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Abstract: An independent dominating set D of a graph G = (V(G),E(G)) is a set of 
pairwise non-adjacent vertices of G such that every vertex of G not in D is adjacent to 
at least one vertex in D. The independent domination number of G, denoted by γi(G), is 
the minimum cardinality of an independent dominating set of G. An independent 
dominating set of cardinality γi(G) is called a γi(G)set. We introduce the 
γindependent dominating graph of G, denoted by ID(G), as the graph whose vertex 
set is the set of all γi(G)sets, and two γi(G)sets are adjacent in ID(G) if they differ by 
one vertex. In this paper we present the γindependent dominating graphs of all paths 
and all cycles. 

 
     Keywords: independent dominating graph, independent dominating set, independent 
     domination number 
 

INTRODUCTION  
 

Let G = (V(G),E(G)) be a graph with vertex set V(G) and edge set E(G). A set D  
V(G) is a dominating set if every vertex not in D is adjacent to some vertex in D. The 
domination number γ(G) is the minimum cardinality of a dominating set of G. A dominating 
set of cardinality γ(G) is called a γ(G)set. For detailed literature on domination, see Haynes 
et al. [1, 2]. 

In 2010 Lakshmanan and Vijayakumar [3] defined a gamma graph γ.G of G as the 
graph whose vertex set is the set of all γ(G)sets. Two γ(G)sets D1 and D2 are adjacent in 
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γ.G if D1 = D2\{u}{v} for some vertices u  D2 and v  D2. They discussed the relationship 
between the clique number and the independence number of a graph and its gamma graph. 
Later, Bień [4], Sridharan and Subramanian [5] and Sridharan et al. [6] studied and gave 
some properties of this gamma graph.  

In 2011 Fricke et al. [7] also defined a gamma graph G(γ) with slightly different 
meaning. The vertex set of G(γ) is the same as one of γ.G. Two γ(G)sets D1 and D2 are 
adjacent in G(γ) if D1 = D2\{u}{v} for some vertices u  D2 and v  D2, and they must be 
adjacent in G. They considered the structure of G(γ) for some graph G. Connelly et al. [8] 
gave a note on gamma graphs. 

Another class of graphs whose vertices correspond to dominating sets was introduced 
by Haas and Seyffarth in 2014 [9]. They defined a kdominating graph Dk(G) as the graph 
whose vertex set contains all dominating sets D of G such that |D| ≤ k. Two dominating sets 
are adjacent in Dk(G) if one can be obtained from the other by either adding or deleting a 
single vertex. They provided the conditions that ensure Dk(G) is connected.  

In 2017 Wongsriya and Trakultraipruk [10] introduced a γtotal dominating graph of 
a graph G, denoted by TDγ(G), as the graph whose vertices are γtotal dominating sets, and 
two γtotal dominating sets are adjacent in TDγ(G) if they differ by one vertex. They 
considered the γtotal dominating graphs of paths and cycles.  

An independent set of a graph G is a set of pairwise non-adjacent vertices of G. A set 
D  V(G) is an independent dominating set of G if it is both an independent set and a 
dominating set of G. The theory of independent domination was formalised by Berge [11] 
and Ore [12] in 1962. The independent domination number of G, denoted by γi(G), is the 
minimum cardinality of an independent dominating set of G. An independent dominating set 
of cardinality γi(G) is called a γi(G)set. Independent dominating sets and independent 
domination numbers of graphs are extensively studied in the literature; see for example Allan 
and Laskar [13] and Topp and Volkmann [14]. We introduce the γindependent dominating 
graph of G, denoted by ID(G), as the graph whose vertex set is the set of all γi(G)sets, and 
two γi(G)sets D1 and D2 are adjacent in ID(G) if D1 = D2\{u}{v} for some vertices u  D2 
and v  D2. For instance, the γ–independent dominating graphs of the path P5 = v1v2 ··· v5 
and the path P7 = v1v2 ··· v7 are shown in Figures 1 and 2 respectively. 
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In this paper we consider the γindependent dominating graphs of all paths and all 

cycles. For notations and terminology, we in general follow West [15]. 
 
