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Abstract:  A class of invex nonlinear complementarity (NCP) functions is introduced. 
The existence of such a function is illustrated by citing nontrivial examples. Some 
interesting properties of invex NCP functions have been developed. Quasi-invex NCP 
functions and their properties are also presented. 
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INTRODUCTION 

        Mangasarian [1] was the first to introduce the idea of nonlinear complementarity (NCP) 
functions, which are useful in many unconstrained and constrained optimisation problems. 
Later on, several researchers enhanced this idea and proved some more properties related to 
NCP functions. Miri and Effati [2] studied the quasi-convexity of NCP functions and some 
properties of homogeneous NCP functions and proved that there does not exist any pseudo-
convex NCP function. Thus, differentiability and convexity cannot hold simultaneously for 
NCP functions. Later on, Huang et al. [3] established that such result also holds for 
generalised complementarity problems. Galantai [4] developed various methods for 
constructing new NCP functions. Abdullah et al. [5] constructed a model related to the 
absolute-value equation and further solved it using complementarity and smoothing 
techniques. Recently, Ranjbar et al. [6] presented a one-layer neural network model for 
solving the convex optimisation problems using Karush–Kuhn–Tucker conditions, and 
Mangasarian and Solodov [7] discussed implicit Lagrangian as NCP function. A family of 
neural networks for solving NCP was considered by Alcantara and Chen [8] who also 
analysed the stability of the proposed scheme and further provided numerical simulations. 
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        Hanson [9] introduced the concept of invexity replacing the difference vector  (ݔ −
-and established Karush  ߟ in the definition of a convex function by any vector function   (ݔ̅
Kuhn-Tucker type sufficient optimality condition for a nonlinear optimisation problem. 
Craven and Glover [10] proved that the set of functions whose global minima are attained 
only on the stationary points is equivalent to the set of invex functions. Kaul and Kaur [11] 
defined quasi-convex, convex and pseudo-convex functions and some sufficient optimality 
conditions are proved for a nonlinear programming problem. 
        This paper presents some properties related to partial derivatives of NCP functions. It 
also focuses on the invex NCP functions, their properties and related results. By citing a 
nontrivial example, the existence of such functions has also been shown. An important 
property that “Every invex NCP function is not a convex function” has been proved. Some 
more properties of invex NCP and quasi-invex NCP functions are also discussed.  
 
PRELIMINARIES 
 
        In this section we recall some definitions and theorems to be used. 

Definition 1 [4].  A function ∅: ℝଶ ⟶ ℝ is called an NCP function if and only if   

,ߙ)∅ (ߚ = 0 ⟺ ߙ ≥ 0, ߚߙ = 0. 

        Some of the examples of NCP functions are 

∅(ߙ, (ߚ = min{ߙ,  ,[12] {ߚ

∅ி = ඥߙଶ + ଶߚ − ߙ) +  ,[13]  (ߚ

∅ௐ = ߙ) − ା(ߚ −  ,[14] ߙ

߶ெௌ = ߚߙ +
1

ߣ2
ߙ)]} − ା]ଶ(ߚߣ − ଶߙ + ߚ)] − ା]ଶ(ߙߣ − ߣ) {ଶߚ > 1)  [7] 

where  ݔା = max{ݔ, 0} and ିݔ = min{ݔ, 0}. 

Definition 2.  Let ݂: ℝ ⟶ ℝ be a differentiable function on ℝ. Then the function f  is said 
to be pseudo-convex if and only if  ∀ ܽ, ܾ ∈ ℝ with ݂(ܽ) < ݂(ܾ);  we have ∇݂(ܾ)்(ܽ −
ܾ) < 0. 

        Miri and Effati [2] studied some properties of generalised convex NCP functions. 
Below, we state a lemma and a theorem, which are needed in the paper. For proof and more 
details, we refer to Miri and Effati [2]. 

Lemma 1.  Suppose that ݂ is an NCP function. If the first-order partial derivatives of ݂ exist 
at (0,0), then (0,0)݂ߘ = (0,0)். 

Theorem 1.  There is no pseudo-convex NCP function.       
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PARTIAL DERIVATIVES OF NCP FUNCTIONS 

Definition 3.  A function ℎ: ℝ ⟶ ℝ is said to be homogeneous of degree ߚ ∈ ℝ if and only 
if   

ℎ(݇ܽ) = ݇ఉℎ(ܽ) 
for each ܽ ∈ ℝ and ݇ > 0. 

