Z_{i,j}^{(2)}$'s. We also let $Z_{i,j}^{(3)}$ be the $\gamma_i(C_{3k+1})$ -set that contains v_1 at position (i, j), and $S_k^{(3)}$ the subgraph of $ID_{\gamma}(C_{3k+1})$ induced by these $Z_{i,j}^{(3)}$'s. The subgraphs $S_k^{(1)}$, $S_k^{(2)}$ and $S_k^{(3)}$ of $ID_{\gamma}(C_{3k+1})$ are shown in Figure 6.

Since each $\gamma_i(C_{3k+1})$ -set cannot contain both v_{3k} and v_0 , the subgraphs $S_k^{(1)}$ and $S_k^{(2)}$ do not have any vertices in common. Similarly, $S_k^{(2)}$ and $S_k^{(3)}$ do not share any vertices. Next, we consider all $\gamma_i(C_{3k+1})$ -sets that are in both $S_k^{(1)}$ and $S_k^{(3)}$. These sets must contain v_{3k} and v_1 . Recall that

$$Z_{i,j}^{(1)} = \{v_{3k}\} \cup Y_{i,j}^{(1)}, \text{ where } Y_{i,j}^{(1)} \text{ is a } \gamma_i(P_{3k-2}(v_1 : v_{3k-2})) \text{-set, and} \\ Z_{s,t}^{(3)} = \{v_1\} \cup Y_{s,t}^{(3)}, \text{ where } Y_{s,t}^{(3)} \text{ is a } \gamma_i(P_{3k-2}(v_3 : v_{3k})) \text{-set.}$$

Then we consider the set $Y_{i,j}^{(1)}$ that contains v_1 and $Y_{s,t}^{(3)}$ that contains v_{3k} . By (p1), we have $Z_{1,j}^{(1)} = \{v_{3k}\} \cup Y_{1,j}^{(1)} = \{v_{3k}\} \cup \{v_1\} \cup X_j^{(1)}$, where $X_j^{(1)}$ is a $\gamma_i(P_{3k-4}(v_3:v_{3k-2}))$ -set for all $j \in \{1, 2, ..., k\}$, and only $X_1^{(1)}$ contains v_3 . By (p3), we have $Z_{s,t}^{(3)} = \{v_1\} \cup Y_{s,t}^{(3)} = \{v_1\} \cup \overline{X}_s^{(3)} \cup \{v_{3k}\}$, where $\overline{X}_s^{(3)}$ is a $\gamma_i(P_{3k-4}(v_3:v_{3k-2}))$ -set for all $s \in \{1, 2, ..., k\}$, and only $\overline{X}_1^{(3)}$ contains v_3 . Thus, $X_1^{(1)} = \overline{X}_1^{(3)}$. By Theorem 2, $X_1^{(1)}X_2^{(1)} \cdots X_k^{(1)} \cong ID_{\gamma}(P_{3k-4}(v_3:v_{3k-2})) \cong \overline{X}_1^{(3)}\overline{X}_2^{(3)} \cdots \overline{X}_k^{(3)}$. Hence $X_j^{(1)} = \overline{X}_j^{(3)}$ for all j. Thus, $Z_{1,j}^{(1)} = \{v_{3k}, v_1\} \cup X_j^{(1)} = \{v_1\} \cup \overline{X}_j^{(3)} \cup \{v_{3k}\} = Z_{j,k}^{(3)}$ for all $j \in \{1, 2, ..., k\}$. Furthermore, the other $\gamma_i(C_{3k+1})$ -sets in $S_k^{(1)}$ and ones in $S_k^{(3)}$ cannot contain both v_1 and v_{3k} , so they are mutually different.