RESULTS  
γIndependent Dominating Graphs of Paths 
 

In this section we consider the γindependent dominating graphs of paths. Let n be a 
positive integer. Let Pn = v1v2 ··· vn be a path with n vertices. The Cartesian product of 
graphs G and H, denoted by G□H, is the graph whose vertex set is V(G)  V(H), and two 
vertices (u1,v1) and (u2,v2) are adjacent in G□H if u1 = u2 and v1 is adjacent to v2 in H, or v1 = 
v2 and u1 is adjacent to u2 in G. The mn grid graph is the Cartesian product graph Pm□Pn, 
whose vertices correspond to the points in the plane with integer coordinates x and y. Let k be 
a positive integer. For i, j  {1, 2, … , k}, let vi,j be the vertex at position (i, j) of a kk grid 
graph. We define a stairgrid of size k, denoted by Sk, to be the subgraph of Pk□Pk induced by 
{vi,j | 1 ≤ i ≤ j ≤ k}. For instance, the stairgrids S1, S2, S3 and Sk are shown in Figure 3. 

Goddard and Henning [16] provided the independent domination numbers of paths 
and cycles, which are shown in the following proposition.  
Proposition 1.  Let n  3 be an integer. Then γi(Pn) = γi(Cn) = ቒ௡

ଷ
ቓ.  

 
Let n be a positive integer. We consider the γ–independent dominating graph of a path 

with n vertices in three cases. If n is divisible by three, then the γ–independent dominating 
graph of Pn contains only one vertex. If n = 3k+2 for some non-negative integer k, then the γ–
independent dominating graph of Pn is a path with k+2 vertices. Finally if n = 3k+1 for some 
non-negative integer k, then the γ–independent dominating graph of Pn is a stairgrid of size 
k+1. 

 
Theorem 1.  Let k  1 be an integer. Then IDγ(P3k)  K1.  
Proof.  Let P3k = v1v2 ··· v3k be a path with 3k vertices. Each dominating vertex in a path can 
dominate at most three vertices. By Proposition 1, γi(P3k) = k. Then each vertex in a 
γi(P3k)set must dominate exactly three different vertices. Thus, there is only one γi(P3k)set 
which is {v2, v5, … , v3k1}. This completes the proof. 
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Next, we give some properties of a γi(P3k+2)set to study the γ–independent 

dominating graph of a path with 3k+2 vertices. 
 
Lemma 1.  Let k  0 be an integer. Then there is only one γi(P3k+2)set that contains v3k+2 and 
the only one γi(P3k+2)set that contains v1. Moreover, both sets are of degree one in 
IDγ(P3k+2).   
Proof.  By Proposition 1, we get γi(P3k+2) = k+1. Since v3k+2 dominates v3k+2 and v3k+1, the 
other k dominating vertices in this γi(P3k+2)set must dominate v1, v2, … , v3k. We may 
consider these 3k vertices as a path with 3k vertices. Since γi(P3k) = k, these k dominating 
vertices form a γi(P3k)set. By Theorem 1, D = {v2, v5, … , v3k1} is the unique γi(P3k)set. 
Hence X = D  {v3k+2} is the only one γi(P3k+2)set containing v3k+2. Next, we show that the 
degree of X in IDγ(P3k+2) is one. Since each γi(P3k+2)set must contain either v3k+2 or v3k+1, the 
other γi(P3k+2)sets of X must contain v3k+1. Hence D  {v3k+1} is the only one neighbour of X 
in IDγ(P3k+2), so the degree of X is one. Similarly, there is only one γi(P3k+2)set that contains 
v1, and its degree in IDγ(P3k+2) is one. 
 
Theorem 2.  Let k  0 be an integer. Then IDγ(P3k+2)  Pk+2.  
Proof.  Let P3k+2 = v1v2 ··· v3k+2 be a path with 3k+2 vertices. We prove by induction on k. It is 
easy to see that there are two γi(P2)sets, which are {v1} and {v2}, so IDγ(P2)  P2. We 
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Figure 3.  The stairgrids S1, S2, S3, and Sk respectively 
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assume that IDγ(P3k+2)  Pk+2  D1D2 ··· Dk+2, where Di is a γi(P3k+2)set for all i. By Lemma 
1, without loss of generality, we may assume that Dk+2 contains v3k+2, and the other 
γi(P3k+2)sets contain v3k+1. We prove that IDγ(P3k+5)  Pk+3. Recall that P3k+5 = v1v2 ··· 
v3k+2v3k+3v3k+4v3k+5 and γi(P3k+5) = k+2. Clearly, each γi(P3k+5)set cannot contain all of v3k+3, 
v3k+4 and v3k+5. Next, we show that the γi(P3k+5)set must contain only one vertex from them. 
Suppose for a contradiction there is a γi(P3k+5)set that contains two vertices from them, so 
they are v3k+3 and v3k+5. Thus, these two vertices dominate v3k+2, v3k+3, v3k+4 and v3k+5. Hence 
the other k dominating vertices in this γi(P3k+5)set must dominate at least 3k+1 vertices. This 
contradicts the fact that k vertices can dominate at most 3k vertices on the path. Since each 
γi(P3k+5)set must dominate v3k+5, it contains one vertex from {v3k+4, v3k+5}. The other k+1 
dominating vertices must dominate v1, v2, … , v3k+2. Since γi(P3k+2) = k+1, these k+1 
dominating vertices form a γi(P3k+2)set. Hence each γi(P3k+5)set is a union of a γi(P3k+2)set 
and a vertex from {v3k+4, v3k+5}. By the induction hypothesis, there are k+2 γi(P3k+2)sets, 
which are D1, D2, … , Dk+2. We first consider all γi(P3k+5)sets that contain v3k+4. For each i  
{1, 2, … , k + 2}, let Xi = Di  {v3k+4}. Thus, these Xi ̓s are all γi(P3k+5)sets that contain 
v3k+4, and they form a path X1X2 ··· Xk+2 in IDγ(P3k+5). Note that Dk+2 is only γi(P3k+2)set 
containing v3k+2. Then the set Xk+3 = Dk+2  {v3k+5} is the unique γi(P3k+5)set that contains 
v3k+5, and it is adjacent to only Xk+2 in IDγ(P3k+5). This completes the proof. 
 
