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Abstract:  A new class of ݍ-close-to-convex functions associated with Janowski functions is 
defined. In this regard, we give sufficient conditions and prove the famous de Branges 
theorem for this newly-defined class of ݍ -close-to-convex functions. We also give the 
application of our results to finding sufficient conditions for the celebrated Mittag-Leffler 
function to be a Janowski ݍ-close-to-convex function. 
 

     Keywords:  univalent functions, close-to-convex functions, q-derivative operator, ݍ-close-to- 
     convex function, Bieberbach conjecture, de-Branges theorem 
________________________________________________________________________________ 
 
INTRODUCTION AND PRELIMINARIES 
 
      By  H U  we denote the class of functions which are analytic in the open unit disk  

  = : and < 1 ,z z zU C  

where C  is, as usual, the complex plane. Let A denote the class of functions having the following 
form:  
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    
=2

= ,n
n

n
f z z a z z



   U  (1) 

which are in the open unit disk ,U centred at the origin and normalised by the conditions given by 

    0 = 0 and 0 = 1.'f f  

Also, let S A  be the class of functions which are univalent in .U  
      Furthermore, we denote by ,S  the class of functions in A which are starlike in U  and satisfy 
the following inequality:  

  
   > 0, .
'zf z

z
f z

 
    
 

U  

For ,f S one can find that [1] 
 |ܽ|௡ ≤ ݊  ݎ݋݂     ݊ = 2,3, … . (2) 

 
Moreover, the class of close-to-convex functions in U  are denoted here by K  and defined as 
follows. A function f A  is said to be in the class K  if and only if there exists a function ݃ ∈ ܵ∗ 
such that  

  
   > 0, .
'zf z

z
g z

 
    
 

U  (3) 

  
      Furthermore, if two functions f  and g  are analytic in U , we say that the function f  is 
subordinate to g  and written as 

    or ,f g f z g z   

if there exists a Schwarz function w  which is analytic in U  with  
 

(0)ݓ  = |(ݖ)ݓ| ݀݊ܽ  0 < 1 
such that  

     = .f z g w z  
 
It can also be seen that if the function g  is univalent in U , then it follows that 
 

 ( ) ( ) ( ) (0) = (0) and ( ) ( ).f z g z z f g f g   U U U  
       
      We next denote by P  the class of analytic functions p  which are normalised by  

  
=1

= 1 n
n

n
p z p z



  (4) 

such that  
    > 0.p z  

 
Definition 1.  A given analytic function h  with  0 = 1h  is said to belong to the class ܲ[ܣ,  if [ܤ
and only if  

   1 , 1 < 1.
1

Azh z B A
Bz


  


  

 
The analytic function class  ,A BP  was introduced by Janowski [2], who showed that ℎ(ݖ) ∈
,ܣ]ܲ if and only if there exists a function pP [ܤ  such that  
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        
     

1 1
= , 1 < 1.

1 1
A p z A

h z B A
B p z B
  

  
  

 

 
Definition 2.  A function f A  is said to belong to the class ܣ]ܭ, ݃ if and only if there exists [ܤ ∈
ܵ∗ such that  

  
 

     
     

1 1
= , 1 < 1.

1 1

'zf z A p z A
B A

g z B p z B
  

  
  

 (5) 

  
      We now recall some basic definitions and concept details of the q -calculus which are used in 
this article. We suppose throughout the article that 0 < < 1q  and that  

       0 0= 1, 2,3... = \ 0 := 0,1, 2,3... .N N N  
 
Definition 3.  Let  0,1q  and define the ݍ-number  q

  by  

௤[ߣ]  = ൝
ଵି௤ഊ

ଵି௤
ߣ)                                                                    ∈         (ܥ

∑ ௞௡ିଵݍ
௞ୀଵ = 1 + ݍ + ଶݍ + ⋯ + ߣ)        ௡ିଵݍ = ݊ ∈       .(ܥ

  

 
Definition 4.  Let  0,1q  and define the ݍ-factorial   !

q
n  by  

 [݊]௤! = ൜
1                    (݊ = 0)

∏ [݇]௤      (݊ ∈ ܰ).௡
௞ୀଵ

 
 
