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Abstract: In this paper we define the Jacobsthal-circulant-Hurwitz sequences of the first,
second and third kind by using of the Hurwitz matrices which are obtained from the
characteristic polynomials of the Jacobsthal-circulant sequences of the first, second and third
kind. Then we obtain miscellaneous properties of these sequences.
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INTRODUCTION

Deveci and Karaduman [1] defined the Jacobsthal-circulant sequences of the first, second
and third kind respectively:

Jo==I_ +J -2, forn>3whereJ; =J, =0and J}, =1,

P=) -2 -3 forn>4whereJ’ =J; =] =0and J; =1

n

and

P==23 -0+  forn>5whereJ; =], =J; =J, =0and J; =1.
Let P be an n™ —degree real polynomial given by
P(x)=ayx"+ax"" +..+a, x+a,.

Hurwitz [2] defined the Hurwitz matrix [H .= [hy] } associated with P:
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a, a, as 0 0 O
a, a, a, :
0 a a
a, a, 0
H, = 0 g a,
: a, a, 0
0 a,, a,
a,; a,, 0
0 0 O a,, a,, a,|

Suppose that the (n+ k)th term of a sequence is defined recursively by a linear combination

of the preceding & terms:
a,., = ca,+ca

n

an Tt G, s

where c¢,,c,,...,c,_, are real constants. Kalman [3] derived a number of closed-form formulas for
the generalised sequence by the companion matrix method as follows:

o I 0 -~ 0 0
o o0 1 - 0 0
0O 0 0 . 0 0
A= [ai’j}kxk =l. . . . .
0 0 O 0 1
_CO Cl c2 ck—Z ck—l _
Then by an inductive argument, he obtained
aO an
A" a.l — an+]
Ay Ay

for n>0.

It 1s well known that Jacobsthal numbers, circulant matrix and Hurwitz matrix appear in
modern research in many fields from mathematics, physics, computer science, architecture to nature
and art [4-16]. The theory of the Jacobsthal circulant sequences of the first, second and third kind
were introduced by Deveci and Karaduman [1]. Some linear recurrence sequences were defined and
given their various properties by matrix methods [17-28]. This paper expands the concept to the
Jacobsthal-circulant-Hurwitz numbers which are defined by using circulant and Hurwitz matrices.
Firstly, we define the Jacobsthal-circulant-Hurwitz sequences of the first, second and third kind by
using the Hurwitz matrices which are obtained from the characteristic polynomials of the
Jacobsthal-circulant sequences of the first, second and third kind. Then we derive the relationships
between the generating matrices and the elements of the Jacobsthal-circulant-Hurwitz sequences of
the first, second and third kind. Furthermore, we obtain the Binet formulas for the Jacobsthal-
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circulant-Hurwitz sequences of the three kinds by matrix methods. Finally, we give miscellaneous
properties of the Jacobsthal-circulant Hurwitz sequences of the three kinds, such as the generating
functions, the permanent and determinant representations and the sums.

ON JACOBSTHAL-CIRCULANT-HURWITZ NUMBERS

It is easy to see that the characteristic polynomials of the Jacobsthal-circulant sequences of
the first, second and third kind respectively:
f(])(x)Z ¥+ xt—x+2,
f(z)(x)Z xt—x?+2x+1
and

f(3)(x)=x5 +2x% +x—1.

Then we can write the following Hurwitz matrices for the polynomials f (‘)(x), f (2)(x) and
F9(x) respectively:

1 20
W=l1 -1 of,
0 1 2
0 2 00
|- 1o
0 0 20
0 -1 1
and
[0 2 -1 0 O]
10 1 0 0
1¥=lo 0 2 -1 ol
01 0 1 0
00 0 2 -1]

Now we define the Jacobsthal-circulant-Hurwitz sequences of the first, second and third
kind by using 39, 1% and J® matrices respectively:

x (n)= 2x (n-1)- x\ (n-2)+ x\ (n—3) forn>3

where x (1)= x") (2)=0and x" (3)=1, M
x? (n)= x? (n-2)+ 2x? (n-3)- x? (n—4) forn>4 )
where x? (1)= x? (2)= x? (3)=0and x? (4)=1
and
x® (n)= —x") (n-3)+ x® (n—4)+ 2x" (n—5) forn>5 3)

where x©) (1)= x®) (2)= x®) (3)= x®) (4)=0and x®) (5)=1.

By equations (1), (2) and (3), we can write the following companion matrices respectively:
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2 -1 1
JH(I)[IO,
0
01 2 -1
e |1 00 0
010 0
001 0

and
[0 0 -1 1 2]
10 000
JHY=lo 1 0 0 o]
00 1 00
00 01 0]

We call the matrices JH('), JH® and JH® by Jacobsthal-circulant-Hurwitz matrices of the first,
second and third kind.