Observation 1.  Each γi(P3k+5)set can be written as a union of a γi(P3k+2)set and a vertex 
from {v3k+4, v3k+5}. 
 

In Theorem 3, we present the γindependent dominating graph of a path with 3k+1 
vertices, where k is a non-negative integer. To prove this, we use the following lemma and 
observation.   
 
Lemma 2.  Let k  1 be an integer. Then there are k+1 γi(P3k+1)sets that contain v3k+1, and 
they form a path in IDγ(P3k+1). Moreover, on this path the internal vertices are of degree three, 
one end-vertex is of degree one, and the other end-vertex is of degree two. The same results 
hold for the γi(P3k+1)sets that contain v1.  
Proof.  Note that γi(P3k+1) = k+1. If v3k+1 is in a γi(P3k+1)set, the other k dominating vertices 
must dominate v1, v2, … , v3k1. We may consider these 3k1 vertices as a path with 3k1 
vertices. Since γi(P3k1) = k, these k dominating vertices form a γi(P3k1)set. Thus, such a 
γi(P3k+1)set is a union of a γi(P3k1)set and {v3k+1}. By Theorem 2, IDγ(P3k1)  Pk+1  X1X2 
··· Xk+1, where Xi is a γi(P3k1)set for all i. For each i  {1, 2, … , k + 1}, let Yi = Xi  
{v3k+1}. Then Y1, Y2, … , Yk+1 are all γi(P3k+1)sets that contain v3k+1, and they form a path 
Y1Y2 ··· Yk+1 in IDγ(P3k+1). Note that in IDγ(P3k+1), the vertices Y1 and Yk+1 have the only 
neighbour containing v3k+1, and the internal vertices Y2, Y3, … , Yk have two neighbours 
containing v3k+1. Since each γi(P3k+1)set contains either v3k+1 or v3k, the other neighbours of 
Yi = Xi  {v3k+1} must contain v3k. By Lemma 1, there is only one γi(P3k1)set that contains 
v3k1. Assume that Xk+1 contains v3k1, so X1, X2, … , Xk contain v3k2. Hence Yk+1 = X k+1  
{v3k+1} has no neighbour containing v3k, and it has degree one in IDγ(P3k+1). Furthermore, for 
each i  {1, 2, … , k}, the set Xi  {v3k} is the only neighbour of Yi containing v3k. Then Y1 
has degree two and Y2, Y3, … , Yk are of degree three in IDγ(P3k+1).  
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Observation 2.  Each γi(P3k+1)set that contains v3k+1 can be written as a union of a 
γi(P3k1)set and {v3k+1}. 
 
Theorem 3.  Let k  0 be an integer. Then IDγ(P3k+1)  Sk+1.  
Proof.  Let P3k+1 = v1v2 ··· v3k+1 be a path with 3k+1 vertices. We prove by induction on k. 
There is only one γi(P1)set which is {v1}, so IDγ(P1)  P1  S1. Since there are three 
γi(P4)sets which are {v1,v3}, {v1,v4} and {v2,v4}, IDγ(P4)  P3  S2. Let k  1. We assume 
that IDγ(P3k+1)  Sk+1. For 1 ≤ i ≤ j ≤ k+1, let Yi,j be the γi(P3k+1)set at position (i, j) of Sk+1 as 
shown in Figure 4.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We see that the vertices in the first row and ones in the last column of Sk+1 form the 

paths with k+1 vertices. By Lemma 2, without loss of generality, we may assume that the 
vertices in the last column of Sk+1 are the γi(P3k+1)sets that contain v3k+1. By Observation 2, 
for each i  {1, 2, … , k+1}, the set Yi,k+1 = Xi  {v3k+1}, where Xi is a γi(P3k1)set. 
Furthermore, the vertices in the first row of Sk+1 are the γi(P3k+1)sets that contain v1. Since 
Y1,k+1 = X1  {v3k+1}, the set X1 contains v1. By Lemma 1, the set Xk+1 contains v3k1. 

