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Abstract: It is well known that images, often used in a variety of computer and other 
scientific and engineering applications, are difficult to store and transmit due to their sizes. 
One possible solution to overcome this problem is to use an efficient digital image 
compression technique where an image is viewed as a matrix and then the operations are 
performed on the matrix. All the contemporary digital image compression systems use 
various mathematical transforms for compression. The compression performance is closely 
related to the performance by these mathematical transforms in terms of energy 
compaction and spatial frequency isolation by exploiting inter-pixel redundancies present 
in the image data. Through this paper, a comprehensive literature survey has been carried 
out and the pros and cons of various transform-based image compression models have 
also been discussed. 

Keywords: image transforms, compression, entropy, coding gain, truncation error, 
quantisation error 

__________________________________________________________________________________ 

 
Introduction 
 

All practical-purpose images are a collection of some structured data generating some degree of 
correlation between neighbouring pixels. Correlation is closely related to redundancy which is known as 
inter-pixel redundancy. It requires a reversible transform to remove the inter-pixel redundancy by 
decorrelating the image in a more compact manner [1-2]. Thus any image having the correlated pixels 
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can be compressed using transform coding methods where the transform coefficients are highly 
decorrelated.  An image transform can achieve a compression if the numbers of non-zero transform 
coefficients are smaller on average than the original pixels or data points. After quantisation of the 
transform coefficients lossy compression can be achieved [3]. An image transform aiming for 
compression should follow two properties : (a) inter-pixel redundancy minimisation; and (b) spatial 
frequency isolation. 

In digital images the spatial frequencies are important as the low-frequency components 
correspond to important image features and the high-frequency ones to image details. High frequencies 
are a less important part of the images and can be quantised more heavily than low frequency 
coefficients to achieve low-bit rates. Also, the image transforms should be fast and simple giving a 
choice for linear transformations [3-9].  

A linear transformation matrix  W , whose transpose  TW will rotate the data matrix X to 

produce a diagonal covariance matrix for the transformed variableY  where 1 2 3[ , , ,........, ]T
NX x x x x is 

a vector having N pixel or data points. Then, 

[ ]TY W X                                   (1) 

Each column vector iw of  W is a basis vector of new space. So alternatively each element iy of Y is 

calculated as 

T
i iy w X                                (2) 

For simple rotation with no scaling, the matrix  W  must be orthogonal, that is 

[ ] [ ] [ ][ ]T TW W I W W                                         (3) 

where I is the identity matrix. This means the column vectors of matrix  W  are mutually orthogonal 

and are of unit norm. From equation (3) it is clear that the inverse of an orthogonal matrix is simply its 
transpose :  

1[ ] [ ]TW W                                               (4) 

The inverse transformation is calculated as  

  [ ]X W Y                                                      (5) 

The total energy after transformation is given as follows: 



 
Maejo Int. J. Sci. Technol.  2010, 4(02), 235-249  

 

 

237

   

2

2

      [ ] [ ]

      [ ][ ]

      

T

TT T

T T

Y Y Y

W X W X

X W W X

X









                           (6) 

where 2X  is the norm of vector X , defined as follows: 
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Factors Affecting the Performance of Image Transforms Used for Compression 
 

There are several factors such as entropy, coding gain, quantisation error, truncation error and 
block size which affect the compression performance of transform-based image compression systems 
[10].  
 
Entropy 

Entropy is a useful means of determining the performance of compression [7-8] and theoretically 
gives a lower bound on the average number of bits required for encoding without introducing error 
[10]. The probability of any real-value sample may be zero, causing discrete entropy to be undefined. 
To cure the problem of undefined discrete entropy, the differential entropy is used as generalised 
measure for the distribution of information. The differential entropy is given as follows [7]: 

 

( ) ( ) log[ ( )]h x p s p s ds




                                               (8) 

where ( ),  and ( ) h x s p s are the entropy, samples of a sample space x and probability of samples 
respectively. For simple distribution such as Gaussian, Uniform and Laplacian, the differential entropy is 
given as follows: 

