Maejo International Journal of Science and Technology

ISSN 1905-7873

Available online at www.mijst.mju.ac.th

Full Paper

A new study on absolute summability factors of infinite series

Hikmet S. Özarslan and Ahmet Karakaş *

Department of Mathematics, Erciyes University, Kayseri, 38039, Turkey

* Corresponding author, e-mail: ahmetkarakas1985@hotmail.com

Received: 29 May 2018 / Accepted: 18 December 2019 / Published: 27 December 2019

Abstract: We first give a new and more general definition on absolute matrix summability of infinite series. Then we generalise a known theorem on $|\overline{N}, p_n|_k$ summability factors of infinite series with this summability method by using an almost increasing sequence. This new theorem also includes several new results.

Keywords: summability factors, absolute matrix summability, almost increasing sequence, infinite series, Hölder inequality, Minkowski inequality

INTRODUCTION

Summability theory plays an important role in analysis, applied mathematics and engineering sciences. The aim of this theory is to bring a value to the indefinite divergent series. Various summability methods have been introduced by different researchers to find this value. Some of these methods are given by Cesàro [1], Abel [2], Nörlund [3], Riesz [4], matrix summability [5], etc.

A significant rise of the summability began in the latter part of the 19th century. In 1890, Cesàro published a paper on the multiplication of series [1]. Das gave the definition of absolute summability [6]. Then Kishore and Hotta defined the summability factor [7]. The definition of $|A|_k$ summability was given by Tanović-Miller [8]. Later Bor defined $|\overline{N}, p_n|_k$ and $|\overline{N}, p_n; \delta|_k$ summability of an infinite series [9, 10]. The definition of $|A, p_n; \delta|_k$ summability of an infinite series was defined by Özarslan and Öğdük [11]. In this paper a

theorem on absolute matrix summability is obtained using a more general summability method.

Now we give some definitions related to the summability which are used in this article.

Definition 1 [12]. A positive sequence (r_n) is said to be almost increasing, if there exist a positive increasing sequence (d_n) and two positive constants K and L such that $Kd_n \le r_n \le Ld_n$. Obviously every increasing sequence is almost increasing sequence but the converse need not be true as can be seen from the example $b_n = n e^{(-1)^n}$.

Definition 2 [13]. Let $\sum a_n$ be a given infinite series with the partial sums (s_n) . Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^{n} p_v \to \infty \text{ as } n \to \infty, \ (P_{-i} = p_{-i} = 0, \ i \ge 1).$$
 (1)

The sequence-to-sequence transformation

$$w_n = \frac{1}{P_n} \sum_{\nu=0}^{n} p_{\nu} s_{\nu} \tag{2}$$

defines the sequence (w_n) of the (\overline{N}, p_n) means of the sequence (s_n) , generated by the sequence of coefficients (p_n) .

Definition 3 [9]. The series $\sum a_n$ is said to be summable $|\overline{N}, p_n|_k$, $k \ge 1$, if

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} \left| w_n - w_{n-1} \right|^k < \infty. \tag{3}$$

Definition 4 [14]. The series $\sum a_n$ is said to be summable $|\overline{N}, p_n, \beta; \delta|_k$, $k \ge 1$, $\delta \ge 0$ and β is a real number if

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left| w_n - w_{n-1} \right|^k < \infty. \tag{4}$$

Definition 5 [15]. Let $A = (a_{nv})$ be a normal matrix, i.e. a lower triangular matrix of non-zero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v, \quad n = 0, 1, \dots$$
 (5)

The series $\sum a_n$ is said to be summable $|A, p_n|_k$, $k \ge 1$ if

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} \left| \overline{\Delta} A_n(s) \right|^k < \infty , \tag{6}$$

where

$$\overline{\Delta} A_n(s) = A_n(s) - A_{n-1}(s). \tag{7}$$

Definition 6 [16]. The series $\sum a_n$ is summable $|A, p_n, \beta; \delta|_k$, $k \ge 1$, $\delta \ge 0$ and β is a real number if

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left| \overline{\Delta} A_n(s) \right|^k < \infty.$$
 (8)

