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Abstract: As Aedes mosquitoes are vectors of several severe diseases, many different 
approaches have been used in attempts to control them. One important component of control 
programs is household larval surveys. To complement the labour-intensive work of these 
surveys, a smartphone-based approach was previously trialled; however the false alarm rate 
generated by this system was high. In this paper we propose an improved system architecture 
and a new detection algorithm for finding possible Aedes larvae blobs  without the need for 
stabilisation and background subtraction. With this new method, the F1 score of the processing 
system increased by 11.33% from our previously proposed technique. In addition, we 
investigated the response of Aedes and Culex larvae, which can often be confused in larval 
surveys, and verified that our system can differentiate between the two.  
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INTRODUCTION   
        Historically, millions of people have died from vector-borne diseases, and many more have 
suffered from their effects. The mosquito species Aedes aegypti and Aedes albopictus transmit a 
number of diseases including Dengue fever, Chikungunya, Zika virus and yellow fever. Dengue is 
considered to be the most severe mosquito-borne viral disease, and the annual number of infections 
has increased 30-fold over the past 50 years, to approximately 100 million worldwide [1]. Of those 
infections, around 500,000 are severe cases that require hospitalisation, and 2.5% are fatal. There 
have also been many Chikungunya outbreaks across the world over the last few decades. There are 
no effective treatments or vaccines for either dengue or Chikungunya. Despite the availability of an 
effective vaccine, there are still 200,000 yellow fever infections and 30,000 deaths annually. Although 
it is primarily mosquito-borne, Zika virus can also be transmitted from mother to child during 
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pregnancy, causing microcephaly or brain defects in some babies, and it is also associated with 
Guillain-Barre Syndrome in adults [2, 3]. Of 250 countries surveyed, 215 (86%), mostly in the tropics, 
are climatically suitable for the survival and breeding of Aedes mosquitoes, and more than half of 
these countries have reported Aedes-borne infections [4]. Thus, a large proportion of the world is at 
high risk of outbreaks of these diseases, and considerable effort is being made to control them.  
        Prevention of disease is a major concern of governments across the world, and while medical 
intervention is the main focus for many diseases, for vector-borne diseases the control of vectors 
provides another avenue for prevention. Strategies for managing populations of mosquito vectors may 
target breeding habitat, or focus on specific life cycle stages. Breeding habitat can be minimised or 
eliminated by using tight lids for water storage, and cleaning or emptying the water containers 
regularly. Larval stages can be targeted by the use of chemicals in water or by using biological control 
agents such as fish to feed on the larvae. Spraying insecticides can kill or reduce populations of 
breeding adults. Novel approaches have also been used, such as releasing genetically modified 
mosquitoes, or manipulating them with the Wolbachia bacteria [5]. 
        Mosquito surveillance is an essential component of local integrated management programs, for 
measuring the success of vector control and estimating human risk. Surveillance systems involve the 
collection of data on disease incidence, prevalence and fatalities, verification of the presence or 
absence of A. aegypti or A. albopictus, identification of the type of containers used for breeding, 
development of maps to track larval sites in a city, collection of mosquito population data and 
monitoring the effectiveness of vector control [6]. From the primary data, surveillance indicators can 
be roughly divided into a) immature stage survey indices, b) eggs per ovitrap per week, c) female 
mosquitoes per sticky gravid trap per week and d) adult infection rates, and used to estimate the level 
of risk. 
        Stegomyia indices are a standard set of indices routinely used in mosquito surveys across many 
countries. Every water-holding container in the target area is examined and classified as positive or 
negative so that the House Index (HI; the percentage of houses with at least one positive container), 
Container Index (CI; the percentage of all container with water that is positive), Breteau Index (BI; 
the number of positive containers per 100 houses) and Larva Count can be calculated. These values 
are compared with the thresholds for each disease in each location, e.g. Aedes threshold values for 
dengue transmission in Taiwan are BI = 1.2%, CI = 1.8% and HI = 1% [7]. A study of dengue in 
Brazil proposed HI = 1% [8]. 
        Because many species of mosquito larvae including Anopheles gambiae, Aedes simpsoni, Aedes 
albopictus, Aedes aegypti and Culex quinquefasciatus may live in suburban habitats , the calculation 
of these indices is labour-intensive and requires the knowledge and availability of experts [9]. The 
general procedure for larval surveys for small volume water containers (< 30 litres) is as follows: the 
larvae are transferred from the water to white bowls for identification and counting [7]. In Thailand 
the local public health officers use flashlights to identify the Aedes larvae; a typical characteristic of 
the Aedes larvae is that they are more sensitive to changes in light intensity than Culex larvae, and  
will immediately swim toward the bottom of a water container or to a darker area as they sense the 
light [10,11]. In contrast, Culex larvae, which are widespread and do not transmit severe diseases, 
respond less to the change of light intensity and spend much time filtering or resting [12]. If the 
officers observe any movement of larvae after exposure to the flashlight, they report the presence of 
the Aedes larvae to the surveillance system, which identifies high-risk areas for efficient vector 
elimination and collates all necessary information to support the dengue control and prevention 
strategy [13]. 
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        Other technologies are also used for tracking and monitoring Aedes mosquitoes and larvae, such 
as software, sensors, drones, electronic devices, mosquito traps/lures and biological tools [14]. The 
convolutional neural network (CNN) has also been applied to identify images of adult mosquitoes 
from the species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus [15]. Its best testing 
result was obtained using GoogleNet with 76.2% accuracy. A system to lure adult mosquitoes and 
then detect their presence utilised the fully convolutional network (FCN) and neural-network-based 
regression as a classifier with an accuracy of 84% [16]. The pioneering work in automatically 
detecting and classifying larvae mosquitoes used a different kind of image texture descriptors such as 
the Local Binary Pattern, the Co-Occurrence matrix and the 2-dimensional Gabor filters to identify 
Aedes larvae using a support vector machine classifier [17].  Its best classification accuracy was 79% 
using 2D Gabor filters. Another system, which consisted of a smartphone, a microscope lens and a 
support for the smartphone, captured  60-100 times amplified larvae images and differentiated Aedes 
from other species on the basis of the comb-like scales on the eighth segment of the larvae [18].  Its 
classifier, using a CNN, recognised Aedes larvae with an accuracy of 96.88% and the other types 
with 64.95%. The advanced system extended the previous one by automatically cropping of the region 
of interest with an accuracy of 92.85% and performed classification of Aedes larvae positive or 
negative using deep neural network with an accuracy of 94.19% [18,19]. All of the methods 
summarised above performed with high accuracy; however, they required additional devices to 
capture highly magnified images, requiring more specialised skills and making the process more 
costly. 

