Maejo Int. J. Sci. Technol. 2010, 4(03), 428-434
Maejo International
Journal of Science and Technology

ISSN 1905-7873
Available online at www.mijst.mju.ac.th

Communication

A random number generator based on NTRU cryptosystem

He Debiao*, Chen Jianhua and Hu Jin

School of Mathematics and Statistics, Wuhan University, Wuhan, China

* Corresponding author, e-mail: hedebiao@163.com

Received: 23 February 2010/ Accepted: 11 October 2010 / Published: 16 October 2010

Abstract: A random number generator based on the operation of the NTRU cryptosystem
is proposed. By using the proposed generator together with the NTRU cryptosystem, we can
save hardware and software components. Theoretical analyses show that periods of the
proposed random number generator are sufficiently long. Moreover, the generated
sequences have passed the U.S. NIST statistical test.

Keywords: random number generator, public-key cryptosystem, NTRU cryptosystem,
polynomial ring

INTRODUCTION

The NTRU (Number Theory Research Unit) cryptosystem [1-3], patented by the company
NTRU, is one of the fastest public-key encryption schemes known. Although this may not be a
decisive advantage compared to the hybrid encryption with RSA for example, NTRU has attracted
considerable interest and is being considered by the efficient embedded security standards [4] and the
IEEE P1363 study group for future public-key cryptography standards [5].

On the other hand, the security of most cryptographic systems depends upon the generation of
unpredictable quantities that must be of sufficient size and randomness. Taking NTRU cryptosystem as
example, we need to generate random bits in order to create random polynomial. This implies that we
usually need to implement a random number generator in a cryptographic system. A number of
random number generators have been proposed [6-11]. However, they are usually not designed
together with the cryptographic system and so extra design and implementation effort are required. If
both the tasks of random number generation and encryption can be done by using the same software or
hardware module, we can save hardware cost, memory space and design time. This is especially
important in developing applications in an environment with limited resources such as smart cards.

429
Maejo Int. J. Sci. Technol. 2010, 4(03), 428-434

With this goal, we propose a random number generator that makes use of the basic operations required
in NTRU.

The organisation of the rest of the paper is as follows. The background of NTRU cryptosystem
is first introduced. The proposed random number generator is then described. Periods of the proposed
generator are subsequently analysed and the test results reported.

NTRU PUBLIC KEY CRYTOSYSTEM

NTRU cryptosystem is a polynomial ring-based public-key cryptosystem that was fully

introduced in 1998 [1]. The scheme is set up by three integers, viz. N, p, ¢, such that:
® N is prime;
® p and ¢ are relatively prime, gcd(p, ¢)=1;
® ¢ is much larger than p.

NTRU cryptosystem is based on polynomial additions and multiplications in the ring
R=Z[x]/(x" =1). We use * to denote a polynomial multiplication in R, which is the cyclic
convolution of two polynomials. After completion of a polynomial multiplication or addition, the
coefficients of the resulting polynomial need to be reduced either modulo ¢ or p. As a side note, the
key creation process also requires two polynomial inversions, which can be computed using the
extended Euclidean algorithm. NTRU cryptosystem requires approximately o(N*) operations and a
key length of o(N).

More information on NTRU cryptosystem has been described [1-3]. We briefly outline the
procedures below.

Key Generation. To generate the public key, the user must:

® Choose a secret key, a random polynomial /" € R , where coefficients are in (—%,%);

® Choose a random polynomial, g € R, where coefficients are in (—%,g);

® Compute the inverse polynomial F, of the secret key f' modulo g.

Once the above has been completed, the public key, 4, is found as
h=F,*g(modgq) (1)

Encryption. The encrypted message is computed as
e= pr*h+m(modgq) 2)
where the message, m € R, and the random polynomial, » € R , have coefficients reduced modulo p.
Decryption. The decryption procedure requires three steps:
® a=f*e(modq);

® Shift coefficients of a to the range (—%,%);

® d=F, *a(mod p).
The last step of decryption requires the user to compute the inverse polynomial £, of the secret

key f modulo p. The decryption process outlined above will recover the original message.

430
Maejo Int. J. Sci. Technol. 2010, 4(03), 428-434

THE PROPOSED RANDOM NUMBER GENERATOR

In this paper we use the encryption progress of NTRU cryptosystem to generate the random

sequence, the parameters being as follows:
® NV is prime;
® ¢ is prime and is large enough;
® /1 is an element of the ring R = Z[x]/ (x" —1) and is randomly selected.
Let f be an element of the ring R = Z[x]/(x" —1) , then f can be represented as

f:zi]i:f;xi,l:;GZ,iZO,l,...,N—l. (3)
The representation is denoted by f =[f,, f,,-.- fy]-

A block diagram of the proposed random number generator is shown in Figure 1, where @

denotes the operation of XOR. It is easy to see that when these operations are done recursively, a
sequence of bits can be obtained by collecting the x, .