If we take $\beta=1$, then $|A,p_n,\beta;\delta|_k$ summability reduces to $|A,p_n;\delta|_k$ summability [11]. Also, if we take $\beta=1$ and $\delta=0$, then $|A,p_n,\beta;\delta|_k$ summability reduces to $|A,p_n|_k$ summability. Furthermore, if we take $\beta=1$, then $|\overline{N},p_n,\beta;\delta|_k$ summability reduces to $|\overline{N},p_n;\delta|_k$ summability [6]. Also, if we take $\beta=1$ and $\delta=0$, then $|\overline{N},p_n,\beta;\delta|_k$ summability reduces to $|\overline{N},p_n|_k$ summability.

KNOWN RESULT

Bor [17] has proved the following theorem for $|\overline{N}, p_n|_k$ summability factors of infinite series.

Theorem 1. Let (p_n) be a sequence of positive numbers such that

$$P_n = O(n \, p_n) \quad as \quad n \to \infty \,. \tag{9}$$

If (X_n) is a positive monotonic non-decreasing sequence such that

$$\left|\lambda_{m}\right|X_{m} = O(1) \quad as \quad m \to \infty, \tag{10}$$

$$\sum_{n=1}^{m} n X_n \left| \Delta^2 \lambda_n \right| = O(1) \quad as \quad m \to \infty, \tag{11}$$

$$\sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k = O(X_m) \quad as \quad m \to \infty, \tag{12}$$

where $t_n = \frac{1}{n+1} \sum_{v=1}^n v \, a_v$, then the series $\sum a_n \lambda_n$ is summable $|\overline{N}, p_n|_k$, $k \ge 1$.

MAIN RESULT

Much work on absolute matrix summability of infinite series has been done [18-29]. The aim of this paper is to generalise Theorem 1 to $|A, p_n, \beta; \delta|_k$ summability. We first introduce some further notations.

Given a normal matrix $A = (a_{nv})$, we associate two lower semi-matrices $\overline{A} = (\overline{a}_{nv})$ and $\hat{A} = (\hat{a}_{nv})$ as follows:

$$\overline{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \dots$$
 (13)

and

$$\hat{a}_{00} = \overline{a}_{00} = a_{00}$$
, $\hat{a}_{nv} = \overline{a}_{nv} - \overline{a}_{n-1,v}$, $n = 1, 2, ...$ (14)

It may be noted that \overline{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations respectively. Then we have

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v = \sum_{v=0}^n \overline{a}_{nv} a_v$$
 (15)

and

$$\overline{\Delta} A_n(s) = \sum_{v=0}^n \hat{a}_{nv} a_v. \tag{16}$$

Now we shall prove the following theorem.

Theorem 2. Let $A = (a_{nv})$ be a positive normal matrix such that

$$\overline{a}_{n0} = 1$$
, $n = 0, 1, ...,$ (17)

$$a_{n-1,v} \ge a_{nv}$$
, for $n \ge v+1$, (18)

$$a_{nn} = O\left(\frac{p_n}{P_n}\right),\tag{19}$$

$$\left| \hat{a}_{n,\nu+1} \right| = O\left(\nu \left| \Delta_{\nu} \left(\hat{a}_{n\nu} \right) \right| \right). \tag{20}$$

Let (X_n) be an almost increasing sequence. If conditions (10)-(11) of Theorem 1 and

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\beta(\delta k + k - 1) - k} \left|t_n\right|^k = O(X_m) \quad as \quad m \to \infty, \tag{21}$$

$$\sum_{n=\nu+1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k+k-1)-k+1} \left| \Delta_{\nu}(\hat{a}_{n\nu}) \right| = O\left(\left(\frac{P_{\nu}}{p_{\nu}} \right)^{\beta(\delta k+k-1)-k} \right)$$
(22)

are satisfied, then the series $\sum a_n \lambda_n$ is summable $|A, p_n, \beta; \delta|_k$, $k \ge 1$, $\delta \ge 0$ and $-\beta(\delta k + k - 1) + k > 0$.