We prove that IDγ(P3k+4)  Sk+2, where P3k+4 = v1v2 ··· v3k+1v3k+2v3k+3v3k+4. Note that 
γi(P3k+4) = k+2, and each γi(P3k+4)set contains exactly one of v3k+3 and v3k+4. We first 
consider all γi(P3k+4)sets that contain v3k+3. Since v3k+3 dominates v3k+2, v3k+3 and v3k+4, the 
other k+1 dominating vertices in this γi(P3k+4)set must dominate v1, v2, … , v3k+1. Since 
γi(P3k+1) = k+1, these k+1 dominating vertices form a γi(P3k+1)set. Then such a γi(P3k+4)set 
is a union of a γi(P3k+1)set and {v3k+3}. By the induction hypothesis, all γi(P3k+1)sets form a 
stairgrid of size k+1. For 1 ≤ i ≤ j ≤ k+1, let Y′i,j = Yi,j  {v3k+3}. Then these Y′i,j ̓s are all 
γi(P3k+4)sets that contain v3k+3, and they form the stairgrid having the same size.  

Next, we consider all γi(P3k+4)sets that contain v3k+4. By Lemma 2, there are k+2 
γi(P3k+4)sets that contain v3k+4, and they form a path in IDγ(P3k+4). Recall that in the last 
column of IDγ(P3k+1), for each i  {1, 2, … , k+1}, the set Yi,k+1  is a γi(P3k+1)set that 
contains v3k+1. We let Y′i,k+2 = Yi,k+1  {v3k+4} for all i. Then we have k+1 γi(P3k+4)sets 

Y1,k+1    =  X1  {v3k+1} 

Y2,k+1    =  X2  {v3k+1} 

Y3,k+1    =  X3  {v3k+1} 

Yk,k+1    =  Xk  {v3k+1} 

Yk+1,k+1 =  Xk+1  {v3k+1} 

Y1,k     Y1,3     Y1,2     Y1,1     …

⁝  

…

…
⁝  ⁝  

Figure 4. The γindependent dominating graph of P3k+1 
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containing v3k+4, and these sets form a path Y′1,k+2 Y′2,k+2 ··· Y′k+1,k+2. Furthermore, for each i  
{1, 2, … , k + 1}, the set Y′i,k+2 is adjacent to Y′i,k+1  in IDγ(P3k+4). Next, we construct the 
remaining γi(P3k+4)set that contains v3k+4. Recall that in IDγ(P3k+1), Yk+1,k+1 = Xk+1  {v3k+1}, 
where Xk+1 is the unique γi(P3k1)set that contains v3k1. Then the set Y′k+1,k+2 = Yk+1,k+1  
{v3k+4} = Xk+1  {v3k+1}  {v3k+4} contains v3k1, v3k+1 and v3k+4. Let Y′k+2,k+2 = Xk+1   {v3k+2} 
 {v3k+4}, so it is another γi(P3k+4)set that contains v3k+4 and it is adjacent to Y′k+1,k+2. Since 
each γi(P3k+4)set contains either v3k+3 or v3k+4, the set Y′k+2,k+2 = Xk+1  {v3k+2}  {v3k+4} has 
no neighbours that contain v3k+3. This completes the proof. 
 
γIndependent Dominating Graphs of Cycles  

In this section we consider the γindependent dominating graphs of cycles. Let k be a 
positive integer. For i , j  {1, 2, … , 2k+1}, let vi,j be the vertex at position (i, j) of 
P2k+1□P2k+1. We define a twisting stair of size k, denoted by Tk, to be the graph with the 
following three properties. 
   (i) The vertex set V(Tk) is the set of all vertices vi,j in P2k+1□P2k+1 such that 0 ≤ j  i ≤ k1. 
   (ii) The edge set E(Tk) contains all edges in P2k+1□P2k+1 that have both end points in V(Tk). 
   (iii) For all i  {1, 2, … , k}, the vertices v1,i and vi+k+1,2k+1 are the same. 
For instance, the twisting stairs T1, T2 and T4 are shown in Figure 5. 

