Maejo International Journal of Science and Technology

ISSN 1905-7873 Available online at www.mijst.mju.ac.th

μ -Proximity structure via hereditary classes

Esra Dalan Yildirim

Department of Mathematics, Faculty of Science and Letters, Yasar University, 35100-İzmir, Turkey

E-mail: esra.dalan@yasar.edu.tr

Received: 11 August 2020 / Accepted: 21 May 2021 / Published: 1 June 2021

Abstract: A new generalised μ -proximity structure is obtained using hereditary class on a set.

Keywords: generalised topology, hereditary class, µ-proximity

INTRODUCTION

Császár [1-3] introduced and investigated the notions of generalised topology and hereditary class. Then many authors such as Carpintero et al. [4], Renukadevi and Vimaladevi [5] and Qahis and Noiri [6] have used these concepts to extend classical topological concepts.

Efremovič [7] introduced proximity structure, which plays an important role in many problems of topological spaces such as compactification. Then Lodato and others [8-11] investigated generalised proximity structures. Especially, Hosny and Tantawy [8] constructed a new proximity structure via ideals and Mukherjee et al. [10] defined μ -proximity and proved that every proximity space is a μ -proximity space. In addition, they introduced quasi μ -proximity as a generalisation of μ -proximity.

In this paper we construct a kind of μ -proximity via hereditary classes. Firstly, we define a local function with respect to μ -proximity and hereditary classes and give its basic properties. Then by using this function, we establish a new quasi μ -proximity and investigate its relations to μ -proximity.

Full Paper

PRELIMINARIES

Let *X* be a non-empty set and let $\wp(X)$ denote the power set of *X*. Then $\mu \subset \wp(X)$ is called a generalised topology (GT) on *X* [1, 2] if $\emptyset \in \mu$ and $G_i \in \mu$ for $i \in I \neq \emptyset$ imply $G = \bigcup_{i \in I} G_i \in \mu$. The pair (X, μ) is called a generalised topological space (GTS). The elements of μ are called μ -open sets and the complements of μ -open sets are called μ -closed sets. Let (X, μ) be a GTS and $A \subset X$. The μ -closure of *A*, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing *A* and the μ interior of *A*, denoted by $i_{\mu}(A)$, is the union of all μ -open sets contained in *A*. Then $c_{\mu}(A)$ is a μ closed set and $x \in c_{\mu}(A)$ if and only if $x \in G \in \mu$ implies $G \cap A \neq \emptyset$. A map $\varphi: X \to \wp(\wp(X))$ is called a generalised neighbourhood system [2] on *X* if for each $x \in X$, $V \in \varphi(x)$ implies $x \in V$. Then $V \in \varphi(x)$ is called a generalised neighbourhood of $x \in X$. If μ is a GT on *X*, then we can define a generalised neighbourhood system φ_{μ} on *X* by $\varphi(x) = \{A: x \in G \subset A \text{ for some } G \in \mu\}$ for $x \in X$. In addition, μ is normal [12] if and only if whenever *F* and *F'* are μ -closed sets such that $F \cap F' = \emptyset$, there exist μ -open sets *G* and *G* satisfying $F \subset G, F' \subset G'$ and $G \cap G' = \emptyset$.

A non-empty family \mathfrak{H} of subsets of a non-empty set X is called a hereditary class [3] if $A \subset B$ and $B \in \mathfrak{H}$; then $A \in \mathfrak{H}$. \mathfrak{H} is said to be μ -codense [3] if $\mu \cap \mathfrak{H} = \{\emptyset\}$ and strongly μ -codense [3] if $G, G' \in \mu$ and $G \cap G' \in \mathfrak{H}$; then $G \cap G' = \emptyset$.

A binary relation δ_{μ} on $\mathscr{P}(X)$ is called a μ -proximity [10] on X if δ_{μ} satisfies the following conditions for $A, B, C, D \in \mathscr{P}(X)$:

- (1) $A\delta_{\mu}B$ if and only if $B\delta_{\mu}A$;
- (2) If $A\delta_{\mu}B$, $A \subset C$ and $B \subset D$, then $C\delta_{\mu}D$;
- (3) $x\delta_{\mu}x$ for each $x \in X$;

(4) $A\overline{\delta_{\mu}}B$ implies there exists *C* such that $A\overline{\delta_{\mu}}C$ and $(X \setminus C)\overline{\delta_{\mu}}B$.