We need the following lemma for the proof of Theorem 2.

Lemma 1 [30]. Under the conditions on (X_n) and (λ_n) which are taken in the statement of our theorem, we have the following:

$$n X_n |\Delta \lambda_n| = O(1)$$
 as $n \to \infty$, (23)

$$\sum_{n=1}^{\infty} X_n \left| \Delta \lambda_n \right| < \infty . \tag{24}$$

PROOF OF THOREM 2

Let (I_n) denote A-transform of the series $\sum a_n \lambda_n$. Then we have by (15) and (16)

$$\overline{\Delta}I_n = \sum_{\nu=1}^n \hat{a}_{n\nu} a_{\nu} \lambda_{\nu} = \sum_{\nu=1}^n \frac{\hat{a}_{n\nu} \lambda_{\nu}}{\nu} \nu a_{\nu}.$$

Applying Abel's transformation to this sum, we obtain the following.

$$\overline{\Delta} I_n = \sum_{\nu=1}^{n-1} \Delta_{\nu} \left(\frac{\hat{a}_{n\nu} \lambda_{\nu}}{\nu} \right) \sum_{r=1}^{\nu} r \, a_r + \frac{\hat{a}_{nn} \lambda_n}{n} \sum_{r=1}^{n} r \, a_r$$

$$= \sum_{\nu=1}^{n-1} \Delta_{\nu} \left(\frac{\hat{a}_{n\nu} \lambda_{\nu}}{\nu} \right) (\nu + 1) t_{\nu} + \frac{a_{nn} \lambda_n}{n} (n + 1) t_n$$

$$= \frac{n+1}{n} a_{nn} \lambda_n t_n + \sum_{\nu=1}^{n-1} \frac{\nu+1}{\nu} \Delta_{\nu}(\hat{a}_{n\nu}) \lambda_{\nu} t_{\nu} + \sum_{\nu=1}^{n-1} \frac{\nu+1}{\nu} \hat{a}_{n,\nu+1} \Delta \lambda_{\nu} t_{\nu} + \sum_{\nu=1}^{n-1} \frac{1}{\nu} \hat{a}_{n,\nu+1} \lambda_{\nu+1} t_{\nu}$$

$$= I_{n,1} + I_{n,2} + I_{n,3} + I_{n,4}.$$

Since $\left|I_{n,1}+I_{n,2}+I_{n,3}+I_{n,4}\right|^k \le 4^k \left(\left|I_{n,1}\right|^k+\left|I_{n,2}\right|^k+\left|I_{n,3}\right|^k+\left|I_{n,4}\right|^k\right)$, to complete the proof of Theorem 2 it is sufficient to show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left| I_{n,r} \right|^k < \infty, \quad \text{for } r = 1, 2, 3, 4.$$
 (25)

First, by using Abel's transformation, we have

$$\sum_{n=1}^{m} \left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)} |I_{n,1}|^{k} = O(1) \sum_{n=1}^{m} \left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)} a_{nn}^{k} |\lambda_{n}|^{k} |t_{n}|^{k}$$

$$= O(1) \sum_{n=1}^{m} \left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)} \left(\frac{p_{n}}{P_{n}}\right)^{k} |\lambda_{n}|^{k-1} |\lambda_{n}| |t_{n}|^{k}$$

$$= O(1) \sum_{n=1}^{m} \left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k} |\lambda_{n}| |t_{n}|^{k}$$

$$= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_{n}| \sum_{\nu=1}^{n} \left(\frac{P_{\nu}}{p_{\nu}}\right)^{\beta(\delta k+k-1)-k} |t_{\nu}|^{k} + O(1) |\lambda_{m}| \sum_{n=1}^{m} \left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k} |t_{n}|^{k}$$

$$= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_{n}| |X_{n}| + O(1) |\lambda_{m}| |X_{m}$$

$$= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_{n}| |X_{n}| + O(1) |\lambda_{m}| |X_{m}$$