Definition 5 [3, 4]. The ݍ-derivative (or ݍ-difference) qD  of a function ݂ is defined in a given 

subset of C  by  

(ݖ)௤݂ܦ  = ൝
௙(௭)ି௙(௤௭)

(ଵି௤)௭
ݖ)       ≠ 0)

݂ᇱ(0)            (ݖ = 0).
 (6) 

 
      We note from (6) that the q-derivative (or the q-difference) operator qD f  converges to the 
ordinary derivative operator as follows:  

lim
௤→ଵି

൫ܦ௤݂൯(ݖ) = lim
௤→ଵି

(ݖ)݂ − (ݖݍ)݂
(1 − ݖ(ݍ = ݂ᇱ(ݖ). 

  
For a differentiable function f  in a given subset of ,C it is readily deduced from  1 and  6  that  
 

(ݖ)௤݂ܦ  = 1 + ∑ [݊]௤ܽ௡ݖ௡ିଵஶ
௡ୀଶ  (7) 

 
      In Geometric Function Theory, several subclasses belonging to the class A of normalised 
analytic functions A have already been investigated in different aspects. The above defined q -
calculus gives valuable tools that have been extensively used for investigating several subclasses of 
A.  Ismail et al. [5] were the first who employed q -derivative operator qD  to study the q-calculus 

analogous with the class S  of starlike functions in U . Raghavendar and Swaminathan [6] used the 
q-derivative operator qD  for studying the q -calculus corresponding to the class K  of close-to-

convex functions in U  (see Definition 6 below).  
      Recently, using the ݍ -deravative operator, certain subclasses of analytic and bi-univalent 
functions were introduced and investigated [7-9]. For exmaple, non-sharp estimates on the first two 



 
Maejo Int. J. Sci. Technol. 2020, 14(02), 141-155  
 

 

144

Taylor-Maclaurin coefficients 2a  and 3a  were studied [10]. Kanas and Raducanu [11] have used 

the fractional ݍ-calculus operators in the investigation of certain classes of functions which are 
analytic in open-unit disk U by using the idea of canonical domain. Coefficient inequality for ݍ-
closed-to-convex functions with respect to Janowski-type starlike functions has been studied by 
Ucar [12]. In fact, historically speaking, a remarkably significant usage of the ݍ-calculus in the 
context of Geometric Function Theory of Complex Analysis was basically furnished and the basic 
(or q -) hypergeometric functions were first used in Geometric Function Theory by Srivastava [13] 
and Srivastava and Bansal [14]. 
 
Definition 6 [6].  A function f A  is said to belong to the class qK  if there exists ݃ ∈ ܵ∗ such that  

    0 = 0 1 = 0'f f   (8) 

and  

 
      1 1 .

1 1q
z D f z z

g z q q
   

 
U  (9) 

 
Then we say that qf K  with the function .g  We note that the notation qK  was first used by Sahoo 

and Sharma [15] .  It is readily observed that, as 1q  , the closed disk  

 1 1
1 1

w
q q

 
 

 

becomes the right-half plane and the class qK  of q-close-to-convex function reduces to the familiar 

class .K  Equivalently, by using the principle of subordination between analytic functions, we can 
rewrite the conditions in  8  and  9  as follows [9]:  

 ௭
௚(௭)

൫ܦ௤݂൯(ݖ) ≺ ෤݌               ቀ݌෤ = ଵା௭
ଵି௤௭

ቁ. 
 
      Motivated by the work of Janowski [2], Ucar [12] and other related works cited above in this 
paper, we shall consider a (presumably new) subclass of ݍ-close-to-covex function with respect to 
Janowski functions. 
 
