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Abstract:  In this paper we define the Jacobsthal-circulant-Hurwitz sequences of the first, 
second and third kind by using of the Hurwitz matrices which are obtained from the 
characteristic polynomials of the Jacobsthal-circulant sequences of the first, second and third 
kind. Then we obtain miscellaneous properties of these sequences. 
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INTRODUCTION  
 

Deveci and Karaduman [1] defined the Jacobsthal-circulant sequences of the first, second 
and third kind respectively: 

 
1 1 1 1 1 1 1
n n 1 n 2 n 3 1 2 3J J J 2J  for n 3 where J J 0 and J 1,           

2 2 2 2 2 2 2 2
n n 2 n 3 n 4 1 2 3 4J J 2J J  for n 4 where J J J 0 and J 1           

and 
3 3 3 3 3 3 3 3 3
n n 3 n 4 n 5 1 2 3 4 5J 2J J J  for n 5 where J J J J 0 and J 1.             

 
Let P  be an thn  degree real polynomial given by 
 

....=)( 1
1

10 nn
nn axaxaxaxP  
  

 
Hurwitz [2] defined the Hurwitz matrix =n ij n n

H h


      associated with P : 
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Suppose that the   thn k term of a sequence is defined recursively by a linear combination 

of the preceding k  terms: 
0 1 1 1 1= ,n k n n k n ka c a c a c a        

 
where 110 ,,, kccc   are real constants. Kalman [3] derived a number of closed-form formulas for 
the generalised sequence by the companion matrix method as follows: 
 

,

0 1 2 2 1

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

= = .

0 0 0 0 1
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Then by an inductive argument, he obtained 
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for 0n  . 
        It is well known that Jacobsthal numbers, circulant matrix and Hurwitz matrix appear in 
modern research in many fields from mathematics, physics, computer science, architecture to nature 
and art [4-16]. The theory of the Jacobsthal circulant sequences of the first, second and third kind 
were introduced by Deveci and Karaduman [1]. Some linear recurrence sequences were defined and 
given their various properties by matrix methods [17-28]. This paper expands the concept to the 
Jacobsthal-circulant-Hurwitz numbers which are defined by using circulant and Hurwitz matrices. 
Firstly, we define the Jacobsthal-circulant-Hurwitz sequences of the first, second and third kind by 
using the Hurwitz matrices which are obtained from the characteristic polynomials of the 
Jacobsthal-circulant sequences of the first, second and third kind. Then we derive the relationships 
between the generating matrices and the elements of the Jacobsthal-circulant-Hurwitz sequences of 
the first, second and third kind. Furthermore, we obtain the Binet formulas for the Jacobsthal-
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circulant-Hurwitz sequences of the three kinds by matrix methods. Finally, we give miscellaneous 
properties of the Jacobsthal-circulant Hurwitz sequences of the three kinds, such as the generating 
functions, the permanent and determinant representations and the sums. 
 
ON JACOBSTHAL-CIRCULANT-HURWITZ NUMBERS 
 

It is easy to see that the characteristic polynomials of the Jacobsthal-circulant sequences of 
the first, second and third kind respectively: 

 
   ,2= 231  xxxxf  
   12= 242  xxxxf  

and 
   .12= 253  xxxxf  

 
Then we can write the following Hurwitz matrices for the polynomials   xf 1 ,   xf 2  and 

  xf 3  respectively: 
 

 1

1   2 0
J = 1 1 0 ,

0   1 2

 
  
  

 

 2

0   2   0 0
1 1   1 0

J =
0   0   2 0
0   1 1 1

 
  
 
  

 

and 

 3

0 2 1   0   0
1 0   1   0   0

J = .0 0   2 1   0
0 1   0   1   0
0 0   0   2 1

 
 
 
 
 
 
  

 

 
Now we define the Jacobsthal-circulant-Hurwitz sequences of the first, second and third 

kind by using  1J ,  2J  and  3J  matrices respectively: 
 

               
           

1 1 1 1

1 1 1

x n = 2x n 1 x n 2 x n 3  for n > 3

          where x 1 = x 2 = 0 and x 3 = 1,

    
 (1) 

               
               

2 2 2 2

2 2 2 2

x n = x n 2 2x n 3 x n 4  for n > 4 

      where x 1 = x 2 = x 3 = 0 and x 4 = 1

    
 (2) 

and 
               

                   

3 3 3 3

3 3 3 3 3

x n = x n 3 x n 4 2x n 5  for n > 5

where x 1 = x 2 = x 3 = x 4 = 0 and x 5 = 1.