1 1 ... il
Seed {1 = (A, A% i)
f(m+1:| = {futx+lj,f1(x+1:|,...,rjli;:-IJ} First cyele only

Al x4 A modg), 0SSV -1 TR A pimodg)

A

_ T i e)
n=T"e"e R

¥
Figure 1. Block diagram of the proposed random number generator

PERIOD ANALYSIS

(n+1)

The purpose of setting £ =(x, + £ +n)(modq),0<i< N -1 is to increase the period of

the generator. If n is not added, the bit sequence depends solely on the output of the
T = £ * h(mod ¢) operation and the period may be very small.
In the 5" cycle,
£ =(x, + £ +5)(modq),0<i < N -1 4
where x_denotes the output of the proposed random number generator, shown in Figure 1.
In the " cycle,
£ =(x, + £ +t)(modq),0<i< N -1 (5)
where x, denotes the output of the proposed random number generator, shown in Figure 1.

Suppose that the output of the proposed random number generator in the ¢” cycle is the same

as that in the s” cycle, i.e.

X, =X, (6)

431
Maejo Int. J. Sci. Technol. 2010, 4(03), 428-434

If the output of the module of the (¢+1)" cycle is also equal to that of the (s +1)" cycle, then

£ = £ modgq, £ = £ modq,0<i< N-1. (7)
By equations (4), (5) and (7), we have
X +t=x+s ®)

By equations (6) and (8), we can get that
s=tmodgq)
Since ¢ > 5, we have ¢ = s + m g, where m is a nonzero positive integer. Hence, the output pattern
will repeat only after ¢ cycles.

TEST RESULTS

The U.S. NIST statistical test suite [12] is used to test the randomness of the generated bits. It
includes 15 statistical tests and each of them is formulated to test a null hypothesis that the sequence
being tested is random. There is also an alternative hypothesis which states that the sequence is not
random. For each test, there is an associated reference distribution (typically normal distribution or y°
distribution), based on which a P value is computed from the binary sequence. If this value is greater

than a pre-defined threshold o (0.01 in default), the sequence passes the test. The two approaches that

NIST has adopted are the examination of: (1) proportion of sequences that pass a statistical test, and
(2) uniformity of the distribution of those P _values .

According to NIST [12], if m sequences were tested, the proportion of sequences that passed a
specific statistical test should lie above p_ :

P, =(1-a)-3, 0= (10)
m

In our experiment, m = 1000, « =0.01 and p, =98.05%.

To check the distribution of P _values , the interval between 0 and 1 is divided into 10 sub-
intervals. The number of P _values in each sub-interval is counted, based on which a P valuesT is
calculated. If P valuesT > 0.0001 holds, the sequences are considered to be uniformly distributed.

The NIST statistical test suite contains 15 tests (the Lempel-Ziv complexity test having been
removed from the test suite since Version 1.7) [12]. Some tests such as FT, FBT, RT, ST, AET and
CST require only 100 bits for each sequence. Other tests, however, require more bits. Specially, the
PTMT, LZCT, RET and REVT tests need about 1 M for each sequence.

In our experiment, a 100-bit sequence is generated for each two parameters (N, q) by using
100 pairs of the randomly-selected initial 4, /. Because the expression of the element of the ring
R=Z[x]/(x" —1) is very complicated, we just list one case here for reference. The parameters are

oN=107

® ¢ =0xCC137071797457130CFCF2CC51406B442E15EEA463F80F3C085C3ECC381BF01B

0/=x"+x"+. +x+1

.f(l) :x106 _1

In the test of P_values uniformity for FT and CST, each sequence is set to 1024 bits by

concatenating the output of the proposed random generator. Otherwise, the number of different
P _values will not be sufficient to carry out the uniformity test. As for other tests which require more

432
Maejo Int. J. Sci. Technol. 2010, 4(03), 428-434

than 100 bits for each sequence, we collect the first 256 bits for different initial %, £. The test results

can be found in Table 1.

It can be observed from Table 1 that the proposed random number generator passes all the
statistical tests, i.e. the passing proportions are greater than 98.05% and P _valuesT greater than

0.0001. According to NIST [12], we can conclude that the data generated by these two approaches are
random.

Table 1. Test results for the random number generator

Test name Proportion P valueT
FT 0.9901 0.1624
FBT 0.9852 0.3781
CST* 0.9863 0.1639
RT 0.9942 0.1498
LROBT 0.9875 0.1397
AET 0.9846 0.4153
ST* 0.9811 0.5741
RBMRT 0.9973 0.1542
DFTT 0.9918 0.3681
ATMT* 0.9857 0.2456
PTMT 0.9961 0.1572
MUST 0.9921 0.3660
RET* 0.9836 0.2718
REVT* 0.9918 0.2249
LCT 0.9826 0.1152
DISCUSSION

Choice of Parameters
By simply changing the seed f and the initial polynomial /4, a different bit sequence can be

generated. These two parameters should be kept secret for security. Basically, # can be any
polynomial in the finite field £ .