Also, δ_{μ} is said to be quasi μ -proximity if it satisfies (2), (3) and (4).

Proposition 1 [10]. Let (X, δ_{μ}) be a μ -proximity space (or quasi μ -proximity space) and let a subset *A* of *X* be defined to be δ_{μ} -closed if and only if $x\delta_{\mu}A$ implies $x \in A$. Then the collection of complements of all δ_{μ} -closed sets produce a GT $\mu = \tau(\delta_{\mu})$ on *X*.

Proposition 2 [10]. Let (X, δ_{μ}) be a μ -proximity space (or quasi μ -proximity space) and $\mu = \tau(\delta_{\mu})$. Then $c_{\delta_{\mu}}(A) = \{x: x \delta_{\mu} A\}$ is the μ -closure of $A \subset X$. Also, $G \in \tau(\delta_{\mu})$ if and only if $x \overline{\delta_{\mu}}(X \setminus G)$ for each $x \in G$.

In this paper the members of $\tau(\delta_{\mu})$ will be called δ_{μ} -open sets.

Lemma 1 [10]. Let (X, δ_{μ}) be a μ - proximity space and $A, B \subset X$. Then

$$A\delta_{\mu}B \Leftrightarrow c_{\delta_{\mu}}(A) \delta_{\mu} c_{\delta_{\mu}}(B)$$

where the μ -closure is taken with respect to $\tau(\delta_{\mu})$.

Definition 1 [10]. Let (X, δ_{μ}) be a μ -proximity space and $A, B \subset X$. *B* is called a δ_{μ} -neighbourhood of *A* if $A\overline{\delta_{\mu}}(X \setminus B)$; it is denoted by $A \ll_{\mu} B$.

Theorem 1 [10]. Let (X, δ_{μ}) be a μ -proximity space. Then the relation \ll_{μ} satisfies the following conditions for $A, B, C, D \in \mathcal{D}(X)$:

(1) $A \ll_{\mu} B$ implies $A \subset B$;

Maejo Int. J. Sci. Technol. 2021, 15(02), 129-136

- (2) $A \subset B \ll_{\mu} C \subset D$ implies $A \ll_{\mu} D$;
- (3) $A \ll_{\mu} B$ implies $(X \setminus B) \ll_{\mu} (X \setminus A)$;
- (4) $A \ll_{\mu} B$ implies there exists $C \subset X$ such that $A \ll_{\mu} C \ll_{\mu} B$.

Remark 1 [10]. Let (X, δ_{μ}) be a μ -proximity space and $A \subset X$. Then each δ_{μ} -neighbourhood is also a $\tau(\delta_{\mu})$ -neighbourhood of A.

HEREDITARY μ -PROXIMITY SPACES

In this section we define the local function with respect to a hereditary class and μ -proximity. Also, we study its several properties.

Definition 2. A μ -proximity space (X, δ_{μ}) with a hereditary class \mathfrak{H} is hereditary μ -proximity space denoted by $(X, \delta_{\mu}, \mathfrak{H})$. For each subset *A* of *X* is defined the local function of *A* with respect to δ_{μ} and \mathfrak{H} as follows:

$$A^*(\delta_{\mu}, \mathfrak{H}) = \bigcup \{ x \in X : U \cap A \notin \mathfrak{H} \text{ for all } \delta_{\mu} - neighbourhood U \text{ of } x \}$$

We will simply write A^* or $A^*(\mathfrak{H})$ for $A^*(\delta_{\mu}, \mathfrak{H})$.

Proposition 3. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A, B \subset X$. Then the following hold:

- (1) $A \subset B$ implies $A^* \subset B^*$;
- (2) $A \in \mathfrak{H}$ implies $A^* = \emptyset$.

Proof.

- (1) Let $x \in A^*$ for $x \in X$. We have $U \cap A \notin \mathfrak{H}$ for each δ_{μ} -neighbourhood U of x. This implies $U \cap B \notin \mathfrak{H}$ since $A \subset B$. Then we have $x \in B^*$.
- (2) Since $A \in \mathfrak{H}$, it is obvious by Definition 2.

In the following example it is shown that A^* and A are independent of each other and the local function with respect to δ_{μ} and \mathfrak{H} is not closed under finite union.

