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Abstract: We first give a new and more general definition on absolute matrix
summability of infinite series. Then we generalise a known theorem on

W , pn‘k summability factors of infinite series with this summability method

by using an almost increasing sequence. This new theorem also includes several
new results.
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INTRODUCTION

Summability theory plays an important role in analysis, applied mathematics and
engineering sciences. The aim of this theory is to bring a value to the indefinite divergent
series. Various summability methods have been introduced by different researchers to find
this value. Some of these methods are given by Cesaro [1], Abel [2], Norlund [3], Riesz [4],
matrix summability [5], etc.

A significant rise of the summability began in the latter part of the 19" century. In
1890, Cesaro published a paper on the multiplication of series [1]. Das gave the definition of
absolute summability [6]. Then Kishore and Hotta defined the summability factor [7]. The

definition of |A| , summability was given by Tanovi¢-Miller [8]. Later Bor defined W D

k

summability of an infinite series [9, 10]. The definition of

A4,p,;0

summability of an infinite series was defined by Ozarslan and Ogdiik [11]. In this paper a

k

and W, D,;0 .




258
Maejo Int. J. Sci. Technol. 2019, 13(03),257-265

theorem on absolute matrix summability is obtained using a more general summability
method.

Now we give some definitions related to the summability which are used in this
article.
Definition 1 [12]. A positive sequence (rn) is said to be almost increasing, if there exist a

positive increasing sequence (dn) and two positive constants K and L such that

Kd <r,<Ld, . Obviously every increasing sequence is almost increasing sequence but the
converse need not be true as can be seen from the example b, =ne""" .
Definition 2 [13]. Let Zan be a given infinite series with the partial sums (s,) . Let (p,) be

a sequence of positive numbers such that

P=Yp o as n—>w, (P,=p, =0, i21). (1

v=0

The sequence-to-sequence transformation
1 n
n BI ;pv 14 ( )
defines the sequence (w,) of the (]V , pn) means of the sequence (s,), generated by the
sequence of coefficients (p,).

Definition 3 [9]. The series Zan is said to be summable W,pn L k>1,if
k-1
(P
Z( ] |w, —w,,[ <o0. (3)
n=l1 pn

Definition 4 [14]. The series Zan is said to be summable W, p,,B;o

is a real number if
B(Sk+k-1)
© B, k
2 W, =W,
n=l pn

i k>1,5>0 and B

<. (4)

Definition S [15]. Let 4=(a, ) be a normal matrix, i.e. a lower triangular matrix of non-
zero diagonal entries. Then 4 defines the sequence-to-sequence transformation, mapping the
sequence s =(s,) to As=(4,(s)), where

An(s)zzaw s,, n=0,1,.. ®))]
v=0
The series Zan is said to be summable (4, p, L k>1if
w P k-1
Z( ] [A4,(5)[ <o0, (6)
n=l1 pn
where
AA(s)=A4,(s)-A4,_(s). (7)

Definition 6 [16]. The series Zan 1s summable
[ 1s a real number if

A,p,,B;6

L k>1,62>20 and
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Y B(Sk+k-1) .
Z(P"] |A4,(s) <oo. (8)

n=l1 n

If we take =1, then |4,p,,B;0
Also, if we take f=1 and =0, then

, summability reduces to

4,p,,B;6
summability. Furthermore, if we take =1, then W, p,,B;o

4,p,;9|,

, summability reduces to

summability [11].
A,p,

. summability reduces to

k

W, ;0 . summability [6]. Also, if we take S =1 and 6 =0, then W, p,,B;o

. summability

reduces to W, pn‘k summability.

KNOWN RESULT

Bor [17] has proved the following theorem for W, pn‘k summability factors of infinite
series.

Theorem 1. Let (p,) be a sequence of positive numbers such that

P =0O(mp,) as n—>o. 9)
If (X,) is a positive monotonic non-decreasing sequence such that

1,] X, =0() as m—> o, (10)

YonX,|A%[=00) as m—>, (11)

n=l1

Z%tnk:0()(m) as m-— o, (12)

n=l1 n

, k>1.

1 3 , . —
—Zvav , then the series Zanln is summable ‘N sl

where ¢, =
n+195

MAIN RESULT

Much work on absolute matrix summability of infinite series has been done [18-29].

The aim of this paper is to generalise Theorem 1 to (4, p,,[;6

, summability. We first

introduce some further notations.
Given a normal matrix A =(a,, ), we associate two lower semi-matrices 4=(ga,,) and

A=( a,) as follows:

Envzz%, n,v=0,1,... (13)

and

Ay =0yy =0y, 4,,=a,, —a n=1,2,.. (14)

ny n—l,v

It may be noted that A and A are the well-known matrices of series-to-sequence and series-
to-series transformations respectively. Then we have

An (S):ianvsv :ianvav (15)
v=0 v=0

and
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AA (s)=) a,a,. (16)

Now we shall prove the following theorem.

Theorem 2. Let A=(a,, ) be apositive normal matrix such that

a,=1, n=0,1,.., (17)

a,_,za,, for n>2v+l, (18)
14

a =0 2|, 19

oft »

a,..|=0(v|A,@,)). (20)

Let (X,) be an almost increasing sequence. If conditions (10)-(11) of Theorem 1 and

w( p B(Sk+k-1)~k
Z( ] t]'=0(X,) as m—> o, 1)
n=l1 pn
B(Sk+k—1)—k+1 B(Sk+k—1)—k
= (p A P
Z[ ] |A,(,)|=0 ( ] (22)
n=v+1 pn pv

are satisfied, then the series Zanln is summable

-POk+k-1)+k>0.

A,p,sB;6] , k=1, 820 and

We need the following lemma for the proof of Theorem 2.