For an integer n  3, we let Cn = v0v1 ··· vn1v0 be a cycle with n vertices. It is easy to 
see that there are three γi(C3)sets, which are {v0}, {v1} and {v2}, so IDγ(C3)  C3. We next 
consider the γindependent dominating graphs of cycles with n  4 vertices in three cases. If 
n is divisible by three, then the γindependent dominating graph of Cn contains only three 
isolated vertices. If n = 3k+1 for some positive integer k, then the γindependent dominating 
graph of Cn is a twisting stair of size k. Finally if  n = 3k+2 for some positive integer k, then 
the γindependent dominating graph of Cn is a cycle with 3k+2 vertices. 
 
Theorem 4.  Let k  2 be an integer. Then IDγ(C3k)  3K1.  
Proof.  Let C3k = v0v1 ··· v3k1v0 be a cycle with 3k vertices. Note that γi(C3k) = k. Then each 
dominating vertex must dominate exactly three different vertices of the cycle. For each i  
{0, 1, 2}, let Di = {v3m+i  | 0 ≤ m ≤ k1}. It is clear that they are the only γi(C3k)sets. Since 
they are pairwise disjoint, IDγ(C3k)  3K1.   

Before we prove Theorem 5, we provide some notation and some properties that we 
use in the proof. For a positive integer n and a non-negative integer i, we define Pn(vi : vi+n1) 
to be the path vivi+1 ··· vi+n1, and the path Pn(v1 : vn) is always denoted by Pn.  

Let k  3 be a positive integer. By Theorem 3, we have IDγ(P3k2)  Sk. Let Yi,j be the 
γi(P3k2(va : vb))set at position (i, j) in Sk, where a and b = a + 3k3 are non-negative 
integers. By Lemma 2, without loss of generality, we may assume that all γi(P3k2(va : 
vb))sets in the first row of this Sk contain va and all γi(P3k2(va : vb))sets in the last column 
contain vb. Furthermore, we can apply Observation 2 to derive Y1,j = {va}  Xj, where Xj is a 
γi(P3k4(va+2 : vb))set and Yi,k  = തܺ௜  {vb}, where തܺ௜ is a γi(P3k4(va : vb2))set for each i, j  
{1, 2, … , k}. Since the set Y1,k is both in the first row and the last column of Sk, we have Y1,k  

= {va}  Xk = തܺଵ  {vb}. Hence Xk must contain vb, and തܺଵ must contain va. By Lemma 1, 
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only Xk contains vb and only X1 contains va+2. Similarly, only തܺଵ contains va and only തܺ௞  
contains vb2. To summarise, we have the following properties: 

(p1)  for each  j  {1, 2, … , k}, the set Y1,j = {va}  Xj, where Xj is a γi(P3k4(va+2 : 
vb))set such that only X1 contains va+2 and only Xk contains vb; 

(p2)  for all i ≠ 1, the set Yi,j contains va+1; 
(p3)  for each i  {1, 2, … , k}, the set Yi,k  = തܺ௜  {vb}, where തܺ௜ is a γi(P3k4(va : 

vb2))set such that only തܺଵ contains va and only തܺ௞  contains vb2; and 
(p4)  for all  j ≠ k, the set Yi,j contains vb1. 

 

                    
 
 
 

T1    2K1  :  

v1,1  

v2,2  

v3,3  =  v1,1 

v2,2  

v3,3  

v4,4  

v5,5 =  v1,2 

v4,5 =  v1,1 

T2    C7  :  

v1,1  v1,2  

v2,3  

v3,4  

T4  :  

v1,1  v1,2  v1,3  v1,4  

v7,9 =  v1,2 

v6,9 =  v1,1 

v9,9 =  v1,4 

v8,9 =  v1,3 

Figure 5.  The twisting stairs T1, T2 and T4 
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Theorem 5.  Let k  1 be an integer. Then IDγ(C3k+1)  Tk.  
Proof.  Let C3k+1 = v0v1 ··· v3kv0 be a cycle with 3k+1 vertices. For k = 1, there are two 
γi(C4)sets, which are {v1,v3} and {v2,v4}, so IDγ(C4)  2K1  T1.   For k = 2, there are seven 
γi(C7)sets, which are {v1,v3,v5}, {v1,v3,v6}, {v1,v4,v6}, {v2,v4,v6}, {v2,v4,v7}, {v2,v5,v7} and 
{v3,v5,v7}, so IDγ(C7)  C7  T2. Let k  3. Since each γi(C3k+1)set has to dominate the vertex 
v0, it contains either v3k, v0 or v1. First, we consider all γi(C3k+1)sets that contain v3k. Note 
that γi(C3k+1) = k+1. If v3k is in a γi(C3k+1)set, the other k dominating vertices in this 
γi(C3k+1)set must dominate v1, v2, … , v3k2. Since γi(P3k2) = k, these k dominating vertices 
form a γi(P3k2)set. Thus, such a γi(C3k+1)set is a union of a γi(P3k2)set and {v3k}. By 
Theorem 3, IDγ(P3k2)  Sk. For all i, j, let Yi,j be the γi(P3k2)set at position (i, j) in Sk, and 
ܼ௜,௝