Example 1. Let \mathfrak{H} be a hereditary class and let δ be an indiscrete proximity on any set X. That is, $A\delta B$ for every pair of non-empty subsets A and B of X. Since δ is a proximity, then it is also a μ -proximity. If $A \in \mathfrak{H}$, then $A^* = \emptyset$ and if $A \notin \mathfrak{H}$, then $A^* = X$. Also, let $A, B \in \mathfrak{H}$ and $A \cup B \notin \mathfrak{H}$. Then we have $(A \cup B)^* = X \neq A^* \cup B^* = \emptyset$.

Theorem 2. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$. Then $A^*(\tau(\delta_{\mu}), \mathfrak{H}) \subset A^*(\delta_{\mu}, \mathfrak{H})$.

Proof. Let $x \notin A^*(\delta_{\mu}, \mathfrak{H})$. Then there exists a δ_{μ} -neighbourhood U of x such that $U \cap A \in \mathfrak{H}$. Since U is a δ_{μ} -neighbourhood of x, it is also $\tau(\delta_{\mu})$ -neighbourhood of x. Thus, we get $x \notin A^*(\tau(\delta_{\mu}), \mathfrak{H})$.

Proposition 4. Let (X, δ_{μ}) be a μ -proximity space and let \mathfrak{H}_1 and \mathfrak{H}_2 be two hereditary classes on X. $\mathfrak{H}_1 \subset \mathfrak{H}_2$ implies $A^*(\mathfrak{H}_2) \subset A^*(\mathfrak{H}_1)$ for $A \subset X$.

Proof. Let $x \in A^*(\mathfrak{H}_2)$. Then for every δ_{μ} -neighbourhood U of $x, U \cap A \notin \mathfrak{H}_2$. This implies that $U \cap A \notin \mathfrak{H}_1$ by the hypothesis. Thus, we obtain $x \in A^*(\mathfrak{H}_1)$. \Box

Definition 3. Let δ^1_{μ} and δ^2_{μ} be two μ -proximities on a non-empty set *X*. Then δ^2_{μ} is called finer than δ^1_{μ} , denoted by $\delta^1_{\mu} < \delta^2_{\mu}$, if $A\delta^2_{\mu}B$ implies $A\delta^1_{\mu}B$ for $A, B \subset X$.

Proposition 5. Let δ^1_{μ} and δ^2_{μ} be two μ -proximities on a non-empty set *X*. If $\delta^1_{\mu} < \delta^2_{\mu}$, then $\tau(\delta^1_{\mu}) \subset \tau(\delta^2_{\mu})$.

Proof. Let $A \in \tau(\delta_{\mu}^{1})$. Then $x \overline{\delta_{\mu}^{1}}(X \setminus A)$ for each $x \in A$. Since $\delta_{\mu}^{1} < \delta_{\mu}^{2}$, it follows that $x \overline{\delta_{\mu}^{2}}(X \setminus A)$. Thus, we get $A \in \tau(\delta_{\mu}^{2})$.

Proposition 6. Let δ^1_{μ} , δ^2_{μ} be two μ -proximities on a non-empty set *X* and let δ^2_{μ} be finer than δ^1_{μ} . Then for any hereditary class \mathfrak{H} on *X* and for $A \subset X$, we have $A^*(\delta^2_{\mu}, \mathfrak{H}) \subset A^*(\delta^1_{\mu}, \mathfrak{H})$.

Proof. Let $x \notin A^*(\delta^1_\mu, \mathfrak{H})$. Then there exists a δ^1_μ -neighbourhood U of x such that $U \cap A \in \mathfrak{H}$. By hypothesis, U is also δ^2_μ -neighbourhood of x. Thus, we obtain $x \notin A^*(\delta^2_\mu, \mathfrak{H})$.

Lemma 2. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$.

- (1) If $\mathfrak{H} = \{\emptyset\}$, then $A^*(\delta_\mu, \{\emptyset\}) = c_{\delta_\mu}(A)$.
- (2) If $\mathfrak{H} = \mathfrak{O}(X)$, then $A^*(\delta_{\mu}, \mathfrak{O}(X)) = \emptyset$.

Proof.