Let x* (n) be denoted by x*) for k=1,2,3. By inductive argument, we may write for

n=2:
XSJ)J Xn]J)r,—X,(:J),z Xl(qlJ)rz
(O) =] x0, xW=xl 1,
x0 o x —xl x
X0k xhe2nl )]
e R
Xov2  Xnsz Xy +2X“+1 Xnel
i xh G x
and
xU xB xB o B L xB ok B
i xs x axfhexl o axd,
() =, w0 <0 2 a2l |,
xih ka2
xhoxl <0 2ax e 2x()

from which it is clear that det(JH(]))n = (JH(Z) )n =1 and det(JH(3))n =2".
It is clear that each of the eigenvalues of the matrices JH('), JH® and JH® is distinct. Let
{ocgl),oc(;),ocg])}, {ocl(z),oc(zz),ocgz),ocgz)} and {oc,(3),ocg),ocf),ocf),af)} be the sets of the eigenvalues of

the matrices JH('), JH® and JH® respectively and let V* be (k+2)><(k+2) Vandermonde

matrix as follows:
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B (x(k) k+1 oc(k) k+1 oc(k) k+17]
(@) () ()
o ()|
o
1 1 1
where k =1,2,3. Suppose now that
_ (afk) )n+k+2—i
\Ni(k) _ (a(zk))n+k+2_i
(agi)z )'n+k+2—i

and Vi(,?) is a (k+2)x(k+2) matrix obtained from V" by replacing the j" column of V¥ by

W(k). This yields the Binet-type formulas for the Jacobsthal-circulant-Hurwitz matrices of the first,
second and third kind, as stated in the following theorem.

Theorem 1. Let xflk) be the n™ term of the sequence of the k™ kind for k =1,2,3. Then
(k)
h(}(’n) _ det \/i,j
! det V¥
where (JH(k) )n = [h(.k’"q such that k=1,2,3.

]

(k)

Proof. Since the eigenvalues of the matrix JH" are distinct, it is diagonalisable. Let

pY = diag(oc](]),oc(zl),ocgl)),
p? = diag(ocgz),oc(zz),ocgz),ocgz))
and
D® = diag(oc$3),oc(23),ocg”,ocf),ocg}) )
Then it is readily seen that JH¥V® = v¥WD®M  Since the matrix V) is invertible,
(V(k))_] JHMVE = p).
Thus, the matrix JH™ is similar to D So we get
(JH(") )“ v — ) (D(k))

for n >1. Then we can write the following linear system of equations for n > 1:

n
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hl(]k,n)(agk))kn +hn) (Oh(k))k . (al(k))n+k+2—i

h(k,n) (a(zk))kﬂ +h(k’n) ((ng))k +---+h§:;"2) (a(zk))n+k+2—i

il i2

il i2

h(k,n) (agi)z )k+] + h(k’n) ((181)2 )k +e-t hl(:+nz) (agi)z

)n+k+2—i
So, the following can be obtained:
det Vi(',()

hgk”_d—(’lk) fork=1,2,3andi,j=12,....k+2. 0
etV

Then we can give the Binet formulas for the Jacobsthal-circulant-Hurwitz numbers of the
first, second and third kind by the following corollary.

Corollary 1. Let xflk) be the n™ term of the Jacobsthal-circulant-Hurwitz numbers of the first,
second and third kind. Then

L0 _ det V3(]3)
! det v’
L0 det Vﬁ)
det V?
and
NON det V5(,35)
! 2det V®

The generating functions of the Jacobsthal-circulant-Hurwitz sequences of the first, second
and third kind are, respectively:

and
5

(3) — X
8 (X) 2% —xt x40

Now we consider the permanent representations of the Jacobsthal-circulant-Hurwitz
sequences of the first, second and third kind.

Definition 1. A uxv real matrix M = [mi’j] is called a contractible matrix in the k™ column

(resp. row.) if the k™ column (resp. row.) contains exactly two non-zero entries.

Let x,,X,,...,x, be row vectors of the matrix M and let M be contractible in the k™
column with m;, #0,m;, #0 and i# j. Then the (u—1)x(v—1) matrix M, is obtained from
M by replacing the i row with m,, x; + m,, x; and deleting the j" row. The k" column is called

the contraction in the k™ column relative to the i" row and the j" row.
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Brualdi and Gibson [29] showed that per(M)=per(N) if M is a real matrix of order
o >1 and N is a contraction of M.

Let P(])(m):[ §]}], P(z)(m):[pfiq and P(3)(m):[ 1(3” be the mxm super-diagonal
matrices defined respectively by