21( ) log( )
2 xh x k                                      (9) 

where 2
x  is the variance of random variable and k is the constant which depends on the data or 

random-variable distribution. 
From equations (8) and (9) it is evident that the image transformation should minimise the sum 

of differential entropy or the product of variances of the coefficients due to logarithmic terms [8]. The 
total energy is preserved after transformation due to orthonormality, hence the fixed sum of the 
coefficient variance [7, 10].   
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Coding gain 

Coding gain is a measure of the compression efficiency of transformation and is given as follows 
[9-10]: 
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where the numerator is the algebraic mean of variances which is transform-independent and the 
denominator is the geometric mean of variances and is transform-dependent. For any arbitrary signal or 
data, all the variances are almost equal giving a coding gain of 1. For a given energy signal, minimising 
the product of variances maximises the coding gain and minimises the lower bound on the number of 
bits required [10, 12].  
 
Quantisation 

Quantisation error also plays a very important role in the compression system and should be very 
low after transformation. Let Ŷ be a set of quantised coefficients for a block of data. The reconstructed 
data is then given as: 

 
ˆ ˆ[ ]X W Y                                           (11) 

 
The square error for such block of data is given as follows: 
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22 ˆe Y Y                                            (12) 

From equation (12), it is clearly visible that for any linear orthogonal transformation having orthonormal 
vectors, the squared error on reconstruction is the same as that of the coefficients [10]. 
 
Truncation error   

Another method of reducing the data is to remove some transformed coefficients completely 
leaving only M out of N coefficients. The truncation error is given in equation (13): 
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where 2ˆ,  ,   and i i iE y y 
 
are expected and original values of transformed coefficients, quantised 

transform coefficients and variances of the transformed coefficients respectively.  
If the variances for the truncated coefficients are smaller and smaller, then the truncation error 

can be minimised [1, 4, 11]. 
 
Block size  

The linear orthogonal transforms having orthonormal vectors are applied on some block of data 
to be transformed. The larger the block size is, the greater the decorrelation becomes, hence the greater 
coding gain [5, 7]. The number of arithmetic operations increases linearly as the block size increases, 
hence the complexity. Also, the block-based image transform reduces the inter-pixel redundancy among 
the pixels or data points within the block, leaving no assurance to remove the inter-block redundancy 
[9, 13].   
 

Types of Image Transforms Used for Compression 

Karhunen-Loeve transform and image compression 

The Karhunen-Loeve transform (KLT) is a linearly reversible, orthogonal transformation which 
accomplishes the removal of redundancy by decorrelating the data block elements and is defined by 
Eigen values of covariance matrix [14]. Hotelling in 1933 [9] developed a method of principal 
components for removing the correlation from discrete random variable. A continuous version of 
Hotelling’s transform was developed by Karhunen and Loeve in 1960’s [15]. KLT is also known as 
Hotelling Transform or PCA (principal component analysis) [15-16]. The covariance matrix of an 
arbitrary data block is real and symmetric so the real Eigen values and corresponding Eigen vectors can 
be found easily. The diagonal covariance matrix [ ]YC of a transformed variable Y is given as:  
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where 1 , 2 ……. N  are variances of transformed data Y . The diagonal matrix can be calculated from 
the original covariance matrix [ ]XC  as follows: 
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   [ ] T
Y X

C W C W     
                                       (15) 

The column vector of W are found as  

                       (16) 

where i and iw are Eigen value and Eigen vector pairs for 1,2,3.......i N . The orthonormal Eigen 

vectors are found by using Gram-Schmidt orthonormalisation process [10]. KLT minimises the 
geometric mean of the variance of transform coefficients, thus providing largest coding gain [17]. The 
basis vectors of KLT are calculated from the original image pixels and are therefore data-dependent. In 
practical applications these vectors should also be included in the compressed bit streams, making this 
transform less ideal for practical applications of image compression [12, 18]. 
 
Discrete cosine transform and image compression 
 

Discrete cosine transform (DCT) [19] is very important for compression. DCT is a discrete time 
version of Fourier-cosine series and can be computed with fast-Fourier-transform-like algorithms. 
Unlike discrete Fourier transform, DCT is a real value and provides a better approximation of a signal 
with fewer transform coefficients [20]. 