Definition 7.  A function f A  is said to belong to the class ܭ௤[ܣ,  if and only if there exists [ܤ
݃ ∈ ܵ∗ such that  

 ஽೜௙(௭)
௚(௭)

= (஺ାଵ)௣෤ି(஺ିଵ)
(஻ାଵ)௣෤ି(஻ିଵ)

,    − 1 ≤ ܤ < ܣ ≤ 1, ݍ ∈ (0,1)  
 
which, by using the principle of subordination between analytic functions, can be written as  

 
 

    ,qzD f z
z

g z
  

 where  

      
     1 2 1

= , 1 < 1, 0,1 .
1 2 1

z A zq A
z B A q

z B zq B


   
   

   
 

 
Or, equivalently, ݂ ∈ ,ܣ]௤ܭ ݃ if and only if there exists [ܤ ∈ ܵ∗ such that  
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ቮ
ܤ) − 1) ஽೜௙(௭)

௚(௭)
− ܣ) − 1)

ܤ) + 1) ஽೜௙(௭)
௚(௭)

− ܣ) + 1)
−

1
1 − ቮݍ <

1
1 −  .ݍ

 
Remark 1.  Firstly, if we let ݍ → 1, we have the familiar ܣ]ܭ,  introduced and (see Definition 2) [ܤ
studied by Noor [16]. Secondly, for = 1,A = 1,B   we have qK  introduced and studied by 

Raghavendar et al. [6]. Thirdly, for = 1,A = 1B   and if we let ݍ → 1,  we have K , the class of 
close-to-convex functions introduced and studied by Kaplan [17]. 
 
      The following Lemma will be required for the proof of our main results. 
 
Lemma 1 [18].  Let the function p  given by  

  
=1

= 1 n
n

n
p z p z



  

be subordinate to H  given by  

  
=1

= 1 .n
n

n
H z C z



  

If ( )H z  is univalent in U  and  H U  is convex, then  

 1 , .np C n N  

 
MAIN RESULTS 
 
      In this section we prove our main results. Throughout our discussion, we assume that  

  1 < 1, and 0,1B A q    . 
 
Theorem 1.  A function f A  of the form given by  1 is in the class  ,q A BK if it satisfies the 
following condition:  

      
=2

1 1 < .nq
n

n B a A n B A


     (10) 
 
Proof.  Assuming that the inequality  10  holds true, it suffices to show that  
 

 
   

   

   
   

1 1
1 1< .

1 1
1 1

q

q

zD f z
B A

g z
zD f z q q

B A
g z

  


 
  

 (11) 

Letting  

    
=2

= ,n
n

n
g z z b z z



   U  (12) 

we have  

 
   

   

   
   

1 1
1

1
1 1

q

q

zD f z
B A

g z
zD f z q

B A
g z

  



  

 (13) 
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       
       

1 1
1

1 1 1
q

q

B zD f z A g z q
B zD f z A g z q
  

  
   

 

 
   

       
= 2

1 1 1
q

q

g z zD f z q
B zD f z A g z q




   
 

 
  

        
=2

=2

= 2 .
11 1

n
n nq

n

n
n nq

n

b n a z
q

qB A n B a A b z








    




 

Moreover, by using trigonometric inequality and  2 ,  we have  
 

 
   

   

   
   

1 1
1

1
1 1

q

q

zD f z
B A

g z
zD f z q

B A
g z

  



  

 

 
 

     
=2

=2

2 .
11 1

nq
n

nq
n

n n a
q

qB A n B a A n






  

    




 (14) 

 
The last expression in  14  is bounded above by ଵ

ଵି௤
 if  

      
=2

1 1 < .nq
n

n B a A n B A


     
 
Thus, we have completed the proof of Theorem 1.     
 
Theorem 2.  Let  ,qf A BK  be of the form  1 . Then for 2,n   
 

 
 

   
2

=0

( ) 11 1 .
2

n

n
jq

A B q
a n j

n

  
   

 
  (15) 

 
Proof.  By definition, for  , ,qf A BK  we have  

 
 

   = ,qzD f z
p z

g z
 (16) 

where  

      
   

1 2 1
1 2 1

z A zq A
p z

z B zq B
   
   

  

 = 1 + ଵ
ଶ

ܣ) − ݍ)(ܤ + ݖ(1 + ଵ
ସ

ܣ) − ݍ)(ܤ + ݍ)}(1 + ܤ(1 − ݍ + ଶݖ{1 + ⋯. 
 