     
 (3) 

 
By equations (1), (2) and (3), we can write the following companion matrices respectively: 
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 1

2 1 1
JH = 1   0 0 ,

0   1 0

 
 
 
  

 

 2

0 1 2 1
1 0 0   0

JH =
0 1 0   0
0 0 1   0

 
 
 
 
 
 

 

and 

 3

0 0 1 1 2
1 0   0 0 0

JH = .0 1   0 0 0
0 0   1 0 0
0 0   0 1 0

 
 
 
 
 
 
  

 

 
We call the matrices  1JH ,  2JH  and  3JH  by Jacobsthal-circulant-Hurwitz matrices of the first, 
second and third kind. 

Let    kx n  be denoted by  k
nx  for k 1,2,3 . By inductive argument, we may write for 

n 2 : 

  
       

       

       

1 1 1 1
n 3 n 1 n 2 n 2

n1 1 1 1 1
n 2 n n 1 n 1

1 1 1 1
n 1 n 1 n n

x x x x

JH x x x x ,

x x x x

   

  

 

 
 

  
 

  

 

  

         

         

         

         

2 2 2 2 2
n 4 n 5 n 2 n 3 n 3

2 2 2 2 2
n2 n 3 n 4 n 1 n 2 n 2

2 2 2 2 2
n 2 n 3 n n 1 n 1

2 2 2 2 2
n 1 n 2 n 1 n n

x x x 2x x

x x x 2x x
JH

x x x 2x x

x x x 2x x

    

    

   

  

   
 

   
  

   
    

 

and 

  

           

           

           

           

           

3 3 3 3 3 3
n 5 n 6 n 7 n 3 n 4 n 4

3 3 3 3 3 3
n 4 n 5 n 6 n 2 n 3 n 3

n3 3 3 3 3 3 3
n 3 n 4 n 5 n 1 n 2 n 2

3 3 3 3 3 3
n 2 n 3 n 4 n n 1 n 1
3 3 3 3 3 3

n 1 n 2 n 3 n 1 n n

x x x 2x x 2x

x x x 2x x 2x
JH ,x x x 2x x 2x

x x x 2x x 2x

x x x 2x x 2x

     

     

     

    

   

  
 

  
    
   
   

 

 
from which it is clear that      n n1 2det JH JH 1   and   n3 ndet JH 2 . 

It is clear that each of the eigenvalues of the matrices  1JH ,  2JH  and  3JH  is distinct. Let 
      1 1 1
1 2 3, ,   ,         2 2 2 2

1 2 3 4, , ,     and           3 3 3 3 3
1 2 3 4 5, , , ,      be the sets of the eigenvalues of 

the matrices  1JH ,  2JH  and  3JH respectively and let kV  be    k 2 k 2    Vandermonde 
matrix as follows: 
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k 1 k 1 k 1k k k
1 2 k 2

k k kk k k
1 2 k 2k

k k k
1 2 k 2

V ,

1 1 1

  







    
 
   

 
 
    
  





  



 

 
where k 1,2,3 . Suppose now that 

 

  
  

  

n k 2 ik
1

n k 2 ik
k 2

i

n k 2 ik
k 2

W

  

  

  



  
 
   

 
 
  


 

 
and  k

i, jV  is a    k 2 k 2    matrix obtained from  kV  by replacing the thj  column of  kV  by 
 k
iW . This yields the Binet-type formulas for the Jacobsthal-circulant-Hurwitz matrices of the first, 

second and third kind, as stated in the following theorem. 
 
Theorem 1.  Let  k

nx  be the thn  term of the sequence of the thk  kind for k 1,2,3 . Then 

 
 

 

k
k,n i, j

ij k

det V
h ,

det V
  

where     nk k,n
ijJH h     such that k 1,2,3 .  

Proof.  Since the eigenvalues of the matrix  kJH  are distinct, it is diagonalisable. Let  
        1 1 1 1

1 2 3D diag , , ,     

          2 2 2 2 2
1 2 3 4D diag , , ,      

and 
            3 3 3 3 3 3

1 2 3 4 5D diag , , , , .       
 
Then it is readily seen that        k k k kJH V V D . Since the matrix  kV  is invertible, 

        1k k k kV JH V D .