by virtue of the hypotheses of Theorem 2 and Lemma 1. Now applying Hölder's inequality with indices k and k', where k > 1 and $\frac{1}{k} + \frac{1}{k'} = 1$ as in $I_{n,1}$, we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left| I_{n,2} \right|^k &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left(\sum_{\nu=1}^{n-1} \left| \Delta_{\nu}(\hat{a}_{n\nu}) \right| \left| \lambda_{\nu} \right| \left| t_{\nu} \right| \right)^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left(\sum_{\nu=1}^{n-1} \left| \Delta_{\nu}(\hat{a}_{n\nu}) \right| \left| \lambda_{\nu} \right|^k \left| t_{\nu} \right|^k \right) \mathbf{x} \left(\sum_{\nu=1}^{n-1} \left| \Delta_{\nu}(\hat{a}_{n\nu}) \right| \right)^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} a_{nn}^{k-1} \left(\sum_{\nu=1}^{n-1} \left| \Delta_{\nu}(\hat{a}_{n\nu}) \right| \left| \lambda_{\nu} \right|^k \left| t_{\nu} \right|^k \right). \end{split}$$

Now using the fact that $a_{nn} = O\left(\frac{p_n}{P_n}\right)$ by (19), we have

$$\sum_{n=2}^{m+1} \left(\frac{P_{n}}{P_{n}}\right)^{\beta(\delta k+k-1)} |I_{n,2}|^{k} = O(1) \sum_{n=2}^{m+1} \left(\frac{P_{n}}{P_{n}}\right)^{\beta(\delta k+k-1)-k+1} \sum_{\nu=1}^{n-1} |\Delta_{\nu}(\hat{a}_{n\nu})| |\lambda_{\nu}|^{k} |t_{\nu}|^{k}$$

$$= O(1) \sum_{\nu=1}^{m} |\lambda_{\nu}|^{k} |t_{\nu}|^{k} \sum_{n=\nu+1}^{m+1} \left(\frac{P_{n}}{P_{n}}\right)^{\beta(\delta k+k-1)-k+1} |\Delta_{\nu}(\hat{a}_{n\nu})|$$

$$= O(1) \sum_{\nu=1}^{m} \left(\frac{P_{\nu}}{P_{\nu}}\right)^{\beta(\delta k+k-1)-k} |\lambda_{\nu}|^{k-1} |\lambda_{\nu}| |t_{\nu}|^{k}$$

$$= O(1) \sum_{\nu=1}^{m} \left(\frac{P_{\nu}}{P_{\nu}}\right)^{\beta(\delta k+k-1)-k} |\lambda_{\nu}|^{k} |t_{\nu}|^{k}$$

$$= O(1) \quad as \quad m \to \infty$$

by virtue of the hypotheses of Theorem 2 and Lemma 1.

Now using Hölder's inequality, we have

$$\begin{split} \sum_{n=2}^{m+1} & \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left| I_{n,3} \right|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left(\sum_{\nu=1}^{n-1} \left| \hat{a}_{n,\nu+1} \right| \left| \Delta \lambda_{\nu} \right| \left| t_{\nu} \right| \right)^k \\ & = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left(\sum_{\nu=1}^{n-1} \nu \left| \Delta_{\nu} (\hat{a}_{n\nu}) \right| \left| \Delta \lambda_{\nu} \right| \left| t_{\nu} \right| \right)^k \\ & = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left(\sum_{\nu=1}^{n-1} \nu \left| \Delta_{\nu} (\hat{a}_{n\nu}) \right| \left| \Delta \lambda_{\nu} \right| \left| t_{\nu} \right|^k \right) \\ & \times \left(\sum_{\nu=1}^{n-1} \nu \left| \Delta_{\nu} (\hat{a}_{n\nu}) \right| \left| \Delta \lambda_{\nu} \right| \right)^{k-1} \\ & = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} a_{nn}^{k-1} \left(\sum_{\nu=1}^{n-1} \nu \left| \Delta_{\nu} (\hat{a}_{n\nu}) \right| \left| \Delta \lambda_{\nu} \right| \left| t_{\nu} \right|^k \right). \end{split}$$

