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Abstract: This paper indicates the possibility of using near infrared (NIR) spectroscopy as a 
rapid method of predicting quantitatively fruit firmness of apple. A hundred “Fuji” apples 
were used as the study target in the experiment. A partial least square (PLS) algorithm was 
used to perform the calibration. To decide upon the number of PLS factors included in the 
PLS model, the model was chosen according to the lowest root mean square error of cross-
validation (RMSECV) in training. The correlation coefficient R between the NIR predicted 
and the reference results for the test set were used as an evaluation parameter for the models. 
The best experimental results were obtained as follows: the PLS calibration model in fruit 
firmness determination was achieved with 12 PLS factors under MSC preprocessing method. 
The correlation coefficient between the NIR spectroscopy prediction results and reference 
measurement result was R = 0.74893. The study demonstrates that NIR spectroscopy 
technology with multivariate calibration analysis could be successfully applied as a rapid 
method to predict fruit firmness of apples. 
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Introduction 

 Apples are one of the most popular fruits across the world. “Fuji” apples are one of the most 
cultivated commercial apple cultivars in global production. With a raised consumption, quality control 
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of apples is becoming increasingly important. Fruit firmness is one of the important quality parameters 
used for assessing apple quality [1-6]. Currently, fruit firmness is commonly measured with the 
Magness–Taylor (MT) firmness tester or similar testing devices. Yet, this quality measurement method 
is often destructive, inefficient or time consuming, and prone to operational error. Thus, a 
nondestructive sensing technique that is capable of measuring quality parameters of apple including 
fruit firmness would be of great value in ensuring consistently high quality fruits for the consumer.  

 Abundant literature exists on nondestructive sensing techniques for determining fruit firmness. For 
example, multispectral imaging based on light scattering principle was attempted to measure the 
internal quality of fruits including firmness [7-10]. First, the absorption and scattering properties of 
apple tissue over the visible and near infrared regions were acquired by multispectral imaging system, 
then a curve fitting algorithm for a steady-state diffusion theory model was proposed to determine 
absorption and reduced scattering coefficients from the spatially-resolved multispectral reflectance 
profiles. Finally, predictive model for measuring apple fruit firmness and soluble solid content (SSC) 
were calibrated by simple multi-regression analysis. Although, multispectral imaging is simple, fast 
and easily applied to measuring fruit firmness, precision of measuring results is not satisfying, 
especially in measuring fruit firmness; the correlative coefficient is often less than 0.7.  

 Additionally, in measuring fruit firmness, past research was largely focused on using mechanical 
methods, such as quasi-static compression, vibration, impact, and sonic or ultrasonic sensing [11-13]. 
These mechanical techniques have shown potential for measuring fruit firmness, but they are often 
difficult to implement or too slow for online sorting application. Therefore, it is necessary to replace 
time-consuming methods with a fast, accurate and nondestructive technique. 

 Near-infrared (NIR) spectroscopy has been proven to be a powerful analytical tool used in the 
agricultural, nutritional, petrochemical, textile and pharmaceutical industries [14-22]. It is a fast, 
accurate and non-destructive technique that can be used as a replacement of time-consuming chemical 
method. Near-infrared (NIR) spectroscopy has also proven to be effective for quantitatively analysing 
internal quality of fruits. Many studies on measuring fruit firmness of apple with NIR spectroscopy 
were cited [23-24]. 

 In order to apply FT-NIR to predict quantitatively fruit firmness of apple, it is necessary to build a 
reliable calibration model. The objective of this research is to develop and prove the applicability of 
multivariate calibration to NIR data. The different steps that have to be undertaken in multivariate 
calibration were systematically studied. The partial least square (PLS) model was used and the study 
focused on the effect of the number of PLS factors and the method of spectral preprocessing. The 
robustness of the final PLS model was evaluated according to the root mean square error of cross-
validation (RMSECV), the root mean square error of prediction (RMSEP), and the correlation 
coefficient (R). 

 
Materials and Methods 

Apple fruit samples 

 For this research, 100 “Fuji” apples were purchased from the local market in Zhenjiang City, 
Jiangsu Province of China. All of the apples were sent to the laboratory and non-destructively analysed 
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by diffuse reflectance FT-NIR spectroscopy between 10,000-4,000 cm-1, and also destructively 
analysed by a texture analyser for fruit firmness. 

 The apples were divided into two groups.  The first group consisted of 60 apples used for 
developing the calibration model.  The second group consisted of 40 apples used for prediction 
models.  Each apple was measured at four equally spaced positions along the equator. For the 
reference measurement using a texture analyser, the measurement was conducted on peeled apples. 