Next, we consider all edges between the $\gamma_i(C_{3k+1})$ -sets in $S_k^{(1)}$ and ones in $S_k^{(3)}$. Recall that $Z_{1,j}^{(1)} = Z_{j,k}^{(3)}$ for all $j \in \{1, 2, ..., k\}$. By (*p*2), for all $i \neq 1$, the set $Y_{i,j}^{(1)}$ contains v_2 , so $Z_{i,j}^{(1)}$ contains v_{3k} and v_2 . By (*p*4), for all $t \neq k$, the set $Y_{s,t}^{(3)}$ contains v_{3k-1} , so $Z_{s,t}^{(3)}$ contains v_1 and v_{3k-1} . Hence those sets in $S_k^{(1)}$ and those sets in $S_k^{(3)}$ are non-adjacent.

Figure 6. The subgraphs $S_k^{(1)}$, $S_k^{(2)}$ and $S_k^{(3)}$ of $ID_{\gamma}(C_{3k+1})$

We then consider all edges between the $\gamma_i(C_{3k+1})$ -sets in $S_k^{(1)}$ and ones in $S_k^{(2)}$. Note that each $\gamma_i(C_{3k+1})$ -set in $S_k^{(1)}$ contains v_{3k} , and one in $S_k^{(2)}$ contains v_0 . Then they are adjacent if and only if they have k dominating vertices in common. Recall that

$$Z_{i,j}^{(1)} = \{v_{3k}\} \cup Y_{i,j}^{(1)}, \text{ where } Y_{i,j}^{(1)} \text{ is a } \gamma_i(P_{3k-2}(v_1 : v_{3k-2})) \text{-set, and} \\ Z_{s,t}^{(2)} = \{v_0\} \cup Y_{s,t}^{(2)}, \text{ where } Y_{s,t}^{(2)} \text{ is a } \gamma_i(P_{3k-2}(v_2 : v_{3k-1})) \text{-set.}$$

Then $Z_{i,j}^{(1)}$ and $Z_{s,t}^{(2)}$ are adjacent if and only if $Y_{i,j}^{(1)} = Y_{s,t}^{(2)}$. Since $Y_{i,j}^{(1)}$ is a $\gamma_i(P_{3k-2}(v_1 : v_{3k-2}))$ -set, it contains one of v_1 and v_2 , and one of v_{3k-3} and v_{3k-2} . Similarly, $Y_{s,t}^{(2)}$ contains one of v_2 and v_3 , and one of v_{3k-2} and v_{3k-1} . Thus, we only consider $Y_{i,j}^{(1)}$ and $Y_{s,t}^{(2)}$ that contain v_2 and v_{3k-2} . By the properties (p_2) and (p_3) , $Y_{i,j}^{(1)}$ contains v_2 if $i \neq 1$, and it contains v_{3k-2} if j = k. Then for $i \in \{2, 3, \ldots, k\}$, the set $Y_{i,k}^{(1)} = \overline{X}_i^{(1)} \cup \{v_{3k-2}\}$, where $\overline{X}_i^{(1)}$ is a $\gamma_i(P_{3k-4}(v_1 : v_{3k-4}))$ -set that contains v_2 . By (p_1) and (p_4) , $Y_{s,t}^{(2)}$ contains v_2 if s = 1, and it contains v_{3k-2} if $t \neq k$. Then for $t \in \{1, 2, \ldots, k-1\}$, the set $Y_{1,t}^{(2)} = \{v_2\} \cup X_t^{(2)}$, where $X_t^{(2)}$ is a $\gamma_i(P_{3k-4}(v_4 : v_{3k-1}))$ -set that contains v_{3k-2} . We can apply Observation 1 to $\overline{X}_i^{(1)}$ and $X_t^{(2)}$, so we have

for
$$i \in \{2, 3, ..., k\}$$
,
 $Y_{i,k}^{(1)} = \overline{X}_i^{(1)} \cup \{v_{3k-2}\}$, where $\overline{X}_i^{(1)}$ is a $\gamma_i(P_{3k-4}(v_1 : v_{3k-4}))$ -set
 $= (\{v_2\} \cup \overline{D}_i^{(1)}) \cup \{v_{3k-2}\}$, where $\overline{D}_i^{(1)}$ is a $\gamma_i(P_{3k-7}(v_4 : v_{3k-4}))$ -set, and
for $t \in \{1, 2, ..., k-1\}$,
 $Y_{1,t}^{(2)} = \{v_2\} \cup X_t^{(2)}$, where $X_t^{(2)}$ is a $\gamma_i(P_{3k-4}(v_4 : v_{3k-1}))$ -set
 $= \{v_2\} \cup (D_t^{(2)} \cup \{v_{3k-2}\})$, where $D_t^{(2)}$ is a $\gamma_i(P_{3k-7}(v_4 : v_{3k-4}))$ -set.