  

Thus, the matrix  kJH  is similar to  kD .  So we get  
         n nk k k kJH V V D  

for n 1 .  Then we can write the following linear system of equations for n 1 : 
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k 1 k n k 2 ik,n k k,n k k,n k
i1 1 i2 1 ik 2 1

k 1 k n k 2 ik,n k k,n k k,n k
i1 2 i2 2 ik 2 2

k 1 k n k 2 ik,n k k,n k k,n k
i1 k 2 i2 k 2 ik 2 k 2

h h h

h h h

h h h .

   



   



   

   

       


      



       









 

 
So, the following can be obtained: 

                              
 

 

 

k
i, jk,n

ij k

det V
h  for k 1,2,3 and i, j 1, 2, , k 2.

det V
    

                     
�  

 
Then we can give the Binet formulas for the Jacobsthal-circulant-Hurwitz numbers of the 

first, second and third kind by the following corollary.  
Corollary 1.  Let  k

nx  be the thn  term of the Jacobsthal-circulant-Hurwitz numbers of the first, 
second and third kind.  Then  

 
 

 

1
3,31

n 1

det V
x ,

det V
  

 
 

 

2
4,42

n 2

det V
x

det V
   

and 

 
 

 

3
5,53

n 3

det V
x .

2det V
 

  
The generating functions of the Jacobsthal-circulant-Hurwitz sequences of the first, second 

and third kind are, respectively: 
 

   
3

1
3 2

xg x ,
x x 2x 1


   

 

   
4

2
4 3 2

xg x
x 2x x 1


  

 

and 

   
5

3
5 4 3

xg x .
2x x x 1


   

 

 
Now we consider the permanent representations of the Jacobsthal-circulant-Hurwitz 

sequences of the first, second and third kind. 
 

Definition 1.  A u v  real matrix i, jM m     is called a contractible matrix in the thk  column 
(resp. row.) if the thk  column (resp. row.) contains exactly two non-zero entries.  
 

Let 1 2 ux , x , , x  be row vectors of the matrix M and let M  be contractible in the thk
column with i,km 0 , j,km 0  and i j . Then the    u 1 v 1    matrix ij:kM  is obtained from 
M  by replacing the thi  row with i,k j j,k im x m x  and deleting the thj  row. The thk  column is called 

the contraction in the thk  column relative to the thi  row and the thj  row. 
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Brualdi and Gibson [29] showed that    per M per N  if M  is a real matrix of order 

1   and N  is a contraction of M . 
Let      1 1

i, jP m p    ,      2 2
i, jP m p     and      3 3

i, jP m p     be the m m  super-diagonal 

matrices defined respectively by 
 

 1
i, j

  2 if  i  and j  for 1 m,
if  i  and j 2 for 1 m 2

  1 and
p   

i 1 and j  for 1 m 1,
1 if  i  and j 1 for 1 m 1,

  0 otherwise

      
         


          
        

  

where m 3,  

 2
i, j

  2 if  i  and j 2 for 1 m 2,
if  i  and j 1 for 1 m 1

  1 and
p

i 1 and j  for 1 m 1,
1 if  i  and j 3 for 1 m 3,

  0 otherwise

        
         


          
         



 

where m 4, and  

 3
i, j

  2 if  i  and j 4 for 1 m 4,
if  i  and j 3 for 1 m 3

  1 and
p

i 1 and j  for 1 m 1,
1 if  i  and j 2 for 1 m 2,

  0 otherwise

       
         


          
         

   

where m 5.   Then we have the following theorem. 
 
Theorem 2.  For k 1,2,3  and m k 2  , 

        k kper P m x m k 2 .    
 
Proof.  Let us consider k 1  and let the equation holds for m 3 . Then we show that the equation 
holds for m 1 . If we expand     1per P m  by Laplace expansion of the permanent with respect to 

the first row, then we obtain 
                   1 1 1 1per P m 1 2per P m per P m 1 per P m 2 .       

Since                  1 1 1 1per P m x m 3 ,  per P m 1 x m 2      and         1 1per P m 2 x m 1   , 

we easily obtain         1 1per P m 1 x m 4   . So the proof is complete.                           