Since  

  
=1

= 1 ,n
n

n
p z p z



  

then by Lemma 1 we have  
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  1 ( ) 1 , 1.
2np A B q n     (17) 

Now from  16 , we have  

      = ,qzD f z p z g z  (18) 

which implies that  

  
=2 =2 =1

= 1 .n n n
n n nq

n n n
z n a z z b z c z

     
    

   
    

Equating the coefficients of nz  on both sides, we have  

  
1

1
=1

= , = 1.
n

n n n j jq
j

n a b a c a


  

This implies that  

 
 

1

1
=1

1 , = 1.
n

n n n j j
jq

a b b c a
n





 
  

 
  

Moreover, by using  17  and  2 ,  we have  

 
 

  1

1
=1

( ) 11 , = 1.
2

n

n
jq

A B q
a n j a

n

  
  

 
  (19) 

Next, in order to prove that  
 

 
 

 
 

   
21

=1 =0

( ) 1 ( ) 11 1 1 ,
2 2

nn

j jq q

A B q A B q
n j n j

n n

      
     

   
   (20) 

 
we use the principle of mathematical induction. Of course, for = 2n , we find from  19  that  

 
 

   
2

11 2 ,
2 2

q

q A B
a

  
  

 
 

which results also from  15 . Now for = 3n , we find from  19  that  
 

 
 

      
3

1 2 11 3
3 2 2

q

q A B A B q
a

    
   

 
 

 
 

    11= 3 1 2 ,
3 2

q

q A B  
  

 
 

which follows also from  15 .  Let the hypothesis be true for = .n m  Then it follows from  19  that  
 

 
 

  1

1
=1

( ) 11 = 1.
2

m

m
jq

A B q
a m j a

m

  
  

 
  

 
On the other hand, from  15 , we have  

 
 

   
2

=0

( ) 11 1 .
2

m

m
jq

A B q
a m j

m

  
   

 
  

 
By the induction hypothesis, we have  
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 

 
 

   
21

=1 =0

( ) 1 ( ) 11 1 1 .
2 2

mm

j jq q

A B q A B q
m j m j

m m

      
     

   
   

 
We now consider  

 
 

 
1

=1

( ) 11 1
1 2

m

m
jq

A B q
a m j

m

  
     

  

 
 

   ( ) 11= 1 1 2 ...
1 2

q

A B q
m m

m
  

       
 

 
 

   
1

=0

( ) 11= 1 1
1 2

m

jq

A B q
m j

m

  
     

 . 

 
Also from  15 , we have  

 
 

   
1

1
=0

( ) 11 1 1 ,
1 2

m

m
jq

A B q
a m j

m





  
      

  

which shows that inequality  20  is true for = 1n m . Thus, by the principle of mathematical 
induction, we have completed the proof of Theorem 2.   

DE BRANGES THEOREM FOR  ,q A BK  
 
      In this section Theorem 3 works as one of the key results for estimating coefficient bounds for 
series representation of functions in the class  , .q A BK  In other words, we investigate the famous 

Bieberbach conjecture problem on coefficients of analytic q -close-to-convex functions associated 
with the Janowski functions. The Bieberbach conjecture for close-to-covex functions is given by 
Reade [19]. 
      We now continue to give the Bieberbach-deBranges Theorem for functions in the q -close-to-
convex family associated with the Janowski functions. 
 
Theorem 3.  Let  ,qf A BK  be of the form  1 . Then for 2n  , 
 

 
 

    1 11 .
4n

q

n n q
a n A B

n
  

   
 

 

 
Proof.  The proof of Theorem 3 follows immediately by using  19 .   
 
      In its special case, when = 1 and = 1A B  , Theorem 3 reduces to the following known results. 
 
Corollary 1 [15].  If ,qf K  then  

 
 

   1 11 .
2n

q

n n q
a n

n
  

  
 

 

 
If, in Theorem 3, we set = 1 and = 1A B   and let ݍ → 1, we are led to the following known result. 

Corollary 2 [18].  Let   =0
= n

nn
f z a z  be close-to-convex for < 1.z  Then the coefficients satisfy 

the following inequality:  
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 1 .na n a  
        
      In view of Frideman’s result [20], there are only nine functions in the class S  whose 
coefficients are rational integers. They are   

 
 22 2, , , , .