The DCT of a discrete signal X is given as  
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 [ (0), (1),........ ( 1)] Y Y Y Y N                            (17.c) 

 
where ,  ,  and (0)t f N Y  are time, frequency, number of points and DC coefficient respectively. 

(1),........  ( 1)Y to Y N   are the AC coefficients and frequency increases as we go 
from (1),........  ( 1)Y to Y N  . The inverse DCT transform is given as  
 



 
Maejo Int. J. Sci. Technol.  2010, 4(02), 235-249  

 

 

241

 1

0

2 12( ) ( )  
2

 

N

j
j

t j
X t C Y f Cos

N N




 
  

 
                             (17.d) 

where 0,1, 2,........ 1t N   and jC  is the jth component in frequency domain for j=0,1,…N-1, which is 
similar to fC in time domain. The 2-dimensional discrete cosine transform (2D-DCT) and 2-dimensional 

inverse discrete cosine transform (2D-IDCT) for  M N matrix are given in equations (18.a) and (18.b) 
respectively: 
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 where 0 1; 0 1 and (0,0) is DC coefficient and ( , ) : 0 are AC coefficients.i N j M Y Y i j i j         
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(18.b) 

where 0 1 and 0 1i N j M      . 

The DCT has as good energy compaction as KLT [12]. The advantage of DCT over KLT is that 
the former uses a fixed basis which is independent of data or signal. Also, DCT is a block-based 
transform so performance and complexity is compromised with the block size [19-20].  

  
Discrete sine transform and image compression 
 

Discrete sine transform (DST) is a complementary transform of DCT. DCT is an approximation 
of KLT for large correlation coefficients whereas DST performs close to optimum KLT in terms of 
energy compaction for small correlation coefficients. DST is used as low-rate image and audio coding 
and in compression applications [21-22]. 

 
Discrete Walsh-Hadamard transform and image compression 
 

The discrete Wlash-Hadamard transform (DWHT) is the simplest transform to be implemented 
for any application and is a rearrangement of discrete Hadamard transform matrix [23]. The amount of 
energy compaction efficiency of DWHT is poorer than that of DCT or KLT so it does not have a 
potential to be used for data compression [12, 23]. 
 
Discrete wavelet  transform and image compression 
 

All the linear orthogonal transformations, i.e. KLT, DST and DCT, are blocked transformations 
which remove the correlation among the pixels or data points inside the block. These transforms do not 
take care of correlation across the block boundaries [24]. The blocking artifacts are dominating at low 
bit rates. The blocking effect can be reduced by Lapped orthogonal transforms (LOT) but at the cost of 
increased computational complexity [25]. A wavelet transform does not require blocking of signal or 
data points before transformation, resulting in removal of blocking artifacts even at very low bit rates.  
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Also, wavelet-based subband coding is robust under decoding error and has a good compatibility with 
human visual system [26]. There are several ways to decompose a signal into various subbands using 
the wavelet transform, such as octave, adaptive and packet decompositions [27-29]. The octave 
decomposition is the most used decomposition technique, which non-uniformly splits the bands, 
rendering the lower frequency part narrower and narrower while leaving out any further decomposition 
of higher frequency coefficients. Figures 1-3 show a 1-level 2D-wavelet transform (DWT) [29]. Over 
the past few years many improvements of wavelet-based coding have been developed such as EZW, 
SPIHT, EBCOT, EPWIC, SFQ, CREW, SR, second generation wavelet coding, wavelet packet image 
coding, wavelet packet with VQ, and integer wavelet transform coding [30-40]. 
 

 
Figure 1.  1-Level 2D-wavelet decomposition:   ( ) and ( )h x h x   are horizontal low pass and high pass 
filter functions whereas ( ) and ( )h y h y are vertical low pass and high pass filter functions 
respectively; ( , ) and ( , )L Hf x y f x y are horizontal low pass and high pass wavelet coefficients 
respectively; approximation, horizontal, vertical and diagonal details are respectively represented 
by ( , ),  ( , ),  ( , ) and ( , )LL LH HL HHf x y f x y f x y f x y .  
 