2 ifi=tand j=tfor 1<t<m,
ifi=tand j=t+2for1<t<m-2
) 1 and

pg’j: i=t+land j=tfor 1<t<m-1,
-1 ifi=tand j=t+1for I<Tt<m-1,
0 otherwise
where m >3,
2 ifi=tandj=t+2for1<t<m-2,
ifi=tand j=t+1for1<t<m-1
R o
’ i=t+land j=tfor 1I<t<m-1,
-1 ifi=trand j=t+3for IST<m-3,
0 otherwise
where m >4, and
2 ifi=tandj=1+4for ISt<m-4,
ifi=tand j=t+3 for1<t<m-3
pl(?j): 1 and

i=t+land j=tfor IST<m-1,
-1 ifi=tand j=t+2for 1<t<m-2,

0 otherwise

where m>5. Then we have the following theorem.
Theorem 2. For k=1,2,3 and m>k +2,
per(P(k) (m)) =x" (m +k+ 2).
Proof. Let us consider k =1 and let the equation holds for m > 3. Then we show that the equation

holds for m + 1. If we expand per(P(]) (m)) by Laplace expansion of the permanent with respect to

the first row, then we obtain

per(P(]) (m+1)) = 2per(P(]) (m))—per(P(]) (m—l))+per(P(l) (m—2)).
Since per(P(]) (m)) =x" (m+3), per(P(l) (m—l)) =x" (m+ 2) and per(P(]) (m—2)) =x" (m+1) ,
we easily obtain per(P(]) (m+1)) =x"(m+4). So the proof is complete.

The proofs for k =2,3 are similar to the above and are omitted. 0
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Let Q" (m):[ (])J, QY (m):[ (?J and Q(3)(m):[ (3)J be the mxm matrices

1,] 1, L]

defined respectively by

2 ifi=tandj=tfor 1<t<m-1,
ifi=tand j=t+2for IST1<m-2
0 1 and

ql(’j: i=t+land j=tfor 1I<t<m-1,
-1 ifi=tand j=t+1for IST<m-1,
0 otherwise
where m >3,
2 ifi=tandj=1+2for ISt<m-3,
ifi=tand j=t+1for1<t<m-2
= o
i=t+land j=tfor 1I<t<m-1,
-1 ifi=trand j=t+3for IST<m-3,
0 otherwise
where m >4, and
2 ifi=tandj=t+4for I<t<m-4,
ifi=tand j=t+3for 1<t<m-4
CL(,?Z 1 and

i=t+land j=tfor 1I<t<m-1,

-1 ifi=tand j=1+2 for IST<m-3,

0 otherwise

where m > 5.

Theorem 3. i. For m >3,
per Q" (m)) = x (m).
ii. For m>4,
per(Q (m)) =~ (m).
iii. Form>5,
per(Q (m)) = 25" (m).
Proof. Let us consider the matrix Q(Z) (m) and let the equation hold for m > 4. Then we show that

the equation holds for m+1. If we expand per(Q(z) (m)) by Laplace expansion of the permanent
according to the first row, then we obtain

per(Q(z) (m + 1)) = per(Q(z) (m - 1)) + 2per(Q(2) (m - 2)) - per(Q(z) (m - 3))
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Also, since per(Q(z) (m —1)) = —x"(m-1), per(Q(z) (m —2)) = —x" (m-2) and
per(Q(z) (m —3)) =—x”(m-3), it is clear that per(Q(z) (m +1)) =x” (m+1).

The proofs for the matrices Q" (m) and Q" (m) are similar. 0

Assume that the m x m matrices R (m)= [rl(:‘q for k =1,2,3 are defined by

(m—k—2)th
J
1 0 0

for m >k +2.
R(k)(m):

I

Q(k) (m—l)

0

Then we can give more general results by using other permanent representations than the above.

Theorem 4. i. For m >3,

m—1

per(R(]) (n)) = Zx(]) (1)

i

ii. For m > 4,

iii. For m > 3,

Proof. i. If we extend per(R(]) (m)) with respect to the first row, we can write

per(R(]) (m)) = per(R(]) (m - 1)) + per(Q(l) (m - 1))
Thus, by the results and an inductive argument, the proof is easily seen.

The proofs for the matrices R'” (m) and R” (m) are similar. 0

Let the notation AoK denote the Hadamard product of A and K. A matrix A is called
convertible if there is an mxm (1, -1)-matrix K such that per(A)=det(A-K).

Let m>k+2 and let T be the m x m matrix defined by
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111 11
-1 1 1 11

ro Lo 11
1 1 -1 11

R ETEE N B I

It is easy to see that per(P(k)( )):det(P(k)(m)oT), per(Q(k)(m)):det(Q(k)(m)oT) and

per(R( '(m )) det( ) Then we have the following useful results.
Corollary 2. i. det(P" ( oT)=x" (m+k+2), for k=1,2,3.
ii. det(Q(])(m)oT :x()(m) for m > 3,

and det(Q(3)(m)oT):2x(3)(m) for m > 5.

)
)

i, det(R" (m)oT) =Y x" (i) for m >3,
)

and det(R(3) (m) oT) —23yx® (i) form > 5.

Now we consider the sums of Jacobsthal-circulant-Hurwitz numbers of the first, second and
third kind. Let

S, = Zn:x(k)
i=l1

for i>1 and k =1,2,3. Suppose that (T(k) )n are the (k +2)x (k +2) matrices such that

Then it can be shown by induction that
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(T = : ()

CONCLUSIONS

We have defined the Jacobsthal-circulant-Hurwitz sequences of the first, second and third
kind. Using the roots of their characteristic polynomials, we have produced their Binet formulas.
Furthermore, we have given the generating functions, the permanent and determinant
representations and the sums of these sequences.
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