1 1 11
z z z zz

z z z zz   
 (21) 

We can easily see that the functions in  21 map the unit disk U  onto starlike domains. Using the 

idea of Sahoo et al. [15], we now study special cases of Theorem 3 with respect to the nine 
functions having integer coefficients. However, in this case it is sufficient to consider the identity 
function and four other functions which contain the factor 1 z  instead of 1 z  in the denominator. 
Especially, Theorem 3 reduces to the following consequences (Theorems 4-8). We provide proofs 
of the last two consequences (Theorems 7 and 8) as they involve variations in the exponents, though 
the initial three consequences (Theorems 4-6) follow directly after making exact substitutions for 
the starlike functions  .g z  

Theorem 4.  Let  ,qf A BK  be of  the form  1  with the Koebe function  
 2=
1

zg z
z

. Then 

for all 2,n   

 
 

    1 11 .
4n

q

n n q
a n A B

n
  

   
 

 

 
Remark 2.  If f K , with   = ,g z z  then  for all 2,n   it is well known that  

 2.na   
 
Remark 3.  If ,qf K  with   = ,g z z  then for all 2,n   it is well known [21] that  

 |ܽ௡| ≤ ଵି௤మ

ଵି௤೙. 
 
      As a generalisation, we have the following result. 
 
Theorem 5.  Let  ,qf A BK  be of the form  1  with   =g z z . Then for all 2,n   we have  

  21 .
1 2n n

A Bqa
q

 
   

 

Remark 4.  If f K , with   = ,
1

zg z
z

 then for all 2,n   it can be seen that  

  2 1
.n

n
a

n


  

Remark 5.  If ,qf K  with   =
1

zg z
z

, then for all 2,n   it is well known [21] that  

 |ܽ௡| ≤ ଵି௤
ଵି௤೙ [݊ + ݊)ݍ − 1)].  

         
We now state the following analogous result. 

Theorem 6.  Let  ,qf A BK  be of  the form  1  with   = .
1

zg z
z

 Then  for all 2,n    
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    11 .
1 2n n

q nqa n A B
q

 
     

 

Remark 6.  If f K  with   2=
1

zg z
z

 , then for all 2,n   it is known that  

 
1 if = 2 1

.
1 if = 2n

n m
a

n m


 


 

  
      As a generalisation, we now state the following theorem along with an outline of its proof. 

Theorem 7.  Let  ,qf A BK  be the form  1  with   2= .
1

zg z
z

 Then for all 2,n   we have  

 

 
     

 
   

1 11 1 if = 2 1
4

11 if = 2 .
4

q

n

q

q n
A B n m

n

a

q n
A B n m

n

   
    

 
 
      

 

 
Proof.  Since  

   2 1
2

=1
= = ,

1
n

n

zg z z
z




   

by  18 ,  we get  

   2 1

=2 =1 =1
= 1 .n n n

n nq
n n n

z n a z z p z
  

  
   

  
    (22) 

 
In order to prove the required optimal bound for na  in this situation, it is appropriate to compare 
the coefficients of 2 1nz   and 2nz  separately. In (22) we first compare the coefficients of ݖଶ௡ିଵ; for 

2,n   we have  

  
1

2 1 2
=1

2 1 = 1 .
n

n jq
j

n a p


   

This implies that  

 
 

1

2 1 2
=1

1 1 .
2 1

n

n j
jq

a p
n





 
    

  

Using  17 , we have  

 
 

  1

2 1
=1

11 1 1 .
2 1 2

n

n
jq

q A B
a

n





  
    

  

Secondly, by comparing the coefficients of ݖଶ௡ , for 2,n   we have  

  
1

2 2 1
=1

2 =
n

n jq
j

n a p


 , 

and similarly we have the bound given by 

 
 

   1

2
=1

11 1 .
2 2

n

n
jq

q A B
a

n

  
  

 
  (23) 
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We have thus proved the optimal bound for .na  In its special case if we let = 1 and = 1A B  , we 
obtain the following known result.  
Corollary 3 [15]. If qf K  with   2=

1
zg z
z

,  then for all 1,m    

 

   

2

1 11 1 , if = 2 1
1 2 2

1 , if = 2 .
1 2

n

n

n

q n q q n m
q

a

q n n m
q

           
    

 

 
Remark 7.  If f K , with   2= ,

1
zg z

z z 
 then for all 2,n   it is known that  

 

 

4 1, if = 2 1
3

4 , if = 2
3

4 1, if = 2 1.
3

n

n n m
n

a n m

n n m
n

 


 


  


 

 
      As a generalisation, we have following result. 