 
Spectral data acquisition 

 The reflectance NIR spectra of intact apples were measured by a FT-NIR spectrometer (AntarisTM 

II analyser, Thermo Electron Corporation, USA) with integrating sphere sampling module. The FT-
NIR spectrometer had a spectral range of 10,000-4,000 cm-1 (1,000-2,500 nm) and the resolution was 
set at 8.0 cm-1 with 3.856 cm-1 data intervals, each spectrum having thus 1,557 data points. The 
number of the spectral scans was 32 in this experiment. 

Figure 1 shows a schematic diagram of NIR diffuse reflectance measurement set-up. Diffuse 
reflectance measurement is simplified by using an integrating sphere. The light beam is directed into 
the sphere and travels directly through the center of the sphere and the optical window into the apple 
sample. The beam scatters off the sample and the reflected light beams re-enter the sphere. The inside 
of the sphere is coated with diffuse gold, which collects the light beams and directs them to the 
detector [25]. 
 

Detector

Sample

Sapphire Window

Internal gold reference
flag computer controlled

in Integrating Sphere
Duffuse Reflection

 
 

Figure 1.  Schematic diagram of NIR diffuse reflectance measurement set-up  
 
 

Each spectrum was recorded as log (1/R) where R was fractional reflectance, by averaging 32 scans 
of spectra. Four reflectance spectra were measured at 4 positions on each apple around the equator. 
After that the four reflectance spectra were averaged to provide a mean spectrum for calibration and 
validation set. 
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 The original reflectance spectral data of 100 apple samples is shown in Figure 2. Partial least 
square (PLS) algorithm of multivariate calibration was attempted several times to determine the 
optimal spectral range for building calibration model. It was found that the optimal spectral range of 
fruit firmness of apples was 9,391-6,886 cm-1. 
 

40005000600070008000900010000
0.2

0.4

0.6

0.8

1

1.2

1.4

Wavenumber (cm-1)

Lo
g 

(1
/R

)

 
 

Figure 2.  Original reflectance spectra as log (1/R) for 100 apple samples 
 
 

Reference measurements 

 The destructive measurement on the apples in this research was conducted to determine the fruit 
firmness. It was measured with a texture analyser (Model TA-XT2i, Stable Microsystem, Ltd., 
England). This measurement was carried out exclusively on peeled apples, thus applying only to apple 
flesh. Fruit firmness parameters in this experiment included 1.0 mm/s test speed, 10.0 mm penetration 
distance and 100 g force setting with 3-mm diameter stainless cylinder probe. Maximum flesh rupture 
force was analysed in this research. 

 The measuring procedure was similar to that for FT-NIR. Each apple was measured at the same 
four positions around the equator. The mean value of firmness was the average of 4 measurements for 
the calibration and validation sets. 

 
Spectral preprocessing methods 

 In this study, the spectral data were analysed using PLS regression with preprocessing. Four 
spectral preprocessing methods were applied comparatively; these were standard normal variate 
(SNV), mean centering, multiplicative scatter correction (MSC) and min/max normalisation method, 
respectively. First, SNV, a mathematical transformation method of the spectra, was used to remove 
slope variation and to correct for scatter effects. Each spectrum was corrected individually by first 
centering the spectral values, then the centred spectrum was scaled by the standard deviation 
calculated from the individual spectral values. Second, mean centering method process was used to 
calculate the average spectrum of the data set and subtract that average from each spectrum. Third, 
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MSC was used for the correction of scattered light on the basis of different particle sizes. The 
technique was used to correct for additive and multiplicative effects in the spectra. Finally, min/max 
normalisation, a type of normalisation, was utilised to transform the data into a desired range by 
subtracting the minimum value of an attribute from each value of the attribute and then dividing the 
difference by the range of the attribute [26].  Generally, the range of the spectral value after min/max 
normalization spectral preprocessing is set [0 1]. Figure 3 shows the results of different methods after 
preprocessing. 
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Figure 3.  Preprocessed reflectance spectra of apple: (a) SNV (b) MSC (c) mean centering (d) 
min/max normalisation 

 

Software 

 All methods were performed in Matlab V.7.1 (Mathworks, Natick, USA) for Windows XP. For the 
spectral acquisition, Result Integrating Program (Thermo Electron Result Integration and Result 
Operation Software, Thermo Electron Corporation, USA) was used. 
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Results and Discussion 

Quantitative analysis of the PLS models 

 One hundred “Fuji” apple samples were selected to build the PLS model in this experiment. All 
100 spectra were divided into a training set and a test set. To avoid bias in subset selection, this 
division was arranged as follows: all samples were sorted according to their respective y-value (viz. 
the reference measurement value of fruit firmness). In order to come to a 3/2 division of training/test 
spectra, three spectra from every five samples were selected for the training set, and two spectra from 
every five samples were selected for the test set, so that finally the training set contained 60 spectra 
(see Table 1) and the remaining 40 spectra constituted the test set (see Table 2). As seen in Tables 1 
and 2, the range of y values in the training set covers the range in the test set, therefore the distribution 
of the samples was appropriate in training and test sets.  