Then the set $Y_{i,k}^{(1)} = Y_{1,t}^{(2)}$ when $\overline{D}_i^{(1)} = D_t^{(2)}$. By Theorem 2, we get $\overline{D}_2^{(1)}\overline{D}_3^{(1)}\cdots \overline{D}_k^{(1)} \cong ID_{\gamma}(P_{3k-7}(v_4:v_{3k-4})) \cong D_1^{(2)}D_2^{(2)}\cdots D_{k-1}^{(2)}$. By (p3), the set $\overline{X}_k^{(1)} = \{v_2\} \cup \overline{D}_k^{(1)}$ contains v_{3k-4} , so $\overline{D}_k^{(1)}$ contains v_{3k-4} . Thus, $\overline{D}_2^{(1)}$ contains v_4 . Similarly, $D_1^{(2)}$ contains v_4 by (p1). By Lemma 1, there is only one $\gamma_i(P_{3k-7}(v_4:v_{3k-4}))$ -set containing v_4 , so $\overline{D}_2^{(1)} = D_1^{(2)}$. Hence $\overline{D}_i^{(1)} = D_{i-1}^{(2)}$ for all $i \in \{2, 3, \ldots, k\}$. Then $Y_{i,k}^{(1)} = \{v_2\} \cup \overline{D}_i^{(1)} \cup \{v_{3k-2}\} = \{v_2\} \cup D_{i-1}^{(2)} \cup \{v_{3k-2}\} = Y_{1,i-1}^{(2)}$, so $Z_{i,k}^{(1)}$ and $Z_{1,i-1}^{(2)}$ are adjacent in $ID_{\gamma}(C_{3k+1})$ for all $i \in \{2, 3, \ldots, k\}$.

Similarly, $Z_{i,k}^{(2)}$ and $Z_{1,i-1}^{(3)}$ are adjacent in $ID_{\gamma}(C_{3k+1})$ for all $i \in \{2, 3, ..., k\}$. This completes the proof.

Theorem 6. Let $k \ge 1$ be an integer. Then $ID_{\gamma}(C_{3k+2}) \cong C_{3k+2}$.

Proof. Let $C_{3k+2} = v_0v_1 \cdots v_{3k+1}v_0$ be a cycle with 3k+2 vertices. For each $i \in \{0, 1, \dots, 3k+1\}$, let $D_i = \{v_{3m+i+1} \pmod{3k+2} \mid 0 \le m \le k\}$. It is easy to check that D_i is a $\gamma_i(C_{3k+2})$ -set such that v_i is the only vertex dominated by two dominating vertices in D_i . For instance, the $\gamma_i(C_{3k+2})$ -sets D_0 and D_3 are shown in Figure 7.

Figure 7. The $\gamma_i(C_{3k+2})$ -sets D_0 and D_3 containing white vertices

We next prove that D_0 , D_1 , ..., D_{3k+1} are the only $\gamma_i(C_{3k+2})$ -sets. Let D be any $\gamma_i(C_{3k+2})$ -set. Then $|D| = \gamma_i(C_{3k+2}) = k+1$. Note that each dominating vertex dominates three vertices. Then these k+1 dominating vertices in D can dominate at most 3k+3. Since the cycle contains only 3k+2 vertices, there is a unique vertex v_i in C_{3k+2} dominated by two dominating vertices in D. Hence $D = D_i$.