Lemma 2 [2].  Let ϕ be a NCP homogeneous function of degree α. Then the first-order 
partial derivatives of ϕ exist at the origin if and only if α > 1. 

Remark 1.  Following lines of Lemma 2, we can state the following result: 
        Let ߶: ℝଶ ⟶ ℝ be a homogeneous function of degree α such that ߶௫  and ߶௬  exist for 
all (ݔ, (ݕ ∈ ℝଶ.  If ߶௫  and ߶௬ are NCP functions, then ߶௫௫ and ߶௬௬  attain zero values at the 
origin if and only if α > 2. 

        Let a set Z be given by 

ܼ ≔ ,ߙ)} (ߚ ∈ ℝଶ|ߙ ≥ 0, ߚ ≥ 0, ߚߙ = 0}. 

Clearly, if ݂ is an NCP function, then ݂(ߙ, (ߚ = 0, ,ߙ)∀ (ߚ ∈ ܼ.  Further, suppose that  

ܼଵ = ,ߙ)} 0) ∈ ℝଶ|ߙ ≥ 0} and  

ܼଶ = {(0, (ߚ ∈ ℝଶ|ߚ ≥ 0} ⊂ ܼ. 

Then obviously ܼ = ܼଵ ∪ ܼଶ and ܼଵ ∩ ܼଶ = {(0,0)}.  

Theorem 2. Suppose that ݂ ∶ ℝଶ ⟶ ℝ is an NCP function and the first-order partial 
derivatives of ݂ exist on Z. Then 

൬
∂f
∂x൰

భ

= ൬
∂f
∂y൰

మ

= 0. 

Proof.  Let (ߙ, 0) ∈ ܼଵ. Then 

߲݂
ݔ߲

,ߙ) 0) = lim
→శ

݂(ܽ + ℎ, 0) − ݂(ܽ, 0)
ℎ = 0. 

(Since ݂ is an NCP function, therefore ݂(ܽ, 0) = 0 ∀ (ܽ, 0) ∈ ܼଵ).  Similarly, for (0, ܾ) ∈ ܼଶ, 
we obtain 

߲݂
ݕ߲

(0, ܾ) = 0. 

Hence the proof. 

Remark 2.  It may be noted that if  f  is an NCP function and the first-order partial 

derivatives of  ݂ exist on Z,  then  ቀడ
డ௫

ቁ on ܼଶ\{(0,0)} may not be equal to zero. For example 

݂: ℝଶ ⟶ ℝ, ݂(ܽ, ܾ) =  ඥܽଶ + ܾଶ − (ܽ + ܾ) 

is an NCP function [13], but ቀడ
డ௫

ቁ on ܼଶ\{(0,0)} = −1.  A similar argument for ቀడ
డ௬

ቁ on 

ܼଵ\{(0,0)} also holds true. 
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        Let ܨ∗ be the set of all ݂: ℝଶ ⟶ ℝ such that ݂ is an NCP function and ቀడ
డ௫

ቁ


=

ቀడ
డ௬

ቁ


= 0.  Clearly, the set ܨ∗ ≠ ∅  since  ∅ெௌ ∈  .[15] ∗ܨ

 
INVEX NCP FUNCTIONS AND THEIR PROPERTIES 

        The class of invex functions is a generalised class of differentiable convex functions. In 
this section we first define invex NCP function and illustrate it by examples.  

Definition 4 [16].  Let ܺ ⊂ ℝ be a non-empty set. A differentiable function ݂: ܺ ⟶ ℝ is 
said to be invex (ߟ convex) at ܾ ∈ ܺ if there exists a function ߟ: ܺ × ܺ → ℝ such that  

݂(ܽ) − ݂(ܾ) ≥ ,ܽ)்ߟ ܾ)∇݂(ܾ), ∀ܽ ∈ ܺ. 

        If the above definition holds for all ܾ ∈ ܺ, then the function ݂ is called invex on X.  The 
properties of an invex function [16] are reflected in the following theorem and corollary. For 
their proofs and other details, we refer to Israel and Mond [16]. 

Theorem 3.  ݂ is an invex function if and only if every stationary point is global minimum.   

Corollary 1.  If ݂ has no stationary point, then ݂ is an invex function. 

       The following are examples of invex NCP functions. 