        In order to complement the routine work of using the flashlight in identifying Aedes larvae, our 
previous work proposed a system for Aedes larvae surveillance system on smartphones using a well-
known stabilisation and background subtraction algorithm to detect moving larvae [20].  However, 
the false alarm rate was high. Accordingly, we propose an improvement on the system architecture 
and the processing system for the detection of Aedes larvae in this paper. In order to confirm that the 
system can accurately distinguish Culex and Aedes larvae, we investigate their response to light and 
report the results in this paper. In the final analysis, the comparison of the proposed algorithm to our 
previous algorithm shows a significant improvement.    
 
METHODS   
System Overview   
        An overview of our improved system is depicted in Figure 1. In order to complement the routine 
work of using flashlight and surveyor’s knowledge to identify the Aedes larvae, the system employs 
popular portable devices such as smartphones or tablets equipped with a video camera, a flashlight at 
the back and a location system. This system enables anyone who has the application on the device to 
do a survey and to report it to the Aedes surveillance system. On pressing the start button, the 
application on the smartphone will switch on the flashlight at the back and at the same time capture 
a 5-second video. As Aedes larvae are sensitive to changes of light, they will move while Culex larvae 
will stay still. The video is streamed to the video processing system, and the number of Aedes larvae 
is obtained. The number of Aedes larvae, together with the geolocation of the surveyor, is then sent 
to the surveillance server for later use. The video processing system can be implemented at the user 
or the server end depending on the policy. Processing at the user end on a smartphone requires great 
computational resources, but spares bandwidth because only the number of Aedes larvae and the 
geolocation are transmitted through the communication channel. In contrast, processing at the server 
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end saves computational resources at the user end but requires higher bandwidth as the whole video 
must be transmitted. 
 