Theorem 8.  Let  ,qf A BK  be of the form  1  with   2= .
1

zg z
z z 

 Then for all 2,n      

 

        

     

      

1 1 1 3 , if = 2 1
3

1 1 , if = 2
3

1 1 1 3 , if = 2 1.
3

q

n
q

q

A B q n q n m
n

A B q n n ma n

A B q n n m
n

     



   



     


 

Proof.  Since  

    
2 3

1
= =

1 1
z zzg z

z z z


  
   1 13 2 3 1

=1 =1
= 1 1 ,n nn n

n n
z z

 
       

by  18 ,  we get  

      1 13 2 3 1

=2 =1 =1
= 1 1n nn n n

nq
n n n

z n a z z z
  

   
    

 
  

=1
1 .n

n
n

p z
 

  
 

  (24) 

 
In order to prove the required bonds for ,na  by first comparing the coefficients of 2 1,nz   we get  
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        3 1 3 2 3
=1 =1

3 1 = 1 1 1 .
n n

n j n j n j
n j jq

j j
n a p p  

          (25) 

Taking the moduli of both sides in  25  and using  17 ,  for 0<q<1 and 1,j  we have  

 
     3 1

1 1 .
3 1n

q

a A B q n q
n    


 

Next, for all 1n  , if we compare the coefficients of 3nz  and 3 1nz   in  24 , we obtain the 
coefficient bounds given, respectively, by  

 
      3

1 1
3n

q

a A B q n
n

    

and  

 
     3 1

1 1 1 .
3 1n

q

a A B q n
n    


 

 
Hence the required result asserted by Theorem 8.  
 
      In its special case when we let = 1 and = 1,A B   we have the following known result. 

Corollary 4 [15].  If qf K  with   2=
1

zg z
z z 

 then for all 1,m   
 

 

   

   

2

1 1 22 1 , if = 2 1
1 3 3

1 2 , if = 2
1 3

1 2 11 1 2 , if = 2 1.
1 3 3

n

n n

n

q nq q n m
q

q na n m
q

q n q q n m
q

          


    



         

 

 

PROPERTIES INVOLVING   =2
= n

nn
f z z X z

  TO BE IN CLASS  ,q A BK  
 
      In this section we study a number of sufficient conditions for the representation 

  =2
= n

nn
f z z X z

  to be in  , .q A BK   Rewriting this representation, we get  
 

(ݖ)݂  = ݖ + ∑ ܺ௡ݖ௡       (ܺ଴ = 1, ଵܺ = 1)ஶ
௡ୀଶ . (26) 

 
If  f z  is of the form  26 ,  then a simple computation yields  

      1

=2
= 1 .n

q nq
n

D f z n X z z


   U  

 
Definition 8.  For ݐ > 0, let q-gamma function be defined as 
 

Γ௤(ݐ + 1) = Γ௤(1)  ݀݊ܽ  (ݐ)௤Γ௤[ݐ] = 1, 
 
where [ݐ]௤ is defined in Definition 3. 
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       Considering nX  to be a special function, we consider, in particular, nX  as given by  
 
                           ܺ௡ = ୻೜(ఉ)

୻೜(ఈ௡ାఉ)
ߙ     , > 0, ߚ > 0, ݊ ∈ ܰ.      (27) 

 
Then the function given by  26  reduces to the following form: 
 

(ݖ)݂                     = ݖ + ∑ ୻೜(ఉ)
୻೜(ఈ௡ାఉ)

௡ାଵ,ஶݖ
௡ୀଵ ߙ  > 0, ߚ > 0, ݊ ∈ ܰ,     (28) 

 
which is a normalised q -Mittag-Leffler function. These functions have a wide history and many 
applications in the field of Geometric Functions Theory, for example in geometric properties 
including starlikeness, convexity and close-to-convexity for the q-Mittag-Leffler function f(z), 
which were investigated by Bansal and Prajapat [22] and recently by Srivastava and Bansal [14] 
and Raza and Din [23]. Differential subordination results associated with the generalised Mittag-
Leffler function were also obtained [24]. The q-Mittag-Leffler functions were defined and 
normalised by Sharma et al. [21].  With this development in view, we now collect a number of 
sufficient conditions for the functions to be in  , .q A BK  