Example 1.  Let ݂ி : ℝଶ\{(0,0)} ⟶ ℝ be defined as: 

݂ி(ߙ, (ߚ = (ඥߙଶ + ଶߚ − ߙ) +  .ଶ((ߚ

The function ݂ி is an NCP function [17].  Next, to prove that ݂ி is an invex function, we 
shall use Theorem 3. Now, 

߲ ݂ி

ߙ߲ = 2(ඥߙଶߚଶ − ߙ) + ((ߚ ൭
ߙ − ඥߙଶ + ଶߚ

ඥߙଶ + ଶߚ
൱ . 

 
Similarly, 

߲ ݂ி

ߚ߲ = 2(ඥߙଶ + ଶߚ − ߙ) + ((ߚ ൭
ߚ − ඥߙଶ + ଶߚ

ඥߙଶ + ଶߚ
൱ . 

Then the stationary points of function ݂ி  are given by 

߲ ݂ி

ߙ߲ =
߲ ݂ி

ߚ߲ = 0. 

This yields ߙ ≥ 0, β ≥ 0 and αβ = 0.  Since ݂ி  is an NCP function, therefore, the value of 
function ݂ி  at ߙ, ߚ ≥ 0 and ߚߙ = 0 is zero. Further, since ݂ி ≥ 0, ,ߙ)∀ (ߚ ∈
ℝଶ\{(0,0)},  therefore, stationary points are global minima of the function. Hence ݂ி  is an 
invex NCP function.   

Example 2. 

߶ெௌ = ߚߙ +
1

ߣ2
ߙ)]} − ା]ଶ(ߚߣ − ଶߙ + ߚ)] − ା]ଶ(ߙߣ − ߣ) {ଶߚ > 1)  
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where  ߦା = max{ߦ, 0}. 

Example 3. 

ௌ݂ௐ(ߙ, (ߚ = ቊ(ඥߙଶ + ଶߚ − ߙ) + ,ଶ((ߚ ߙ ≥ 0, ߚ ≥ 0
ଶ(ିߙ) +   ଶ,                        otherwise(ିߚ)

 

where  ିߦ = min {ξ, 0}. 

        Next we develop some properties of invex NCP functions.  We now state Theorems 4 
and 5 related with the properties of invex NCP functions whose proofs can be obtained easily. 

Theorem 4.  For any constant ܿ > 0, ݂ is invex NCP  ⟺  ݂ܿ is invex NCP. 

Theorem 5.  Let ଵ݂ and ଶ݂ be two invex NCP functions with respect to the same η.  Then 
 ଵ݂ + ଶ݂ is also invex NCP function if ݊݃ݏ( ଵ݂) = )݊݃ݏ ଶ݂).  

Theorem 6.  Every invex NCP function is not a convex function. 

Proof.  On the contrary, suppose there exists an NCP invex function ݂ which is convex also. 
Since every invex function is differentiable and we know that every differentiable convex 
function is pseudo-convex, therefore ݂ is a pseudo-convex NCP function. However, by 
Theorem 1, there does not exist any pseudo-convex NCP function. This is a contradiction as 
an NCP function is invex and convex simultaneously. Hence the proof. 

Theorem 7.  Let ݂ ∈  be a non-negative differentiable function. Then ݂ is an invex NCP  ∗ܨ
function for all (ߙ, (ߚ ∈ ܼ.   

Proof.  Let (ߙ, (ߚ ∈ ܼ. Then ݂(ߙ, (ߚ = 0 and ∇݂(ߙ, (ߚ = (0,0)் as ݂ ∈  Therefore  .∗ܨ

,ݔ)]்ߟ                                          ,(ݕ ,ߙ) ,ߙ)݂∇[(ߚ (ߚ = 0.                                                    (1)                                                   

As ݂ is a non-negative function for all (ݔ, (ݕ ∈ ℝଶ, therefore 

,ݔ)݂ (ݕ ≥ 0 = ,ߙ)݂  .(ߚ
This implies 

,ݔ)݂ (ݕ − ,ߙ)݂ (ߚ ≥ 0, 

which together with (1) yields 

,ݔ)݂ (ݕ − ,ߙ)݂ (ߚ ≥ ,ݔ)]்ߟ ,(ݕ ,ߙ) ,ߙ)݂∇[(ߚ  .(ߚ
 

Hence ݂ is an invex NCP function on ܼ. 

Theorem 8.  Let ݂ be a non-negative NCP homogeneous differentiable function of degree 
ߙ > 1. Then ݂ is an invex function at (0,0). 