 
Figure 1.  System overview 

         
        In previous work the video processing algorithm begins with the extraction of frames from the 
video, and then a reference point on each frame is aligned to stabilise the image, to eliminate shakiness 
in the video [20].   Background subtraction is then used to isolate the moving larvae. In this work we 
instead segment the images into smaller parts using an improved algorithm after frame extraction. 
The parts that meet our criteria we call ‘blobs’, and these are saved for later processing.  The next 
step is the blob tracking, which assigns each blob in each frame to its respective path using the 
Hungarian algorithm. At the same time, the blobs with their features are classified using the Support 
Vector Machine (SVM) algorithm. After all the paths are obtained, the Aedes larvae moving paths 
are classified using the pattern-based classifier. The number of Aedes larvae moving paths are 
recorded as the number of the Aedes larvae present, which is then reported to the server. The method 
for detection of possible larvae blobs, feature extraction, the blob tracking using the Hungarian 
Algorithm, and the tracking path classification will be presented in more detail in this section. 
 
Detection of Possible Larvae Blobs    
        The general method of moving object detection in non-fixed video cameras requires 
stabilisation, which is designed to eliminate image motion caused by handshaking or platform 
movement [21]. There are different approaches to stabilisation such as smoothing methods that use 
different filter types or more sophisticated approaches that estimate the motion [22-24]. Moving 
objects are then detected through background subtraction, which averages the whole sequence of 
images or generates the background model using the Mixture of Gaussians [25,26]. However, the 
resulting binary images obtained from the background subtraction of the stabilised images are not 
entirely constructed due to the non-uniform illumination. A more complicated method for detection 
of the moving object is to segment each object in the image using colour features, edge features and 
texture features. In this work we propose a new segmentation method without stabilisation, which 
uses image gradients to segment each object and uses colour and size as parameters for blob selection. 
Algorithm 1 shows the processing step to obtain the binary sub-images of the larvae (blobs). The 
possible larvae blobs obtained from the algorithm is depicted in Figure. 2. 
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Algorithm 1.  Possible larvae blobs detection algorithm  
 

Input: Frame in RGB 
Output: Larvae blobs 
Step 1: Obtain high-gradient blobs 
1.1) Calculate the gradient magnitude of the image 

‖ܨ∇‖  =  ඥ‖∇ܨோ‖ଶ + ଶ‖ீܨ∇‖ + ோ|ீ|ܨ∇   ‖ଶ    whereܨ∇‖ =  ቂఋிೃ|ಸ|ಳ
ఋ௫

,   ఋிೃ|ಸ|ಳ
ఋ௬

ቃ 

is the gradient of the red (R) or green (G) or blue (B) component in the ݔ and ݕ  
-direction. It provides edge strength of the image. 

1.2)     Create a binary image by thresholding the gradient magnitude of the image.                       
Step 2: Exclude too big and too small blobs 
Find all 8-connected blobs of 80 to 800 pixels in the binary image which corresponds to the 

possible size of larvae.                            
 Step 3: Exclude light-spot-like blobs                         
For each blob, non-blob pixels surrounded by the blob pixels are identified. The blob may 

be excluded if all the identified pixels meet the following conditions: the RGB values of the pixel 
are all greater than 180, whereas the RGB values are represented in the range from 0 to 255, and 
the difference between the maximum and minimum of the three values (RGB) is less than 40.         

 Step 4: Obscure and trim the remaining blobs                    
 4.1) For each remaining blob, non-blob pixels surrounded by the blob pixels are included 

in the blob.                         
             4.2) Each blob is trimmed for a better representation of the possible-larva shape as follows: 
each blob pixel with a connection to a non-blob pixel is marked; then all the marked pixels are 
excluded from the blob.    