(ଵ) = ௜ܻ,௝  {v3k}. Then ܼ௜,௝
(ଵ) ̓s are all γi(C3k+1)sets that contain v3k, and they form a stairgrid 

of size k in IDγ(C3k+1). Let ܵ௞
(ଵ)be the subgraph of IDγ(C3k+1) induced by these ܼ௜,௝

(ଵ) ̓s. 

Similarly, all γi(C3k+1)sets that contain v0 form a stairgrid of size k. Let ܼ௜,௝
(ଶ) be the 

γi(C3k+1)set that contains v0 at position (i, j), and ܵ௞
(ଶ)the subgraph of IDγ(C3k+1) induced by 

these ܼ௜,௝
(ଶ) ̓s. We also let ܼ௜,௝

(ଷ) be the γi(C3k+1)set that contains v1 at position (i, j), and ܵ௞
(ଷ)the 

subgraph of IDγ(C3k+1) induced by these ܼ௜,௝
(ଷ) ̓s. The subgraphs ܵ௞

(ଵ), ܵ௞
(ଶ) and ܵ௞

(ଷ) of 
IDγ(C3k+1) are shown in Figure 6. 

Since each γi(C3k+1)set cannot contain both v3k and v0, the subgraphs ܵ௞
(ଵ)and ܵ௞

(ଶ)do 

not have any vertices in common. Similarly, ܵ௞
(ଶ)and ܵ௞

(ଷ)do not share any vertices. Next, we 

consider all γi(C3k+1)sets that are in both ܵ௞
(ଵ)and ܵ௞

(ଷ). These sets must contain v3k and v1. 
Recall that  

ܼ௜,௝
(ଵ) = {v3k}  ௜ܻ,௝

(ଵ), where ௜ܻ,௝
(ଵ) is a γi(P3k2(v1 : v3k2))set, and 

ܼ௦,௧
(ଷ) = {v1}  ௦ܻ,௧

(ଷ), where ௦ܻ,௧
(ଷ) is a γi(P3k2(v3 : v3k))set.  

Then we consider the set ௜ܻ,௝
(ଵ) that contains v1 and ௦ܻ,௧

(ଷ) that contains v3k. By (p1), we have 
ܼଵ,௝

(ଵ) = {v3k}  ଵܻ,௝
(ଵ) = {v3k}  {v1}  ௝ܺ

(ଵ), where ௝ܺ
(ଵ) is a γi(P3k4(v3: v3k2))set for all j{1, 

2, … , k}, and only ଵܺ
(ଵ) contains v3. By (p3), we have ܼ௦,௧

(ଷ) = {v1} ௦ܻ,௧
(ଷ) = {v1} തܺ௦

(ଷ) 
{v3k}, where തܺ௦

(ଷ) is a γi(P3k4(v3 : v3k2))set for all s  {1,2, … ,k}, and only തܺ
ଵ
(ଷ)contains v3. 

Thus, ଵܺ
(ଵ) = തܺ

ଵ
(ଷ). By Theorem 2, ଵܺ

(ଵ)ܺଶ
(ଵ) ··· ܺ௞

(ଵ)  IDγ(P3k4(v3 : v3k2))  തܺ
ଵ
(ଷ) തܺ

ଶ
(ଷ) ··· തܺ

௞
(ଷ) . 

Hence ௝ܺ
(ଵ) = തܺ

௝
(ଷ) for all j. Thus, ܼଵ,௝

(ଵ) = {v3k , v1}  ௝ܺ
(ଵ) = {v1}  തܺ

௝
(ଷ)  {v3k} = ௝ܼ,௞

(ଷ) for all  
j  {1, 2, … , k}. Furthermore, the other γi(C3k+1)sets in ܵ௞

(ଵ)and ones in ܵ௞
(ଷ)cannot contain 

both v1 and v3k, so they are mutually different. 
Next, we consider all edges between the γi(C3k+1)sets in ܵ௞

(ଵ)and ones in ܵ௞
(ଷ). Recall 

that ܼଵ,௝
(ଵ) = ௝ܼ,௞

(ଷ) for all j  {1, 2, … , k}. By (p2), for all i ≠ 1, the set ௜ܻ,௝
(ଵ) contains v2, so ܼ௜,௝