Proof.  Let ݂ be a non-negative NCP homogeneous differentiable function of degree ߙ > 1. 
Then from Lemma 2, partial derivatives of ݂ exist at the origin. Also, using Lemma 1, 
∇݂(0,0) = (0,0)் .  Therefore 

,ݔ)]்ߟ                                                     ,(ݕ (0,0)]∇݂(0,0) = 0.                                                    (2) 

Also, ݂(ݔ, (ݕ ≥ 0 = ݂(0,0).  Further, it follows from (2) that 
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,ݔ)݂ (ݕ − ݂(0,0) ≥ ,ݔ)]்ߟ ,(ݕ (0,0)]∇݂(0,0). 

Hence ݂ is an invex function at (0,0). 

Theorem 9.  Let ݂: ℝଶ → ℝା ∪ {0} be an NCP function. Suppose that first-order partial 
derivatives of function ݂ exist for all (ݔ, (ݕ ∈ ℝଶ. If ௫݂  and ௬݂  are NCP functions, then ݂ is an 
invex function. 

Proof.  Let (ܽ, ܾ) ∈ ℝଶ. Since ௫݂  and ௬݂  are NCP functions, therefore 

௫݂(ܽ, ܾ) = 0 ⇒ ܽ ≥ 0, ܾ ≥ 0, ܾܽ = 0 ⇒ ௬݂(ܽ, ܾ) = 0. 

So the points ܽ, ܾ ≥ 0 and ܾܽ = 0 are stationary points of function ݂. Moreover, since ݂ is an 
NCP function, therefore ݂ attains a minimum value at these points. Hence every stationary 
point is a global minimum. Therefore ݂ is an invex function. 
 
QUASI-INVEX NCP FUNCTIONS AND THEIR PROPERTIES 
 
Definition 5 [10].  A differentiable function ݃: ܺ → ℝ (ܺ ⊂ ℝ) is said to be quasi-invex (ߟ 
quasi-convex) at ݕ ∈ ܺ  if there exists a function ߟ: ܺ × ܺ → ℝ  such that 

(ݔ)݂ ≤ (ݕ)݂ ⇒ ,ݔ)்ߟ (ݕ)݂∇(ݕ ≤ 0, ݔ∀ ∈ ܺ. 

If the above definition holds for all ݔ, ݕ ∈ ܺ, then function ݂ is called quasi-invex on ܺ. 

Theorem 10.  Let ݂ ∈  be a differentiable function. Then ݂ is a quasi-invex NCP function ∗ܨ
for all (ߙ, (ߚ ∈ ܼ. 

Proof.  Let (ߙ, (ߚ ∈ ܼ. Then ݂(ߙ, (ߚ = 0 and ∇݂(ߙ, (ߚ = (0,0)் as ݂ ∈  Since  .∗ܨ
,ߙ)݂∇ (ߚ = (0,0)், therefore 

,ݔ)]்ߟ              ,(ݕ ,ߙ) ,ߙ)݂∇[(ߚ (ߚ = 0.                                                                           

Thus, ݂(ݔ, (ݕ ≤ ,ߙ)݂ ,ݔ))்ߟ always implies that (ߚ ,(ݕ ,ߙ) ,ߙ)݂∇((ߚ (ߚ = 0 for all ݔ, ݕ ∈ ℝ. 
Hence ݂ is quasi-invex at (ߙ, ,ߙ) Then ݂ is a quasi-invex NCP function for all .(ߚ (ߚ ∈ ܼ. 

Remark 3.  It is to be noted (from Theorems 7 and 10) that if ݂ ∈  is a negative ∗ܨ
differentiable function, then ݂ is a quasi-invex NCP function, not an invex NCP function. 

Theorem 11.  Let ݂ be an NCP homogeneous differentiable function of degree ߙ > 1. Then 
݂ is a quasi-invex function at (0,0). 

Proof.  From Lemmas 1 and 2, ∇݂(0,0) = (0,0)். Hence 

,ݔ)]்ߟ              ,(ݕ (0,0)]∇݂(0,0) = 0. 

Therefore ݂(ݔ, (ݕ ≤ ݂(0,0) yields 
,ݔ))்ߟ             ,(ݕ (0,0))∇݂(0,0) = 0 

for all ݔ, ݕ ∈ ℝ.  Hence ݂ is a quasi-invex function at (0,0). 
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