                      
 

  
Figure 2.  Binary image of possible larvae blobs 

 
Feature Extraction and Classification    
        The features we use for classifying larval postures are the number of white pixels in a blob and 
the width and length of the blob frame, which can be easily extracted from binary images. Firstly, the 
smallest rectangular frame around each blob, which is called the blob frame, must be found. We 
define two features for classification of the blobs as follows:  
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ݕܿ݊ܽݑܱܿܿ =  
 Number of white pixels in a blob

Number of all pixels the blob frame 

ݐܿ݁ݏܣ                                                     =  
min (ܽ, ܾ)
max(ܽ, ܾ) 

 
where a and b are the width and the length of the blob frame respectively.  
        The postures of the larvae can be classified into two types, the straight posture class (class 1) 
and the bent posture class (class 2). The training of the SVM algorithm is primarily processed using 
human-decision on the types of blobs in the training data set, together with their features, such that 
we obtain a classification model for the postures of the larvae [27].  The reason behind using SVM is 
that it delivers the highest classification accuracy of any tested algorithm in the classification model 
evaluation. The types of posture obtained from the classifier model are retained for later use.   
 

Blob Tracking by Hungarian Algorithm 
  
        In each frame of the binary image obtained in the detection step, there are several possible larvae 
blobs detected. We track each blob from one frame to the next, to the end of the available frames, by 
assigning the blob to the most probable path, so we know how each larva has changed its posture over 
time. The arrangement of the blobs to the tracking paths corresponds to the assignment problem that 
can generally be solved by the Hungarian algorithm.  
        The Hungarian method is a well-known combinatorial optimisation algorithm that solves the 
assignment problems [28]. It aims to assign n resources to n tasks on a one-to-one basis. The cost 
matrix ܥ is defined as 

ܥ = ൦

ܿଵ,ଵ ܿଵ,ଶ … ܿଵ,
ܿଶ,ଵ ܿଶ,ଶ … ܿଶ,

: : : :
ܿ,ଵ ܿ,ଶ … ܿ,

൪ 

 
where ܿ,  is the cost of assigning the ith resource to the jth task. The steps of the Hungarian method, 
which attempts to find the smallest possible total cost called the optimal assignment ܥ,  are shown in 
Algorithm 2 [29]. In our tracking process we assign the ݉ tracking paths to the ݊ newly detected 
blobs in the new frame using the Hungarian algorithm. At the start, all the blobs in the first frame are 
initialised to the ݉ tracking paths. The Euclidean distance between the latest blob in the ith tracking 
path, which is located at position (ݔ,  ), to the jth newly detected blob in the next frame, which isݕ
located at (ݔ,  :), is calculated asݕ

ܿ, =  ට(ݔ − )ଶݔ + ݕ) −   )ଶݕ

where ݅ ߳ 1,2, … ݉ and ݆ ߳ 1,2, … ݊. Because the number of tracks is not always equal to the number 
of the newly detected blobs (݉ ≠ ݊), there remain unmatched tracks or unassigned blobs that must 
be stored for the next assignment round when the next frame is processed. 
 
Tracking Path Classification 
  
        Once the tracking paths have been found, they cannot all be declared valid Aedes larvae paths 
because they may represent other floating particles, or Culex larvae that did not respond to the change 
of light. Hence we have to classify each moving blob to determine whether it belongs to the path of 
moving larvae.  
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Algorithm 2.  Hungarian method [29] 
 
Input: ܥ 
Output: ܥመ 
Step 1:  Subtract the smallest entry in each row of ܥ from all the entries of its row, so ̇ܥ is obtained. 
Step 2: Subtract the smallest entry in each column of  ܥ ̇ from all the entries of its column, so ̈ܥ is 
obtained. 
Step 3: Draw lines through appropriate rows and columns of ̈ܥ so that all the zero entries of the 
cost matrix are covered and the minimum number of such lines is used. So ܥሚ is obtained 
If (the minimum number of covering lines ==  n) then 
        return  ܥመ =  ;ሚܥ 
else 
        Determine the smallest of entry of ܥሚ not covered by any line.  
        Subtract this entry from each uncovered row, and then add it to each covered column to get      
the new ̈ܥ. 
        Goto Step 3; 
end 