By using (19), we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left| I_{n,3} \right|^k &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1) - k + 1} \sum_{\nu=1}^{n-1} \nu \left| \Delta_{\nu} (\hat{a}_{n\nu}) \right| \left| \Delta \lambda_{\nu} \right| \left| t_{\nu} \right|^k \\ &= O(1) \sum_{\nu=1}^{m} \nu \left| \Delta \lambda_{\nu} \right| \left| t_{\nu} \right|^k \sum_{n=\nu+1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1) - k + 1} \left| \Delta_{\nu} (\hat{a}_{n\nu}) \right| \\ &= O(1) \sum_{\nu=1}^{m} \nu \left| \Delta \lambda_{\nu} \right| \left| t_{\nu} \right|^k \left(\frac{P_{\nu}}{p_{\nu}} \right)^{\beta(\delta k + k - 1) - k} \left| t_{r} \right|^k \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta \left(\nu \left| \Delta \lambda_{\nu} \right| \right) \sum_{\nu=1}^{\nu} \left(\frac{P_{\nu}}{p_{\nu}} \right)^{\beta(\delta k + k - 1) - k} \left| t_{\nu} \right|^k \\ &+ O(1) m \left| \Delta \lambda_{n} \right| \sum_{\nu=1}^{m} \left(\frac{P_{\nu}}{p_{\nu}} \right)^{\beta(\delta k + k - 1) - k} \left| t_{\nu} \right|^k \end{split}$$

$$= O(1) \sum_{\nu=1}^{m-1} \nu \left| \Delta^2 \lambda_{\nu} \right| X_{\nu} + O(1) \sum_{\nu=1}^{m-1} \left| \Delta \lambda_{\nu} \right| X_{\nu} + O(1) m \left| \Delta \lambda_{m} \right| X_{m}$$

$$= O(1) \quad as \quad m \to \infty$$

by virtue of the hypotheses of Theorem 2 and Lemma 1.

Finally, as in $I_{n,1}$, we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left| I_{n,4} \right|^k &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left(\sum_{v=1}^{n-1} \frac{1}{v} |\hat{a}_{n,v+1}| ||\lambda_{v+1}|| |t_v| \right)^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| ||\lambda_{v+1}||^k |t_v|^k \right) \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| ||\lambda_{v+1}||^k |t_v|^k \right) \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1)} a_{nn}^{k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| ||\lambda_{v+1}||^{k-1} |\lambda_{v+1}|| |t_v|^k \right) \\ &= O(1) \sum_{n=2}^{m} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1) - k + 1} \sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| ||\lambda_{v+1}|| |t_v|^k \right) \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta(\delta k + k - 1) - k + 1} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^{\beta(\delta k + k - 1) - k} |\lambda_{v+1}| |t_v|^k \\ &= O(1) \quad as \quad m \to \infty \end{split}$$

by virtue of the hypotheses of Theorem 2 and Lemma 1. This completes the proof of Theorem 2.

CONCLUSIONS

If we take $\beta=1$, then we get a theorem dealing with $|A,p_n;\delta|_k$ summability. If we take (X_n) as a positive monotonic non-decreasing sequence, $\beta=1$, $\delta=0$ and $a_{nv}=\frac{p_v}{P_n}$, then we get Theorem 1. In this case condition (21) reduces to condition (12).

REFERENCES

- 1. E. Cesàro, "Sur la multiplication des séries", Bull. Sci. Math., 1890, 14, 114-120.
- 2. N. H. Abel, "Untersuchungen über die Reihe: $1 + \frac{m}{1}x + \frac{m(m-1)}{1.2}x^2 + \frac{m(m-1)(m-2)}{1.2.3}x^3 + \cdots$ ", J. Reine Angew. Math., **1826**, 1, 311-339.