Lemma 1 [30]. Under the conditions on (X,) and (A,) which are taken in the statement of
our theorem, we have the following:

nX,|A4|=0(1) as n—>o, (23)
> X, |A%,| <. (24)
n=l1

PROOF OF THOREM 2

Let (/,) denote A-transform of the series Z a,A, . Then we have by (15) and (16)
_ n . n a" A
Al = Zanvavlv = zuvav.
v=I v=1 v
Applying Abel's transformation to this sum, we obtain the following.

Zln = 3 Av(&m)l‘)jirar + &nnﬂ’n il"ar
r=1 r=l1

\% n

=

=3'a, (Mj(wl)zv R
A% n
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n+1 - v+1 Lv+1 -
= ann ﬂ“n tn Z v v tv + z an v+l A/lvt z n v+l v+l v
n v=1 V

v=1

= 1,,,1 +1n,2 +1n’3 +In’4 .

k k

Since

i ‘k 34"( Is| +|1,, k), to complete the proof of
Theorem 2 it is sufficient to show that
B(Sk+k~1)
(P
z( ] 1| <w, for r=1234. (25)
n=1 pn

First, by using Abel's transformation, we have

B(Sk+k=1) B(Sk+k-1)
Z( ] "=0<1>Z( ] .,
" V4

=1\ P n

B8 k+k-1) k
_omS| Lo Py
oS3 (%)
" B8 k+k=1)—k
g2

el w( p B(S k+k-1)—k
=0()) A4, (p—] t
1 v

v
n=1 V=

k k

I 1

n,

A

n

t

n

k-1 k

A

n

A

n

t

n

k

A

n

t

n

k

t

n

B(S k+k—1)—k
Pn ]
=1 p,,

"+0(1)|z,m|i(

=0() as m—owo

by virtue of the hypotheses of Theorem 2 and Lemma 1. Now applying Holder’s inequality

s 1 I 1 .
with indices & and k', where k >1 and —+?:1 asin /, ,, we have

wi( p B(Sk+k-1) wi( p B@kek=1) , ) k
O O
-l k-1
k]x(ZAV(&n»]
v=l
el B(Sk+k-1)
=0()) |~ am( ktvk].
n=2 v=l

m+1

p B(S k+k-1)
:0(1)2 n (Z|A (a,)||A

Now using the fact that a,, = 0[ P ] by (19), we have

n
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- B(Sk+k-1) -
Z[P" ] 0(1)2(

=2 pn

]ﬂ(6k+k—l)—k+l .

A @A ]

v=I

B (S k+k—1)—k+1
p P m+l B,
tV
n=v+l p,,

=1
w( p B(Sk+k-1)—k
20(1)2( ] AL AL
v=l pv
B(Sk+k-1)—k
n(p
=0(1>Z{pVJ Al
v=l v

=0(1) as m—>o

by virtue of the hypotheses of Theorem 2 and Lemma 1.
Now using Holder's inequality, we have

] p LS k+k-1) ma] B(Sk+k-1) ne k

Z( ] i :0(1)2( ] ( é,,, ]
n=2 pn n=2 v=1

m+l B(&k+k=1) n—1 k

—0@2( T v]

. B(Sk+k—1) .
w3 £ (5 Al
( NINCS ]

- B(S k+k-1) -
—0(1>Z( ] ai‘;‘( v
v=I

n3

)

By using (19), we have
nil( p B(Sk+k=1) il B(Sk+k=D—k+1
Z( ] 0(1)2( ] > v[AG,,
n=2\ P v=1

AV(&VIV)

B (S k+k—1)—k+1
m+l
L
n=v+l p,,

PO k+k-1)—k
k ( R) ]
m—1

pV
v (p B(Sk+k-1)—k
- O(I)Z:]:A(v| AL,)) > (p—] A

]ﬂ(6k+k—l)—k

tV

= O(l)iv| A,

k

tV

+ O(l)ym| A4, |Z ;
=1 v
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= 0(1)"5‘11»\ A,
v=1

=0() as m—owo

X, + 0(1)§| AL| X, +0(W)m|AL,| X,
v=l

by virtue of the hypotheses of Theorem 2 and Lemma 1.

]ﬁ(5k+k—l) ("z_ll ]k
pn v=l v

wii( p B@k+k=1) , k
:0(1)2( ] (Z A, (@,)|| A tv]

2\ Py v=1

] P LS k+k-1) el
=0(1>2( ] ( A(d,) Aw,krvk]

2 pn =1

[Z Avww)] _

v=l

mal p B (S k+k-1) nel
= O(I)Z(pn ] arlfr:] (z Av(&nv) }“v+l - }“v+l tv k]
n=2 n

Finally, as in / ,, we have

n,l?

mz"']( P ]ﬂ(6k+k—l)

n=2 pn

g

}“v+l tv

an,v+l

m+l1
1.[= 0(1)2(
n=2

v=1

ma] P LS k+k—1)—k+1 el
A k
= O(I)Z(I)n ] z Av (anv) }‘v+l tv
n=2 n v=l

. mz"'] (f)n ]ﬂ(5k+k—l)—k+l
p

n=v+l1 n

B(S k+k—1)—k
A ]

= 0(1)ﬁ ( .

=0() as m—owo

ﬂ“v+l

tV

-omy, A,@,)

k

A

v+l

tV

by virtue of the hypotheses of Theorem 2 and Lemma 1. This completes the proof of
Theorem 2.

CONCLUSIONS

summability. If we

take (X,) as a positive monotonic non-decreasing sequence, f=1, 6 =0 and a,, :%,

If we take S =1, then we get a theorem dealing with |4, p, ;0

k

n

then we get Theorem 1. In this case condition (21) reduces to condition (12).
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