 
 
        There are many approaches to classifying the tracking path of moving objects, which mostly 
depend on the features of the objects of interest. For fixed-shaped objects, a method for real-time 
multi-vehicle tracking and counting under a fish-eye camera [30] uses low-level features and higher-
level affinity-based association. The optimised Gaussian Mixture Model adjusts the Region of Interest 
for accurately counting the vehicles under heavy traffic conditions [31]. Another method can detect 
and track single small-shape-varying objects such as fruit fly larvae in response to odour, temperature 
and light gradients using high-resolution fixed video to determine their postures [32].  A single-sperm 
tracking method has been developed that can track a single object in occlusion using the likelihood 
obtained from the distance and velocity [33]. 
        We deploy a pattern-based classifier to classify the paths, P, derived from the Hungarian 
algorithm. A pattern describes a collection of objects, which in our case is the sequence of the posture 
classes obtained from the SVM in the larvae classification step.  Because Aedes larvae strongly 
respond to the change of light, they change their postures to move away abruptly. We can transform 
the fact into a process diagram as shown in Figure 3, which decides on the change of the posture 
classes. 
        The paths can be verified as Aedes paths if a change of posture occurs in a tracking path pi, either 
from the straight posture class to the bent posture class (1->2) or vice versa (2->1). If there is only 
one change of posture in one tracking path, then the classifier identifies an Aedes larva. Algorithm 3 
shows details of the process, where P= {p1, p2, ..., pn} is the set of paths obtained from the Hungarian 
algorithm,  pi = {ti1, ti2, …, tim} is the sequence of posture classes in the ith path, and N is the number 
of Aedes paths. If a tracking path conforms to this rule, it is recorded as an Aedes larvae path. The 
total number of the valid paths is reported to the server as the number of observed Aedes larvae. 
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Figure 3.  Process diagram for path classification 

   
Algorithm 3.  Tracking path algorithm classification  
 
Input: ܲ 
Output:  N  
Initialise:  N=0 
for  i = 1: n 
    for j= 1:m-1 
          if (tij not equal to ti(j+1) ) then 
               N++; 
               break; 
          end 
    end 
end 

 
 
RESULTS AND DISCUSSION   
 
        We performed three experiments to test the performance of the proposed system: the response 
of Aedes larvae and Culex larvae to the change of light, the training of the larval posture classifier, 
and the performance of the processing system. The results are presented below.  
 
Response of Aedes Larvae and Culex Larvae to Change of Light 
 
        To verify the different reactions of the Aedes larvae, which are our target for detection, and 
Culex larvae, which are not, we put a sample of ten Aedes larvae and ten Culex larvae in separate 
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Initializing:
- A set of path P = {p1, p2, … pn} 

with sequences of posture classes 
pi = {ti1, ti2, …, tim}

- Number of Aedes N = 0
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Stop

no

yes

yes

no

Determine the next sequence 
of posture classes



 
Maejo Int. J. Sci. Technol. 2020, 14(02), 195-208  
 

 

203

bowls for observation. We used our smartphone application to turn on the flashlight and recorded a 
video.  
        Figure 4 shows consecutively nine frames of a video file, which recorded an Aedes larva 
immediately after the light was turned on. It can be seen that the larva changes its posture from straight 
to bent posture in these nine frames. This response was seen in all ten Aedes larvae. In Figure 5 the 
nine frames of a video file recording a Culex larva immediately after the light was turned on show no 
change of posture. This was consistent for all ten Culex larvae.   
 

         
Figure 4.  Consecutive frames of video of Aedes larva 

 

         
Figure 5.  Consecutive frames of video of Culex larva 

         
        The experimental results show that our proposed system of using a flashlight together with the 
recording of video is capable of accurately distinguishing Aedes larvae from Culex larvae. The 
postures of the Aedes larvae after exposure to the abrupt change of light also change from an s-curve 
to a straight to a c-curve, which are detectable using our bent and straight posture classification. 