Let $i \in \{0, 1, ..., 3k+1\}$. We consider all neighbours of D_i in $ID_{\gamma}(C_{3k+2})$. Note that v_{i-1} and v_{i+1} in D_i dominate v_i . Then we can only replace $v_{i-1(\text{mod } 3k+2)}$ by $v_{i-2(\text{mod } 3k+2)}$ or replace $v_{i+1(\text{mod } 3k+2)}$ by $v_{i+2(\text{mod } 3k+2)}$ from D_i to get the neighbours of D_i in $ID_{\gamma}(C_{3k+2})$. When we replace $v_{i+1(\text{mod } 3k+2)}$ by $v_{i+2(\text{mod } 3k+2)}$, the vertex $v_{i+3(\text{mod } 3k+2)}$ is dominated by two dominating vertices, so we get the neighbour $D_{i+3(\text{mod } 3k+2)}$. Similarly, replacing $v_{i-1(\text{mod } 3k+2)}$ by $v_{i-2(\text{mod } 3k+2)}$ gives the neighbour $D_{i-3(\text{mod } 3k+2)}$. Hence D_i is adjacent to only $D_{i+3(\text{mod } 3k+2)}$ and $D_{i-3(\text{mod } 3k+2)}$. Then $D_0D_3 \cdots D_{3k} D_1D_4 \cdots D_{3k+1} D_2D_5 \cdots D_{3k-1} D_0$ is a cycle with 3k+2 vertice in $ID_{\gamma}(C_{3k+2})$. This completes the proof.

ACKNOWLEDGEMENT

This research was supported by DPST Research Grant 004/2557.

REFERENCES

- 1. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, "Domination in Graphs: Advanced Topics", Marcel Dekker, New York, **1998**.
- 2. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, "Fundamentals of Domination in Graphs", Marcel Dekker, New York, **1998**.
- 3. S. A. Lakshmanan and A. Vijayakumar, "The gamma graph of a graph", *AKCE Int. J. Graphs Combin.*, **2010**, *7*, 53-59.
- 4. A. Bień, "Gamma graphs of some special classes of trees", *Ann. Math. Silesia.*, **2015**, *29*, 25-34.
- 5. N. Sridharan and K. Subramanian, "Trees and unicyclic graphs are γ-graphs", *J. Combin. Math. Combin. Comput.*, **2009**, *69*, 231-236.
- 6. N. Sridharan, S. Amutha and S. B. Rao, "Induced subgraphs of gamma graphs", *Discrete Math. Algor. Appl.*, **2013**, *5*, 1350012 (doi: 10.1142/S1793830913500122).
- G. Fricke, S. M. Hedetniemi, S. T. Hedetniemi and K. R. Hutson, "γ-Graphs of graphs", Discuss. Math. Graph Theory., 2011, 31, 517-531.
- 8. E. Connelly, K. R. Hutson and S. T. Hedetniemi, "A note on γ-graphs", *AKCE Int. J. Graphs Combin.*, **2011**, *8*, 23-31.
- 9. R. Haas and K. Seyffarth, "The *k*-dominating graph", *Graphs Combin.*, **2014**, *30*, 609-617.
- 10. A. Wongsriya and N. Trakultraipruk, "γ-Total dominating graphs of paths and cycles", *ScienceAsia*, **2017**, *43*, 326-333.
- 11. C. Berge, "The Theory of Graphs and Its Applications", Methuen, Dover, 1962.
- 12. O. Ore, "Theory of Graphs", American Mathematical Society, Providence, 1962.
- 13. R. B. Allan and R. Laskar, "On domination and independent domination numbers of a graph", *Discrete Math.*, **1978**, *23*, 73-76.
- 14. J. Topp and L. Volkmann, "On graphs with equal domination and independent domination numbers", *Discrete Math.*, **1991**, *96*, 75-80.
- 15. D. B. West, "Introduction to Graph Theory", Prentice Hall, Upper Saddle River, 2001.
- 16. W. Goddard and M. A. Henning, "Independent domination in graphs: A survey and recent results", *Discrete Math.*, **2013**, *313*, 839-854.
- © 2019 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for noncommercial purposes.