Theorem 9.  Let  f z  be of the form  26  and suppose that 
 

 ∑ ௡ାଵܤ| − |௡ܤ ≤ |஻ି஺|
(஻ାଷ)

,ஶ
௡ୀଵ  (29) 

where 
௡ܤ = [݊]௤ܺ௡ 

Then    ,qf z A BK  with    
= .

1
zg z

z
 

Proof.  The proof of Theorem 9 follows easily when we apply  13  in conjunction with 
  
(ݖ)݃  = ௭

(ଵି௭)
  ܽ݊݀  (1 − (ݖ)௤݂ܦ(ݖ = 1 + ∑ ௡ାଵܤ) − ௡ݖ(௡ܤ .ஶ

௡ୀଵ  (30) 
             
      In particular, for the choice of ,nX  we have the following result. 

Corollary 5.  Let  f z  be of the form  28  and suppose that 

 
 1

=1
,

3n n
n

B A
B






 

 B B  

where 
  = .n nq

n XB  

Also, let nX  be given by  27 . Then    ,qf z A BK  with    
= .

1
zg z

z
 

Theorem 10.  Let  f z  be of the form  26  and suppose that 

෍|ܤ௡ − |௡ାଵܤ ≤
ܤ| − |ܣ
ܤ) + 3) ,

ஶ

௡ୀଵ

 

where           
௡ܤ   = [݊ + 1]௤ܺ௡ାଵ − [݊]௤ܺ௡ . 
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Then    ,qf z A BK  with  
 2= .
1

zg z
z

 

Proof.  It can be easily seen that  
 

 ݃ (ݖ) = ௭
(ଵି௭)మ   ܽ݊݀  (1 − (ݖ)௤݂ܦଶ(ݖ = 1 + ଵܤ) − ݖ(1 + ∑ ௡ାଵܤ) − ௡ିଵ.ஶݖ(௡ିଶܤ

௡ୀଷ  (31) 
 
Now by using  13  along with (31), we complete the proof of Theorem 10.  
         
      By specialising  

 ܺ௡ = ୻೜(ఉ)
୻೜(ఈ௡ାఉ)

ߙ     , > 0, ߚ > 0, ݊ ∈ ܰ,      

we get the following corollary. 
 
Corollary 6.  Let  f z  be of the form  28  and suppose that 

 
 1

=1
,

3n n
n

B A
B






 

 B B  

where 
௡ܤ  = [݊ + 1]௤ܺ௡ାଵ − [݊]௤ܺ௡ , 

and nX  is given by  27 .  Then    ,qf z A BK  with  
 2= .
1

zg z
z

 

Theorem 11.  Let   2 1
2 1=2

= n
nn

f z z X z 
  and assume that  

෍|ܤଶ௡ିଵ − |ଶ௡ାଵܤ ≤
ܤ| − |ܣ
ܤ) + 3) ,

ஶ

௡ୀଵ

 

where 
௡ܤ = [݊]௤ܺ௡ . 

Then    ,qf z A BK  with   2= .
1

zg z
z

 

Proof.  The proof of Theorem 11 follows immediately by using  13  and  

(ݖ)݃ =
ݖ

1 − ଶݖ   ܽ݊݀  (1 − (ݖ)௤݂ܦ(ଶݖ = 1 − ෍(ܤଶ௡ିଵ − ଶ௡ݖ(ଶ௡ିଶܤ .
ஶ

௡ୀଷ

 

 
CONCLUSIONS  
 
      We have combined the concept of the familiar Janowski functions and the q-derivative operator 
and defined a new subclass of ݍ-close-to-convex functions associated with the Janowski functions. 
Sufficient conditions, de Branges theorem, coefficient inequalities and sufficient conditions for 
Mittag-Leffler functions to be in the class of Janowski ݍ -close-to-convex functions have been 
discussed. Relevent connections of our results with those that are already present in the litterature 
have been pointed out.  
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