(ଵ) 
contains v3k and v2. By (p4), for all t ≠ k, the set ௦ܻ,௧

(ଷ) contains v3k1, so ܼ௦,௧
(ଷ)contains v1 and 

v3k1. Hence those sets in ܵ௞
(ଵ)and those sets in ܵ௞

(ଷ)are non-adjacent. 
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We then consider all edges between the γi(C3k+1)sets in ܵ௞

(ଵ)and ones in ܵ௞
(ଶ). Note 

that each γi(C3k+1)set in ܵ௞
(ଵ)contains v3k, and one in ܵ௞

(ଶ)contains v0. Then they are adjacent 
if and only if they have k dominating vertices in common. Recall that  

ܼ௜,௝
(ଵ) = {v3k}  ௜ܻ,௝

(ଵ), where ௜ܻ,௝
(ଵ) is a γi(P3k2(v1 : v3k2))set, and 

ܼ௦,௧
(ଶ) = {v0}  ௦ܻ,௧

(ଶ), where ௦ܻ,௧
(ଶ) is a γi(P3k2(v2 : v3k1))set. 

 
Then ܼ௜,௝

(ଵ) and ܼ௦,௧
(ଶ) are adjacent if and only if ௜ܻ,௝

(ଵ) = ௦ܻ,௧
(ଶ). Since ௜ܻ,௝

(ଵ) is a γi(P3k2(v1 : 
v3k2))set, it contains one of v1 and v2, and one of v3k3 and v3k2. Similarly, ௦ܻ,௧

(ଶ) contains one 
of v2 and v3, and one of v3k2 and v3k1. Thus, we only consider ௜ܻ,௝

(ଵ) and ௦ܻ,௧
(ଶ) that contain v2 

and v3k2. By the properties (p2) and (p3), ௜ܻ,௝
(ଵ) contains v2 if i ≠ 1, and it contains v3k2 if j = k. 

Then for i  {2, 3, … , k}, the set ௜ܻ,௞
(ଵ) = തܺ

௜
(ଵ)  {v3k2}, where തܺ

௜
(ଵ) is a γi(P3k4(v1 : 

v3k4))set that contains v2. By (p1) and (p4), ௦ܻ,௧
(ଶ) contains v2 if s = 1, and it contains v3k2 if t 

≠ k. Then for t  {1, 2, … , k1}, the set ଵܻ,௧
(ଶ) = {v2}  ܺ௧

(ଶ), where ܺ௧
(ଶ) is a γi(P3k4(v4 : 

v3k1))set that contains v3k2. We can apply Observation 1 to തܺ
௜
(ଵ) and ܺ௧

(ଶ) , so we have 
 

for i  {2, 3, … , k}, 
   ௜ܻ,௞

(ଵ)  = തܺ
௜
(ଵ)  {v3k2}, where തܺ

௜
(ଵ) is a γi(P3k4(v1 : v3k4))set 

          = {v2} ܦഥ௜
(ଵ)  {v3k2}, where ܦഥ௜

(ଵ) is a γi(P3k7(v4 : v3k4))set, and 
for t  {1, 2, … , k1}, 

   ଵܻ,௧
(ଶ)  = {v2}  ܺ௧

(ଶ), where ܺ௧
(ଶ) is a γi(P3k4(v4 : v3k1))set 

        = {v2}  ܦ௧
(ଶ)  {v3k2}, where ܦ௧

(ଶ) is a γi(P3k7(v4 : v3k4))set. 
 

ܼଵ,ଵ
(ଷ) ܼଵ,ଶ

(ଷ) ܼଵ,௞
(ଷ) ܼଵ,௞ିଵ

(ଷ)  

ܼଶ,௞
(ଷ) 

ܼ௞,௞
(ଷ) 

ܼ௞ିଵ,௞
(ଷ)  

࢑ࡿ
(૚)   :  

࢑ࡿ
(૛)   :  

࢑ࡿ
(૜)   :  

ܼଵ,ଵ
(ଵ) ܼଵ,ଶ

(ଵ) ܼଵ,௞
(ଵ) ܼଵ,௞ିଵ

(ଵ)  

ܼଶ,௞
(ଵ) 

ܼ௞,௞
(ଵ) 

ܼ௞ିଵ,௞
(ଵ)  

ܼଵ,ଵ
(ଶ) 

ܼଵ,ଶ
(ଶ) 

ܼଵ,௞
(ଶ) 

ܼଵ,௞ିଵ
(ଶ)  