- (1) Let x ∉ c_{δµ}(A). Then we have x δ_µA by Proposition 2. This implies that X\A is a δ_µ-neighbourhood of x. Since A ∩ (X\A) = Ø ∈ 𝔅, we have x ∉ A*(δ_µ, {Ø}). For the other inclusion, let x ∉ A*(δ_µ, {Ø}). Then there exists a δ_µ-neighbourhood U of x such that U ∩ A ∈ 𝔅 = {Ø}. This implies U ∩ A = Ø. So we have x δ_µA. Thus, we get x ∉ c_{δµ}(A).
- (2) For each $x \in X$ and for each δ_{μ} -neighbourhood U of x, $U \cap A \in \mathfrak{H} = \mathfrak{S}(X)$. So $A^*(\delta_{\mu}, \mathfrak{S}(X)) = \emptyset$.

Proposition 7. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$. Then the following hold.

- (1) $A^* \subset c_{\delta_u}(A)$.
- (2) $x \,\delta_{\mu} A^*$ implies $x \delta_{\mu} A$.

Proof.

- (1) Let $x \notin c_{\delta_{\mu}}(A)$. Then we have $x\overline{\delta_{\mu}}A$, which implies that $x \ll_{\mu} X \setminus A$. So $X \setminus A$ is a δ_{μ} -neighbourhood of x such that $A \cap (X \setminus A) = \emptyset \in \mathfrak{H}$. Thus, we obtain $x \notin A^*$.
- (2) Let $x\delta_{\mu}A^*$. Then we obtain $x \delta_{\mu}c_{\delta_{\mu}}(A)$ from (1). Since $c_{\delta_{\mu}}(A)$ is δ_{μ} -closed, we have $x \in c_{\delta_{\mu}}(A)$. Thus, we get $x\delta_{\mu}A$.

The following example shows that the converse implication of Proposition 7(2) may not be true in general.

Example 2. Let $\mathfrak{H} = \{\emptyset, \{b\}, \{c\}\}$ be a hereditary class and δ be a discrete proximity on $X = \{a, b, c\}$. That is, $A\delta B$ if and only if $A \cap B \neq \emptyset$ for $A, B \subset X$. δ is also a μ -proximity on X. Let $A = \{a, c\} \subset X$. Then $c\delta A$, but $c \,\overline{\delta}A^* = \{a\}$.

Lemma 3. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$. If *G* is a δ_{μ} -open set and $G \cap A \in \mathfrak{H}$, then $G \cap A^* = \emptyset$.

Proof. Let *G* be a δ_{μ} -open set and assume to the contrary that $G \cap A^* \neq \emptyset$. Then there exists $x \in X$ such that $x \in G$ and $x \in A^*$. Since *G* is a δ_{μ} -open set containing *x*, we get $x \ll_{\mu} G$. Therefore, we have $G \cap A \notin \mathfrak{H}$.

Proposition 8. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$. Then A^* is δ_{μ} -closed.

Proof. Let $x \notin A^*$. Then there exists a δ_{μ} -neighbourhood *V* of *x* such that $V \cap A \in \mathfrak{H}$. Since *V* is a δ_{μ} -neighbourhood of *x*, it is also a $\tau(\delta_{\mu})$ -neighbourhood of *x*. This implies that there exists a δ_{μ} open set *G* containing *x* such that $G \subset V$. So we have $G \cap A \in \mathfrak{H}$. By Lemma 3, we obtain $G \cap A^* = \emptyset$. Thus, we get $x\overline{\delta_{\mu}}A^*$. Hence A^* is δ_{μ} -closed.

Proposition 9. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$. Then $A \subset A^*$ if and only if $A^* = c_{\delta_{\mu}}(A)$.

Proof. Necessity: Assume that $A \subset A^*$. From Proposition 7(1) we have $A^* \subset c_{\delta_{\mu}}(A)$. Suppose that $x \notin A^*$. From Proposition 8 we get $x \overline{\delta_{\mu}}A^*$. By hypothesis, $x \overline{\delta_{\mu}}A$. Thus, $x \notin c_{\delta_{\mu}}(A)$. So we have $c_{\delta_{\mu}}(A) \subset A^*$.

Sufficiency: Let $A^* = c_{\delta_{\mu}}(A)$ and $x \notin A^*$. Thus, $x \notin c_{\delta_{\mu}}(A)$ implies $x \overline{\delta_{\mu}}A$. Therefore, we have $x \ll_{\mu} X \setminus A$. Hence $\{x\} \subset X \setminus A$, that is $x \notin A$.