 
Figure 2.  1-Level 2D-wavelet recomposition:  ( ) and ( )h x h x   are horizontal low pass and high pass 
filter functions whereas ( ) and ( )h y h y are vertical low pass and high pass filter functions 
respectively; ( , ) and ( , )L Hf x y f x y are horizontal low pass and high pass wavelet coefficients 
respectively; approximation, horizontal, vertical and diagonal details are respectively represented 
by ( , ),  ( , ),  ( , ) and ( , )LL LH HL HHf x y f x y f x y f x y .  
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Figure 3.  Spectral decomposition and ordering of wavelet coefficients:  and L H are the low pass and 
high pass wavelet transformed coefficients respectively.  

 
Fractional discrete transform and image compression  
 

In 1929 Wiener [41] introduced a concept of fractional transforms, which led to the 
development of fractional Fourier transform (FrFT) first developed in 1980 [42]. Almeida [43] explored 
the time-frequency localisation property and provided a possible application of FrFT in image 
compression. In the case of fractional transform, one extra free parameter is also there besides time and 
frequency. In 2000 Gerek and Erden proposed a discrete fractional cosine transform by taking an 
advantage of the relation between DCT and DFT [44], which was similar to the method of finding 
DFrFT by Ozaktas et al. in 1996 [45]. In 2005 Singh and Saxena [46] explored the possible application 
of DFrCT and DFrFT in image compression. The compression performance of fractional transforms 
depends on the value of free parameter. However, any direct relation between free parameter and 
compression performance has not been reported. Hence, it is impractical to optimise the free parameter, 
which results in a recursive and a very slow process for image compression. 

 
Directional discrete transform and image compression 
 

All the transforms as discussed above are 2D transforms implemented by using 1D separable 
architectures and are not suitable to preserve the image features with arbitrary orientation that is neither 
vertical nor horizontal [47]. In these cases, they result in large-magnitude high-frequency coefficients. 
At low bit rates, the quantisation noise from these coefficients is clearly visible, in particular causing 
annoying Gibbs artifacts at image edges with arbitrary directions. Some work on wavelet and subband 
transform to incorporate directional information into transforms has been reported.  The lifting structure 
developed by Sweldens provides a good way to incorporate directional information into the wavelet 
transform [47-49]. Zeng and Fu [50] are the first authors to propose how to incorporate directional 
information into DCT. Their directional DCT is motivated by SA-DCT (shape-adaptive DCT). Hao et 
al. [51]  proposed a lifting-based directional DCT-like transform for image coding and used it for image 
compression. The main problem with directional transforms is the selection of optimum direction. 
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Singular-value decomposition and image compression 
 

Image transform is a very important part of image compression. The optimum transform coder 
which minimises the mean square distortion of the reproduced data for a given bit rate is the KLT [9]. 
Other transforms investigated for image or picture compression include DCT, piecewise Fourier 
Transform, slant transform, linear transform with block quantisation and Hadamard transform [53-57]. 
Though the energy compaction efficiency of the KLT is very suitable for compression, it is not used in 
real applications due to its computational complexity [53, 59-60]. Singular-value decomposition-based 
transformation has an optimal energy-compaction property making it the most appropriate for 
compression in spite of computation complexity [61]. In the case of singular-value decomposition 
(SVD) the singular values are image-dependent and must therefore be coded with the associated 
singular vectors as side information [62]. The optimal energy compaction property was exploited and 
utilised by McGoldrick et al. [62] and Yang and Lu [63]. McGoldrick et al. calculated singular values as 
well as singular vectors and the latter were coded by variable-rate vector quantiser. JPEG image coder 
based on DCT was superior to SVD-based method. Yang and Lu also used SVD in conjunction with 
vector quantisation giving a superior method by reducing the computational complexity to that of DCT-
based method. However, with the application of fast DCT algorithm, this was not a preferred technique 
[64]. Waldemar and Ramstad [65-66] proposed hybrid KLT-SVD image compression using transform 
adaptation technique exploiting the local variation of images. This hybrid method was better than KLT-
based methods in terms of energy compaction but could not be sustained due to a large number of 
vectors to be coded. In 2000 Chen [67] used rank approximation method for SVD-based lossy image 
compression. In rank approximation for SVD-based image compression an image of size N N  was 
transformed by SVD to obtain matrices UNxN, SNxN and VNxN, where S is a diagonal N N   matrix 
whose number of non-zero diagonal elements determines the rank “k ” of the original matrix where 
k N . In this method a smaller rank is used to approximate the original image. The total storage space 
required to restore the original approximated image is 2Nk + k, where k ≤ N. In order to achieve the 
goal of compression, used rank should be as follows: 