The NTRU system just requires that p and ¢ be relatively prime. However, if ¢ in our system is
not prime, the period of the output of the generator may be a divisor ofg. Then our system requires
that ¢ is prime. In general, the random number generator is secure if its period is about 22°°,
Implementation

Various types of implementation of NTRU cryptosystem have been proposed [13-16] and our
proposed random number generator is based on the core operations of NTRU cryptosystem, so the
proposed random generator can be designed and implemented efficiently using the existing
components, and thus the cost of the implementation can be reduced.

433
Maejo Int. J. Sci. Technol. 2010, 4(03), 428-434

The equation of our random number generator looks different from that of the NTRU
cryptosystem. Actually, we just replace the polynomial p*% with another polynomial 4'. In the

process of generating random numbers using existing components, we just let p be one.

CONCLUSIONS

In this paper, a new approach for constructing a random number generator using the operation
of NTRU cryptosystem is presented. Periods of the generator are analysed theoretically. The test
results indicate that all the random number sequences pass the U.S. NIST statistical test. Therefore, the
proposed generator can be accepted as a reliable random number generator for integrating with the
NTRU system to generate the dynamic private keys.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers and Dr. Duang Buddhasukh for their valuable
comments. This research was supported by the Fundamental Research Funds for the Central
Universities under Grants 201275786.

REFERENCES

1. J. Hoffstein, J. Pipher and J. H. Silverman. “NTRU: a ring based public key cryptosystem”,
Proceedings of Algorithmic Number Theory: Third International Symposium, 1998, Portland,
USA, pp. 267-288.

2. J. Hoffstein and J. H. Silverman, “Optimizations for NTRU”,
http://www.sisecure.com/cryptolab/pdf/ TECH_ARTICLE OPT.pdf. (Accessed: 1 December
2009)

3. C. O’Rourke and B. Sunar, “Achieving NTRU with Montgomery multiplication”, /EEE Trans.
Comput., 2003, 52, 440-448.

4. EESS: Consortium for Efficient Embedded Security, “Efficient embedded security standards #1:
Implementation aspects of NTRU and NSS”, Draft Version 3.0, available from
http://www.ceesstandards.org, July 2001.

5. IEEE Standard 1363, “Standard specifications for public key cryptography”, available from

http://grouper.ieee.org/groups/1363, August 2000.

6. D. Knuth, “The Art of Computer Programming, Vol. II: Seminumerical Algorithms”, 3rd Edn.,
Addison-Wesley, New York, 1998, pp. 95-100.

7. M. Blum and S. Micali, “How to generate cryptographically strong sequences of pseudo-random
bits”, SIAM J. Comput., 1984, 13, 850-863.

8. O. Goldreich, S. Goldwasser and S. Micali, “How to construct random functions”, J. Assoc.
Comput. Mach. , 1986, 33, 792-807.

9. J. A. Gonzalez and R. Pino, “A random number generator based on unpredictable chaotic
functions”, Comput. Phys. Commun. 1999, 120, 109-144.

10. M. Orlov, “Optimized random number generation in an interval”, Inf. Process. Lett., 2009, 109,
722-725.

434

Maejo Int. J. Sci. Technol. 2010, 4(03), 428-434

11.

12.

13.

14.

15.

16.

H. Shi, S. Jiang and Z. Qin, “More efficient DDH pseudorandom generators”, Designs Codes
Cryptogr., 2010, 55, 45-64.

National Institute of Standards and Technology (NIST), “A statistical test suite for random and
pseudo-random number generators for cryptographic applications”,
http://csre.nist.gov/rng/rng2.html, 2001. (Accessed: 1 November 2009).

C. O’Rourke and B. Sunar, “Achieving NTRU with Montgomery multiplication”, /EEE Trans.
Comput., 2003, 52, 440-448.

J. H. Silverman, “Commutative NTRU: Pseudo-code implementation”,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.3682 (Accessed: 1 November 2009).
D. V. Bailey, “Daniel coffin, NTRU in constrained services” ,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.9174 (Accessed: 1 November 2009).
M.-K. Lee, J. W. Kim, J. E. Song and K. Park, “Sliding window method for NTRU”, Proceedings
of the S5th International Conference on Applied Cryptography and Network Security, 2007,
Zhuhai, China, pp. 432-442.

© 2010 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for
noncommercial purposes.