Proposition 10. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$. If A is δ_{μ} -closed, then $A^* \subset A$.

Proof. Let *A* be δ_{μ} -closed and $x \notin A$. Then $x \ll_{\mu} X \setminus A$. Since $A \cap (X \setminus A) = \emptyset \in \mathfrak{H}$, we have $x \notin A^*$.

The following corollary follows from Proposition 8 and Proposition 10.

Corollary 1. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$. Then $(A^*)^* \subset A^*$.

Theorem 3. Let (X, μ) be a normal generalised topological space and $A, B \subset X$. Then the relation δ_{μ}^{n} on X given by

 $A\delta_{\mu}^{n}B$ if and only if $c_{\mu}(A) \cap c_{\mu}(B) \neq \emptyset$

defines a μ -proximity.

Proof.

- (1) $A\delta^n_\mu B$ if and only if $B\delta^n_\mu A$.
- (2) Suppose that $A\delta_{\mu}^{n}B, A \subset C$ and $B \subset D$. Since $A\delta_{\mu}^{n}B$, then $c_{\mu}(A) \cap c_{\mu}(B) \neq \emptyset$. This implies $c_{\mu}(C) \cap c_{\mu}(D) \neq \emptyset$. Thus, $C\delta_{\mu}^{n}D$.
- (3) Since $\{x\} \subset c_{\mu}(\{x\})$ for each $x \in X$, we have $\{x\}\delta_{\mu}^{n}\{x\}$.
- (4) Assume that $A\overline{\delta_{\mu}^{n}}B$. Thus, $c_{\mu}(A) \cap c_{\mu}(B) = \emptyset$. Since (X,μ) is a normal GTS, there exist two μ -open sets G and G' such that $c_{\mu}(A) \subset G$, $c_{\mu}(B) \subset G'$ and $G \cap G' = \emptyset$. Therefore, we have $c_{\mu}(A) \cap c_{\mu}(X \setminus G) = \emptyset$ and $c_{\mu}(B) \cap c_{\mu}(X \setminus G') = \emptyset$. If we take E = G', then $A\overline{\delta_{\mu}^{n}}E$ and $B\overline{\delta_{\mu}^{n}}(X \setminus E)$.

The following example shows that the converse implication of Proposition 10 may not be true in general.

Example 3. Let $X = \{a, b, c, d\}, \mu = \{\emptyset, X, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \mathfrak{H} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}\}$ and $A = \{a, b\}$. Consider μ -proximity δ_{μ}^{n} in Theorem 3. It is obvious that (X, μ) is normal GTS. Then $A^{*}(\delta_{\mu}^{n}) = \emptyset \subset A$ but A is not δ_{μ}^{n} -closed.

Proposition 11. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$. Then $(A \cup A^*)^* \subset A^*$.

Proof. Let $x \notin A^*$. There exists a δ_{μ} -neighbourhood V of x such that $V \cap A \in \mathfrak{H}$. Then there exists a δ_{μ} -open set G containing x such that $G \subset V$. Then $G \cap A \in \mathfrak{H}$. By Lemma 3, $G \cap A^* = \emptyset$. Therefore, $G \cap (A \cup A^*) = G \cap A \in \mathfrak{H}$. Since G is also a δ_{μ} -neighbourhood of x, we have $x \notin (A \cup A^*)^*$.

Theorem 4. Let (X, μ) be a μ -proximity space with strongly μ -codense hereditary class \mathfrak{H} according to GT $\mu = \tau(\delta_{\mu})$ and $\emptyset \neq A \subset X$. Then

- (1) If A is δ_{μ} -open, $A \subset A^*$.
- (2) If A is δ_{μ} -open, $A \notin \mathfrak{H}$.

Proof.

- (1) Let A be δ_μ-open and x ∉ A*. Then there exists a δ_μ-neighbourhood V of x such that V ∩ A ∈ S. V is also a τ(δ_μ)-neighbourhood of x. Therefore, there exists a δ_μ-open set G containing x such that G ⊂ V. So we have G ∩ A ∈ S. Since S is strongly μ-codense, we obtain G ∩ A = Ø and since x ∈ G, it follows that x ∉ A.
- (2) Let *A* be δ_{μ} -open. Assume that $A \in \mathfrak{H}$. From (1) and Proposition 3 (2), we have $A = \emptyset$. This contradicts our hypothesis. So $A \notin \mathfrak{H}$.