 
Table 1.  Reference measurement and sample number in training set 

Component Unit S.N. Range Mean S.D. 
Fruit Firmness gf 60 133.28-817.00 446.77 148.91 

(S.N., sample number; S.D., standard deviation; gf, gram force unit) 

 

Table 2.  Reference measurement and sample number in test set 

Component Unit S.N. Range Mean S.D. 
Fruit Firmness gf 40 151.45-811.02 446.39 149.37 

(S.N., sample number; S.D., standard deviation; gf, gram force unit) 

 

The performance of the final PLS model was evaluated in terms root mean square error of cross-
validation (RMSECV), the root mean square error of prediction (RMSEP), and the correlation 
coefficient (R). For RMSECV, a leave-one-sample out cross-validation was performed: the spectrum 
of one sample of the training set was deleted from this set and a PLS model was built with the 
remaining spectra of the training set. The left-out sample was predicted with this model and the 
procedure was repeated by leaving out each of the samples of the training set. RMSECV was 
calculated by Eq.1 as shown:  
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where n was the number of samples in the training set, yi was the reference measurement result for 
sample i, and ŷi was the estimated result for sample i when the model was constructed with sample i 
removed. The number of PLS factors included in the model was chosen according to the lowest 
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RMSECV. This procedure was repeated for each of the preprocessed spectra. For the test set, the root 
mean square error of prediction (RMSEP) was calculated by Eq. 2 as follows: 
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where n was the number of apple samples in the test set, yi was the reference measurement result for 
test set sample i, and ŷi was the estimated result of the model for test sample i. Finally, the model with 
the overall lowest RMSECV was selected as the final model. Correlation coefficients between the 
predicted and the measured value were calculated for both the training and the test set, which were 
calculated as follows (Eq. 3): 
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Fruit firmness 

The model with the overall lowest RMSECV was selected as the final model. Figure 4 shows 
RMSECV plots as a function of PLS factors for determining fruit firmness by different spectral 
preprocessing methods. The RMSECV values decreased sharply with increasing numbers of PLS 
factors, which are shown in Figure 4. The optimal PLS numbers of SNV, MSC, mean centering and 
min/max normalisation spectral preprocessing methods were equal to 12, 12, 14 and 12, respectively.  
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Figure 4.  Effect of number of PLS factors on RMSECV for fruit firmness calibration model 



Mj. Int. J. Sci. Tech.  2008, 02(1), 13-23 
 

 

20

Table 3 shows the best results of the models by different spectral preprocessing methods for 
determining the prediction of the fruit firmness. As seen in Table 3, the difference of RMSCEV was 
slight for SNV, MSC and min/max normalisation spectral preprocessing methods. The optimal PLS 
number  of  these  three  spectral  preprocessing  methods  was  equal  to 12,  while that of the mean 
centering spectral preprocessing method was equal to 14. However, in this application MSC spectral  

 
Table 3.  Best results for each of the processing methods for the models of fruit firmness 
 

Preprocessing 
method 

PLS 
factors 

RMSECV 
(gf) 

RMSEP 
(gf) 

R 
(train) 

R 
(test) 

SNV 12 92.930 99.371 0.69682 0.74661 

MSC 12 92.910 98.980 0.69698 0.74893 

Mean centering 14 97.254 100.890 0.66074 0.73741 

Min/max normalization 12 93.173 95.409 0.69489 0.76942 
(gf = gram force unit) 
 
preprocessing method was optimal and selected to build the calibration model, due to its lowest 
RMSECV value. Therefore, the best predictive model was achieved with 12 PLS factors after MSC 
spectral preprocessing method, in which the values of RMSECV and RMSEP were 92.910 gf and 
98.980 gf, respectively. The correlation coefficients for training and test set were 0.69698 and 
0.74893, respectively, and Figure 5 shows the scatter plots of the model for determining fruit firmness 
by MSC spectral preprocessing method, which was selected in this study. 
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Figure 5.  Reference determination versus NIR prediction for fruit firmness of training set data 
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Conclusion 

 The overall results in this research sufficiently indicate that it is possible to use this non-destructive 
technique for measuring fruit firmness in “Fuji” apples and that fruit firmness can be determined by 
FT-NIR spectroscopy using the spectral range of 10,000-4,000 cm-1. The PLS method has the potential 
to estimate the calibration and prediction model from their near infrared spectra. The PLS calibration 
model in fruit firmness determination was achieved with 12 PLS factors under MSC preprocessing 
method. The correlation coefficient between the NIR spectroscopy prediction results and reference 
measurement results was R = 0.74893. It could be concluded that the fruit firmness of apple could be 
analysed quickly and simultaneously by NIR spectroscopy coupled with the appropriate chemometric 
methods, and this real-time, on-site measurement would significantly improve the efficiency of quality 
control and assurance. 
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