 
Training of Larval Posture Classifier 
 
        Training of the Aedes larval posture classifier was carried out using videos taken from a camera 
on a tripod to eliminate shaking of the video. The video was recorded with image size of 1920 x 1080 
pixels, frame rate of 25 fps and colour depth of 24 bits per pixel. From each frame we extracted 291 
larvae sub-images as our training samples. From these, we established occupancy and aspect, and 
larval postures were assessed by eye. There were 86 straight posture samples and 205 bent posture 
samples. 
        The features and the responses for the training of the larval posture classifier were processed 
using the SVM algorithm which has a polynomial kernel of order 2 with scale 0.3086, resulting in a 
total of 79% accuracy. The training was done using 5-fold cross-validation. The confusion matrix of 
the training of the larval posture classifier is shown in Table 1, where class 1 is the straight posture 
class and class 2 is the bent posture class. From the table, we calculated the performance metrics of 
predicting the straight posture class (class 1) with 62.63% precision, 72.09% recall, 81.95% 
specificity, 27.9% miss rate, 18% false alarm rate, and F1 score of 0.6701. The reason behind the miss 
rate and the false alarm rate is that some of the feature values of each class lay close to each other 

such that the SVM hyperplane could not separate them. Also, the training samples were small and the 
sample sizes of the two classes unequal, which made the SVM perform with a high miss rate and false 
alarm rate, leading to degradation of the tracking path classification. Nevertheless, the path 
classification attempted to leverage this error by checking the whole sequence in order to capture at 
least one change of the posture classes. 
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Table 1.  Confusion matrix of classifier for Aedes larvae postures obtained from SVM (class 1 = 
straight posture, class 2 = bend posture) 
 

Predicted class 1 2 
True class 

1 62 24 
2 37 168 

 

Performance of Processing System 
 
         The smartphone application for collecting video data was developed and installed on a 
smartphone with the manual features enabled. The focal distance of 12 cm, the exposure time of 
0.004356 seconds, the ISO value of 100, the frame rate of 25 fps, and the image size of 1440 x 1080 
were fixed for the flash-on environment at a selected specific distance of 12 cm. Thirty Aedes larvae 
were put in light-coloured containers and ten users participated in data collection to account for 
individual variation in filming technique and camera movement. The users attempted to hold the 
camera at 12 cm from the container and minimise camera-shake during recording; there were 115 
files in total. We tested only the Aedes larvae without Culex larvae in the container because the Culex 
larvae do not change their postures, as shown in the previous experiment.  
        The ground-truth of all paths of moving larvae were generated by human decision and these data 
were used to assess the performance of the system. The measurement matrices for the correctness of 
the system compared to the ground-truth are precision (P) and recall (R) [34]. Recall (R) or sensitivity 
is the fraction of considered instances retrieved over the total number of the considered instances. In 
our case the considered instances that have been retrieved (TP) are the moving larvae that the system 
correctly detects, and the total number of considered instances (TP + FN) is the moving larvae in the 
ground-truth, where FN is the number of false negatives. Precision (P), or the positive predictive 
value, is the proportion of the considered instances that have been retrieved to the total number of 
retrieved instances, but in this case the total number of retrieved instances (TP + FP) is the number 
of moving larvae stated by the system, where FP is the number of false positives. 
        Optimal performance would deliver precision and recall values close to 1, but in reality the best 
we can do is to leverage between precision and recall. To compare the detection and tracking 
performance of different systems, the F-measure is deployed, which is defined as   