Theorem 4 may not be true in general if \mathfrak{H} is not a strongly μ -codense hereditary class. The following example verifies this fact.

Example 4. Consider Example 2. \mathfrak{H} is not a strongly μ -codense hereditary class according to GT $\mu = \tau(\delta) = \mathscr{D}(X)$. Therefore, $A \not\subseteq A^* = \{a\}$ and $B \in \mathfrak{H}$ although $A = \{a, c\}$ and $B = \{c\}$ are δ -open.

The following corollary follows from Proposition 7(2) and Theorem 4(1).

Corollary 2. Let (X, δ_{μ}) be a μ -proximity space with strongly μ -codense hereditary class \mathfrak{H} and A be a δ_{μ} -open subset of X. Then $x \ \delta_{\mu} A^*$ if and only if $x \delta_{\mu} A$.

NEW μ -PROXIMITY GENERATED BY $c^*_{\delta_{\mu}}$

In this last section we prove the main theorems on our new μ -proximity space.

Theorem 5. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$. Then the operator $c_{\delta_{\mu}}^{*}(A) = A \cup A^{*}$ satisfies the following conditions.

(1)
$$A \subset c^*_{\delta_{\mu}}(A)$$
.
(2) $A \subset B$ implies $c^*_{\delta_{\mu}}(A) \subset c^*_{\delta_{\mu}}(B)$.
(3) $c^*_{\delta_{\mu}}(c^*_{\delta_{\mu}}(A)) = c^*_{\delta_{\mu}}(A)$.
(4) $c^*_{\delta_{\mu}}(A) \subset c_{\delta_{\mu}}(A)$.

Proof.

- (1) It is obvious.
- (2) Let $A \subset B$. Then $c^*_{\delta_{\mu}}(A) = A \cup A^* \subset B \cup B^* = c^*_{\delta_{\mu}}(B)$.
- (3) Since $A \subset c^*_{\delta_{\mu}}(A)$, we have $c^*_{\delta_{\mu}}(A) \subset c^*_{\delta_{\mu}}(c^*_{\delta_{\mu}}(A))$ by (2). For the other inclusion, we have $c^*_{\delta_{\mu}}(c^*_{\delta_{\mu}}(A)) = c^*_{\delta_{\mu}}(A \cup A^*) = (A \cup A^*) \cup (A \cup A^*)^* \subset (A \cup A^*) \cup A^* = c^*_{\delta_{\mu}}(A)$ by Proposition 11.
- (4) Let $x \in c^*_{\delta_{\mu}}(A)$. If $x \in A$, then $x \delta_{\mu} A$ implies $x \in c_{\delta_{\mu}}(A)$. If $x \in A^*$, then $x \in c_{\delta_{\mu}}(A)$ from Proposition 7.

The following remark follows from Lemma 2.

Remark 2. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A \subset X$. Then

- (1) If $\mathfrak{H} = \{\emptyset\}, \ c^*_{\delta_{\mu}}(A) = c_{\delta_{\mu}}(A).$
- (2) If $\mathfrak{H} = \mathfrak{P}(X), \ c^*_{\delta_u}(A) = A.$

Theorem 6. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A, B \subset X$. Then the relation δ_{μ}^* which is defined by

 $A\delta_{\mu}^{*}B$ if and only if $A \cap c_{\delta_{\mu}}^{*}(B) \neq \emptyset$

is a quasi μ -proximity on X. Moreover, it is finer than δ_{μ} .

Proof.

- (1) Let Aδ^{*}_μB, A ⊂ C and B ⊂ D. Since Aδ^{*}_μB, we have A ∩ c^{*}_{δμ}(B) ≠ Ø. Now A ⊂ C and B ⊂ D imply C ∩ c^{*}_{δμ}(D) ≠ Ø. Thus, Cδ^{*}_μD.
- (2) Since $\{x\} \subset c^*_{\delta_{\mu}}(\{x\})$, we obtain $\{x\} \cap c^*_{\delta_{\mu}}(\{x\}) = \{x\} \neq \emptyset$. Thus, $x \delta^*_{\mu} x$ for each $x \in X$.
- (3) Let $A \ \overline{\delta_{\mu}^*}B$. Then $A \cap c_{\delta_{\mu}}^*(B) = \emptyset$. Assume $C = c_{\delta_{\mu}}^*(B)$. Thus, $A \cap c_{\delta_{\mu}}^*(C) = \emptyset$ implies $A \ \overline{\delta_{\mu}^*}C$. Also, $(X \setminus C) \cap c_{\delta_{\mu}}^*(B) = \emptyset$ implies $(X \setminus C) \overline{\delta_{\mu}^*}B$.