 

                                                                1 2
N Nk

N



                               

So by rank approximation method there is a restriction on reconstructed image quality for 
compressed image. Arnold and McInnes in 2000 [68] reported block-based adaptive rank 
approximation method similar to most of the popular image compression methods, to exploit the uneven 
complexity and correlation of image. The work reported by them was based on singular-value 
distribution of different subblocks in which higher ranks were used for complex subbands. Also, for the 
same storage space, smaller block sizes of subblocks produced better results [68-69]. Arnold and 
McInnes further reduced rank of the blocks by rank-one update, in which the respective mean was 
subtracted from all the elements of the blocks and then SVD and adaptive rank approximation was 
used. Dapena and Ahalt [69] and Wongsawat et al. [70] reported hybrid DCT-SVD and modified hybrid 
DCT-SVD image coding algorithms in 2002 and 2004 respectively. Both methods were based on an 
adaptive selection of block transforms to be used on the basis of complexity and correlation of different 
blocks. For high correlation, SVD was used while for the rest, DWT was used.  In 2003 a hybrid DWT-

(19) 
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SVD-based image coding, which is also a block-based method, was reported by Ochoa and Rao [71-
72], who used a criterion of threshold standard deviation for all blocks of Y component to determine 
whether DWT or SVD has to be used for any particular block. If standard deviation is high, rank-one 
update is used for that block, otherwise DWT method is used. Ochoa and Rao further extended this 
method for colour image compression also [73-74]. In 2007 Ranade et al. [75] proposed a modified 
SVD image compression based on SSVD (shuffled SVD). In this work the block-based shuffling 
operator was used to get subblocks. The performance of SSVD was shown to be better than SVD in 
terms of space for the same quality but involved more complex operations. Also, the performance was 
not even near to DCT-based coding systems. Aase et al. [76] gave a critique on SVD-based image 
compression and pointed out the  major drawback of using lossless SVD transform for image 
compression. According to them, the singular vectors along with the singular values are stored for 
lossless reconstruction, which requires  2 1 1/ N  times more space for N N  image. 

 

Conclusions 
 

On the basis of the above discussion it can be concluded that any image transform applied for 
image compression will have minimum entropy, maximum coding gain, minimum quantisation error, 
minimum truncation error, and moderate block size. Although the KLT shows highest energy 
compaction, it is a very complex transform and usually takes unfeasible time delay during the 
transformation. DCT shows as good performance as KLT though the advantage of DCT over KLT is 
that the former employs fixed basis which is independent of data or signal. Also, DCT is a block-based 
transform so performance and complexity is compromised with the block size. Another advantage of 
DCT is its blocking effect for low bit rate applications. DST is also a block-based transform and can be 
used only for the image or data which have very small correlation.  DWHT is very simple to implement 
but has a very poor performance in terms of energy compaction efficiency. The compaction efficiency of 
DWT is not very good compared to that of DCT but it can provide a satisfactory performance for the 
entire range of bit rates. The blocking effect as shown in DCT is removed in the case of DWT as it is a 
global transform and not the block-based transform. The compression performance of fractional 
transforms depends on the value of free parameter and it is impractical to optimise the free parameter 
due to a recursive and  very slow process, which is not favourable for compression. Directional discrete 
transforms are used at low bit rates when the quantisation noise from the transform coefficients is 
clearly visible, in particular causing Gibbs artifacts at the image edges with arbitrary directions. The 
optimisation of direction makes it unsuitable for compression. SVD transform has an optimum energy 
compaction property but needs the requirement of more storage space for lossless compression and has 
a high level of complexity if it is used globally.  
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