ఉܨ =
ଶߚ) + 1)ܴܲ

ଶܲߚ + ܴ  

where ߚ is a parameter that controls balance between precision (P) and recall (R) [35]. If ܨ ,1 = ߚଵ is 
the harmonic mean of P and R. If 1 < ߚ, the F measure places more emphasis on recall. On the other 
hand, if 1 > ߚ, the F-measure places more emphasis on precision. An efficient classification system 
has an ܨଵ score close to 1. 
        Table 2 shows the performance of the present system compared to previous methods in terms of 
recall, precision and F1 scores. The results of 2D Gabor filter+SVM, AlexNet DNN and Deep Robust 
Network systems annotated in Table 2 are transformed into the shown performance metrics from the 
reported values [17-19]. These methods processed images with an magnification of 60X or more, 
which permitted the identification of the diagnostic character for Aedes larvae (comb-like scales on 
the 8th segment) used for classification. In contrast our present system relies purely on a smartphone 
camera and images are not magnified. Our previous method required stabilisation to remove jerky 
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image motion, and then the background image was constructed by averaging 20 frames [20]. After 
that, only the first ten frames were processed, which is equal to the number of frames processed in 
the present system. Moving objects were extracted by subtracting the frame from the background 
image and were segmented using the local threshold to obtain the possible larvae blobs. The possible 
blobs were filtered by size and grey-scale colour. The next steps were similar to our present system, 
involving path assignment with the Hungarian algorithm, blobs classification and finally path 
classification.  
 
Table 2.  Performance comparison of present and previous systems 
 

Algorithm Recall  Precision  ܨଵ 
2D Gabor filter+SVM [17] 77.41% 79.99% 0.787 

AlexNet DNN [18] 100.0% 76.92% 0.870 
Deep robust network [19] 94.57% 93.83% 0.942 

Previous system [20] 87.66% 55.15% 0.665 
Present system 81.69% 70.08% 0.741 

 

        As seen in Table 2, the systems which use magnified images have higher performance than our 
system, especially that using the deep robust network which has the highest recall at 94.57% and 
precision at 93.83% [19]. The system that uses 2D Gabor filter as a descriptor and classifies using 
SVM [17] has recall at 77.41% and precision at 79.99%, which is not much higher than our 
performance. In terms of F1 scores, the system using deep robust network [19] performs the best and 
the other minuscule image processing systems [17, 18] are also better than our present system.  In 
terms of image classification, the deep neural network [18, 19] can classify images with the highest 
performance but requires many training images, while SVM gives an acceptable result using a limited 
number of training samples. However, all of these systems require additional devices to magnify 
images, which increases the cost and requires special training to use. 
        Although our previous method [20] has higher recall than our present system (R = 87.66% vs 
81.69%), it has lower precision (P = 55.15% vs 70.08%). Thus, it detects more larvae but reports 
more incorrectly. The superiority of the present system in terms of precision is due to a better blob 
detection algorithm which processes on RGB instead of only the grey-scale image of the previous 
system. The finer rejection of the unwanted blobs and blob shapes helps to improve the precision of 
the algorithm since the larval posture classifier is more effective. Another significant merit of the 
present algorithm is that image stabilisation is not required. The resulting F1 score of the present 
system is equal to 0.741, which is around 11.33% higher than that of the previous system. However, 
it is still not perfect as the F1 score is not close to 1.  
        The behaviour of the user is also one of several causes of classification errors in our system. For 
example, some people cannot estimate camera distance accurately, which means the blobs are out of 
the preset focal plane and illumination is insufficient. The larvae at the bottom of the container  appear 
smaller than the preset threshold and so are filtered out, causing FN errors. The blob classifier model, 
which has 79% accuracy in the training, can cause errors in the final classification procedure, such as 
introducing more FP errors or FN errors when the classifier cannot identify the posture correctly. The 
Hungarian algorithm that assigns each blob to the tracking path can also be in error in the case of 
occlusion, where two or more blobs overlap or are very close together and so are detected as a single 
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blob. However, this rarely affects our system because we track the movement with only ten frames 
or 0.4 second so the larvae have not moved too far away from their original location.  
 
Suggestions for Future Improvements 
 
        A more effective method for calibration of the distance between the camera and the container is 
required to improve the performance. The constraints of the light-coloured container should be 
resolved, which may require a more complex segmentation method for each frame. A more thorough 
classifier such as CNN and DNN may be used to improve the posture classifier performance at the 
cost of a more complex computation and the requirement of a greater number of balanced training 
samples.  

 
CONCLUSIONS   
 
        Our system provides an alternative solution that is easy to implement and requires only a smart 
phone or equivalent. It is inexpensive and available to users without the need for extensive training, 
and will contribute to the effectiveness of wide-scale testing for the control and prevention of 
outbreaks of dengue fever and other mosquito-borne illnesses.  
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