- 3. N. E. Nörlund, "Sur une application des fonctions permutables", *Lunds Univ. Arssk.*, **1919**, *16*, 1-10.
- 4. M. Riesz, "Sur l'equivalence de certaines méthodes de sommation", *Proc. London Math. Soc.*, **1924**, *22*, 412-419.
- 5. G. M. Petersen, "Regular Matrix Transformations", McGraw-Hill, New York, 1966.
- 6. G. Das, "Tauberian theorems for absolute Nörlund summability", *Proc. London Math. Soc.*, **1969**, *S3-19*, 357-384.
- 7. N. Kishore and G. C. Hotta, "On $|\overline{N}, p_n|$ summability factors", *Acta Sci. Math. (Szeged)*, **1970**, *31*, 9-12.
- 8. N. Tanović-Miller, "On strong summability", Glas. Mat. Ser. III, 1979, 14, 87-97.
- 9. H. Bor, "On two summability methods", *Math. Proc. Cambridge Philos. Soc.*, **1985**, 97, 147-149.
- 10. H. Bor, "On local property of $|\overline{N}, p_n; \delta|_k$ summability of factored Fourier series", *J. Math. Anal. Appl.*, **1993**, *179*, 646-649.
- 11. H. S. Özarslan and H. N. Öğdük, "Generalizations of two theorems on absolute summability methods", *Aust. J. Math. Anal. Appl.*, **2004**, *1*, Art.no.13.
- 12. N. K. Bari and S. B. Stečkin, "Best approximations and differential properties of two conjugate functions", *Trudy Moskov. Mat. Obsc.*, **1956**, *5*, 483-522 (in Russian).
- 13. G. H. Hardy, "Divergent Series", Oxford University Press, Oxford, 1949.
- 14. A. N. Gürkan, "Absolute summability methods of infinite series", *PhD Thesis*, **1998**, Erciyes University, Turkey.
- 15. W. T. Sulaiman, "Inclusion theorems for absolute matrix summability methods of an infinite series. IV", *Indian J. Pure Appl. Math.*, **2003**, *34*, 1547-1557.
- 16. H. S. Özarslan and A. Karakaş, "On generalized absolute matrix summability of infinite series", *Commun. Math. Appl.*, **2019**, *10*, 439-446.
- 17. H. Bor, "On absolute summability factors", Proc. Amer. Math. Soc., 1993, 118, 71-75.
- 18. A. Karakaş, "On absolute matrix summability factors of infinite series", *J. Class. Anal.*, **2018**, *13*, 133-139.
- 19. H. S. Özarslan and H. N. Öğdük, "On absolute matrix summability methods", *Math. Commun.*, **2007**, *12*, 213-220.
- 20. H. S. Özarslan, "A note on $|A, p_n|_k$ summability factors", *Antarct. J. Math.*, **2010**, 7, 23-30.
- 21. H. S. Özarslan, "A new application of almost increasing sequences", *Miskolc Math. Notes*, **2013**, *14*, 201-208.
- 22. H. S. Özarslan, "On generalized absolute matrix summability", *Asia Pacific J. Math.*, **2014**, *1*, 150-156.
- 23. H. S. Özarslan and M. Ö. Şakar, "A new application of absolute matrix summability", *Math. Sci. Appl. E-Notes*, **2015**, *3*, 36-43.
- 24. H. S. Özarslan, "A new application of absolute matrix summability", C. R. Acad. Bulgare Sci., 2015, 68, 967-972.
- 25. H. S. Özarslan, "A new study on generalized absolute matrix summability", *Commun. Math. Appl.*, **2016**, *7*, 303-309.

- 26. H. S. Özarslan, "A new application of generalized almost increasing sequences", *Bull. Math. Anal. Appl.*, **2016**, *8*, 9-15.
- 27. H. S. Özarslan, "An application of δ-quasi monotone sequence", *Int. J. Anal. Appl.*, **2017**, *14*, 134-139.
- 28. H. S. Özarslan, "An application of absolute matrix summability using almost increasing and δ-quasi-monotone sequences", *Kyungpook Math. J.*, **2019**, *59*, 233-240.
- 29. H. S. Özarslan, "A new factor theorem for absolute matrix summability", *Quaest. Math.*, **2019**, *42*, 803-809.
- 30. S. M. Mazhar, "Absolute summability factors of infinite series", *Kyungpook Math. J.*, **1999**, *39*, 67-73.
- © 2019 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for noncommercial purposes.