Hence δ_{μ}^* is a quasi μ -proximity. Let $A\delta_{\mu}^*B$. Then $A \cap c_{\delta_{\mu}}^*(B) \neq \emptyset$ implies $c_{\delta_{\mu}}(A) \cap c_{\delta_{\mu}}(B) \neq \emptyset$. \emptyset . Thus, we have $A\delta_{\mu}B$ by Lemma 1. So δ_{μ}^* is finer than δ_{μ} .

Theorem 7. Let $(X, \delta_{\mu}, \mathfrak{H})$ be a hereditary μ -proximity space and $A, B \subset X$. Then the following hold.

- (1) $A^*(\delta^*_{\mu}, \mathfrak{H}) \subset A^*(\delta_{\mu}, \mathfrak{H}).$
- (2) If A is δ_{μ} closed, it is also δ_{μ}^* -closed.

(3)
$$c^*_{\delta_u}(A) = c_{\delta^*_u}(A).$$

Proof.

- (1) It is clear since $\delta_{\mu} < \delta_{\mu}^*$.
- (2) Let *A* be δ_{μ} -closed and $x \delta_{\mu}^* A$. Since $\delta_{\mu} < \delta_{\mu}^*$, we have $x \delta_{\mu} A$. This implies by hypothesis that $x \in A$. Thus, *A* is also δ_{μ}^* -closed.
- (3) Let $x \in c^*_{\delta_{\mu}}(A)$. Then we have $\{x\} \cap c^*_{\delta_{\mu}}(A) \neq \emptyset$. By Theorem 6, we get $x\delta^*_{\mu}A$. Thus, we obtain $x \in c_{\delta^*_{\mu}}(A)$. So $c^*_{\delta_{\mu}}(A) \subset c_{\delta^*_{\mu}}(A)$. The other inclusion is proved in a similar way. \Box

The following example shows that the converse implication of Theorem 7(2) is not true.

Example 5. Consider Example 3. Then A is $\delta_{\mu}^{n^*}$ -closed but it is not δ_{μ}^{n} -closed.

REFERENCES

- 1. Á. Császár, "Generalized open sets", Acta Math. Hungar., 1997, 75, 65-87.
- 2. Á. Császár, "Generalized topology, generalized continuity", *Acta Math. Hungar.*, **2002**, *96*, 351-357.
- 3. Á. Császár, "Modification of generalized topologies via hereditary classes", *Acta Math. Hungar.*, **2007**, *115*, 29-36.
- 4. C. Carpintero, E. Rosas, M. Salas-Brown and J. Sanabria, "μ-Compactness with respect to a hereditary class", *Bol. Soc. Paran. Mat.*, **2016**, *34*, 231-236.
- 5. V. Renukadevi and P. Vimaladevi, "Note on generalized topological spaces with hereditary classes", *Bol. Soc. Paran. Mat.*, **2014**, *32*, 89-97.
- 6. A. Qahis and T. Noiri, "Functions and weakly μH-compact spaces", Europ. J. Pure Appl. Math., 2017, 10, 410-418.
- 7. V. A. Efremovič, "The geometry of a proximity", Mat. Sb., 1952, 31, 189-200.
- 8. R. A. Hosny and O. A. E. Tantawy, "New proximities from old via ideals", *Acta Math. Hungar.*, 2006, 110, 37-50.
- 9. M. W. Lodato, "On topologically induced generalized proximity relations II", *Pasific J. Math.*, **1966**, *17*, 131-135.
- 10. M. N. Mukherjee, D. Mandal and D. Dey, "Proximity structure on generalized topological spaces", *Afr. Mat.*, **2019**, *30*, 91-100.
- 11. S. A. Naimpally and B. D. Warrack, "Proximity Spaces", Cambridge University Press, Cambridge, **1970**.
- 12. Á. Császár, "Normal generalized topologies", Acta Math. Hungar., 2007, 115, 309-313.
- © 2021 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for noncommercial purposes.