ܼଶ,௞
(ଶ) ܼ௞,௞

(ଶ) ܼ௞ିଵ,௞
(ଶ)  

…  

⁝  

…  

…  

…  

…  

…  

⁝  ⁝  ⁝  

⁝  ⁝  

Figure 6.  The subgraphs ܵ௞
(ଵ), ܵ௞

(ଶ) and ܵ௞
(ଷ) of IDγ(C3k+1) 
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Then the set ௜ܻ,௞
(ଵ) = ଵܻ,௧

(ଶ) when ܦഥ௜
(ଵ) = ܦ௧

(ଶ). By Theorem 2, we get ܦഥଶ
(ଵ)ܦഥଷ

(ଵ)··· ܦഥ௞
(ଵ)  

IDγ(P3k7(v4 : v3k4))  ܦଵ
(ଶ)ܦଶ

(ଶ)
௞ିଵܦ ··· 

(ଶ) . By (p3), the set തܺ
௞
(ଵ) = {v2} ܦഥ௞

(ଵ) contains v3k4, so 
ഥ௞ܦ

(ଵ)contains v3k4. Thus, ܦഥଶ
(ଵ)contains v4. Similarly, ܦଵ

(ଶ) contains v4 by (p1). By Lemma 1, 
there is only one γi(P3k7(v4 : v3k4))set containing v4, so ܦഥଶ

(ଵ) = ܦଵ
(ଶ). Hence ܦഥ௜

(ଵ) = ܦ௜ିଵ
(ଶ)  for 

all i  {2, 3, … , k}. Then ௜ܻ,௞
(ଵ) = {v2}  ܦഥ௜

(ଵ)  {v3k2} = {v2}  ܦ௜ିଵ
(ଶ)   {v3k2} = ଵܻ,௜ିଵ

(ଶ) , so 
ܼ௜,௞

(ଵ) and ܼଵ,௜ିଵ
(ଶ)  are adjacent in IDγ(C3k+1) for all i  {2, 3, … , k}.  

Similarly, ܼ௜,௞
(ଶ) and ܼଵ,௜ିଵ

(ଷ)  are adjacent in IDγ(C3k+1) for all i  {2, 3, … , k}. This 
completes the proof.  
Theorem 6. Let k  1 be an integer. Then IDγ(C3k+2)  C3k+2.  
Proof.  Let C3k+2 = v0v1 ··· v3k+1v0 be a cycle with 3k+2 vertices. For each i  {0, 1, … , 
3k+1}, let Di = {v3m+i+1 (mod 3k+2) | 0 ≤ m ≤ k}. It is easy to check that Di is a γi(C3k+2)set such 
that vi is the only vertex dominated by two dominating vertices in Di. For instance, the 
γi(C3k+2)sets D0 and D3 are shown in Figure 7. 

 
We next prove that D0, D1, … , D3k+1 are the only γi(C3k+2)sets. Let D be any 

γi(C3k+2)set. Then |D| = γi(C3k+2) = k+1. Note that each dominating vertex dominates three 
vertices. Then these k+1 dominating vertices in D can dominate at most 3k+3. Since the cycle 
contains only 3k+2 vertices, there is a unique vertex vi in C3k+2 dominated by two dominating 
vertices in D. Hence D = Di. 

Let i  {0, 1, … , 3k+1}. We consider all neighbours of Di in IDγ(C3k+2). Note that vi1 

and vi+1 in Di dominate vi. Then we can only replace vi1(mod 3k+2) by vi2(mod 3k+2) or replace 
vi+1(mod 3k+2)  by vi+2(mod 3k+2) from Di to get the neighbours of Di in IDγ(C3k+2). When we 
replace vi+1(mod 3k+2) by vi+2(mod 3k+2), the vertex vi+3(mod 3k+2) is dominated by two dominating 
vertices, so we get the neighbour Di+3(mod 3k+2). Similarly, replacing vi1(mod 3k+2)  by vi2(mod 3k+2) 
gives the neighbour Di3(mod 3k+2). Hence Di is adjacent to only Di+3(mod 3k+2) and Di3(mod 3k+2). 
Then D0D3 ··· D3k D1D4 ··· D3k+1 D2D5 ··· D3k1 D0 is a cycle with 3k+2 vertice in IDγ(C3k+2). 
This completes the proof. 

 

v0 

D0 

v1 

v2 

v3 

v4 

v5 

v7 
v6 v8 

v3k 

v3k+1 
v0 

D3 

v1 

v2 

v3 

v4 

v5 

v7 
v6 v8 

v3k 

v3k+1 

Figure 7.  The γi(C3k+2)sets D0 and D3 containing white vertices 
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