          The proofs for k 2,3  are similar to the above and are omitted.                                             �  
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Let      1 1
i, jQ m q    ,      2 2

i, jQ m q     and      3 3
i, jQ m q     be the m m  matrices 

defined respectively by  
 

 1
i, j

  2 if  i  and j  for 1 m 1,
if  i  and j 2 for 1 m 2

  1 and
q

i 1 and j  for 1 m 1,
1 if  i  and j 1 for 1 m 1,

  0 otherwise

       
         


          
        

  

where m 3,  
 

 2
i, j

  2 if  i  and j 2 for 1 m 3,
if  i  and j 1 for 1 m 2

  1 and
q

i 1 and j  for 1 m 1,
1 if  i  and j 3 for 1 m 3,

  0 otherwise

       
         


          
         



 

where m 4, and 

 3
i, j

  2 if  i  and j 4 for 1 m 4,
if  i  and j 3 for 1 m 4

  1 and
q

i 1 and j  for 1 m 1,
1 if  i  and j 2 for 1 m 3,

  0 otherwise

        
        


          
         



 where m 5.  
 
Theorem 3.  i. For m 3 , 

        1 1per Q m x m .  

ii. For m 4 , 
        2 2per Q m x m .   

iii. For m 5 , 
        3 3per Q m 2x m .  

 
Proof.  Let us consider the matrix    2Q m  and let the equation hold for m 4 . Then we show that 

the equation holds for m 1 . If we expand     2per Q m  by Laplace expansion of the permanent 
according to the first row, then we obtain 
 

                   2 2 2 2per Q m 1 per Q m 1 2per Q m 2 per Q m 3 .        
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Also, since         2 2per Q m 1 x m 1 ,            2 2per Q m 2 x m 2     and 
        2 2per Q m 3 x m 3    ,  it is clear that         2 2per Q m 1 -x m 1   . 

          The proofs for the matrices    1Q m  and    3Q m  are similar.                                                �  
  
          Assume that the m m  matrices      k k

i, jR m r     for k 1,2,3  are defined by 
 

 

       

th

k
k

m k 2

1 1 0 0
1

 for m k 2.
0

R m
0 Q m 1

0

 


 
 
   
 

  
 

 
 
  





 

 
Then we can give more general results by using other permanent representations than the above. 
 
Theorem 4.  i. For m 3 , 

        
m 1

1 1

i 1
per R n x i .





  

ii. For m 4 , 
        

m 1
2 2

i 1
per R n x i .





   

iii. For m 5 , 

        
m 1

3 3

i 1
per R n 2 x i .





   
 
Proof. i.  If we extend     1per R m  with respect to the first row, we can write 

              1 1 1per R m per R m 1 per Q m 1 .     

Thus, by the results and an inductive argument, the proof is easily seen.    
        The proofs for the matrices    2R m  and    3R m  are similar.                              �  
 
         Let the notation A K  denote the Hadamard product of A  and K . A matrix A  is called 
convertible if there is an m m  (1, -1)-matrix K  such that    per A det A K  . 

         Let m k 2   and let T  be the m m  matrix defined by  
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  1   1 1     1 1
1   1 1     1 1

  1 1 1     1 1
T .

       
  1   1 1   1 1
  1   1   1 1 1

 
  
 

  
 
 
 

 







     





 

 
        It is easy to see that          k kper P m det P m T  ,          k kper Q m det Q m T   and 

         k kper R m det R m T  . Then we have the following useful results. 
 
Corollary 2.  i.          k kdet P m T x m k 2 ,  for k 1,2,3.     

ii.                     1 1det Q m T x m  for m 3,   

            2 2det Q m T x m  for m 4    

 and                 3 3det Q m T 2x m  for m 5.   

iii.                    
m 1

1 1

i 1
det R m T x i  for m 3,





   

            
m 1

2 2

i 1
det R m T x i  for m 4





    

 and                 
m 1

3 3

i 1
det R m T 2 x i  for m 5.





   

 
         Now we consider the sums of Jacobsthal-circulant-Hurwitz numbers of the first, second and 
third kind.  Let  

   
n

k
n

i 1
S x i



  

for i 1  and k 1,2,3 . Suppose that   nkT  are the    k 2 k 2    matrices such that 
 

   k k

1 0 0
1

T .0 JH

0

 
 
 
 
 
 
 
 





 

 
Then it can be shown by induction that 
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n k 1

n knk
nk

n 1

n

1 0 0 0 0
S
S

T .
JH

S
S

 





 
 
 
 
 
 
 
 
 
 




 

 
 
CONCLUSIONS  
 

We have defined the Jacobsthal-circulant-Hurwitz sequences of the first, second and third 
kind. Using the roots of their characteristic polynomials, we have produced their Binet formulas. 
Furthermore, we have given the generating functions, the permanent and determinant 
representations and the sums of these sequences. 
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