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Abstract: Lactobacillus casei TISTR 1500 possesses cytoplasmic azoreductase and can breakdown 
azo bonds under microaerophilic condition. It was found previously that a growing culture is more 
tolerant to a high initial dye concentration than freely suspended cells supplied only with sucrose. 
The present study is aimed at investigating the nutritive requirements for decolourisation by the 
growing cells and the freely suspended cells using Plackett-Burmann experimental design. In this 
study, the composition of the medium was found to play an important role in methyl orange 
decolourisation and biomass production. Sucrose, meat extract and peptone increased methyl orange 
decolourisation by freely suspended cells, whereas sodium acetate exerted a negative effect on 
decolourisation. In addition, it was observed that the yeast and meat extracts enhanced the 
degradation of the dye by the growing cells. Sucrose was an important factor in biomass production 
by freely suspended cells and growing cells. On the other hand, dipotassium hydrogen phosphate and 
sodium acetate decreased the biomass production. These findings promote the understanding and 
knowledge about the requirements of azo dye decolourisation by Lactobacillus casei.  
 
Keywords:  Lactobacillus casei, microbial decolourisation, azo dyes, methyl orange, nutritional 
requirements 
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INTRODUCTION 
 

Azo dyes are the most widely used synthetic colorants in comparison to natural dyes because 
of their many advantages, namely the ease and cost-effectiveness of synthesis, stability and 
availability in a variety of colours [1-2]. They are used in various industries such as pharmaceutical, 
food, brewing and cosmetic. However, several studies indicate that most of the azo dyes are toxic, 
carcinogenic and mutagenic [3-4]. Azo bonds are broken down by azoreductase to nitro-aromatic 
compounds [5]. Depending on the microorganisms, the biodegradation process can occur under 
aerobic or anaerobic conditions, or even a combination of the two. Aerobic microorganisms need to 
be acclimatised to produce a specific azoreductase to the dye whilst a universal azoreductase can be 
produced anaerobically without the process of acclimatisation [6]. In anaerobic condition, the 
mechanism starts with the reductive cleavage of the azo linkage and the reaction can occur in both 
intracellular or extracellular environments. The intracellular decolourisation requires a step of azo 
dye translocation from the environment into the bacterial cytoplasm [7]. However, the process of azo 
dye translocation across bacterial cell membrane is still under investigation. In a previous study, it 
was revealed that Lactobacillus casei TISTR 1500 requires sucrose or other types of sugars or 
organic acids as an energy source. The strain showed high potential of azo decolourisation by 
converting the dye to N, N-dimethyl-p-phenylenediamine and 4-aminobenzenesulphonic acid [5]. A 
few recent reports described the ability of lactic acid bacteria to degrade azo compounds. The 
microaerophile Lactobacillus casei LA 1133 degraded 35% of initial tartazine in 17 days with a 
growth rate at 0.052/h, and L.  paracasei LA 0471 degraded 80% of tartazine in less than 13 days 
with a growth rate 0.023/h  [8]. L. acidophilus ATCC 4356 completely reduced methyl red, orange 
G, Sudan III and Sudan IV while L. fermentum ATCC 23271 completely degraded only Sudan III 
and Sudan IV  [9]. Also, Oenococcus oeni ML34 decolourised fast red up to 93% when the strain 
was supplied with 5 g/l of glucose [10].    
 Several factors such as dye structure, biomass concentration, alternative electron acceptor 
and redox mediator, dye concentration, and dye toxicity are known to influence the  efficiency of 
decolourisation [11-12].  In another previous study, decolourisation by the strain TISTR 1500 of L. 
casei with a high cell density of freely suspended cells was examined to evaluate the performance of 
decolourisation as well as investigate the possibility of the process in azo dye treatment and factors 
affecting  decolourisation (viz. sugars, organic acids, pH, temperature, oligosaccharides and metal 
ions) [7]. The nutritional requirements of the microorganisms are a key factor in biodegradation. The 
supplementation of wastewater contaminated with methyl red with phosphate, for example, improves 
decolourisation, whereas the addition of nitrate adversely affects organic reduction and 
decolourisation [13]. Also, yeast extract and peptone enhance decolourisation [14-15]. 
 The strain TISTR 1500 had a high specific decolourisation rate of 14.2 mg/gCell/h and it was 
found that a growing culture is more tolerant to a high initial dye concentration than the freely 
suspended cells supplied only with sucrose [16]. Thus, in order to enhance the bacterial capacity for 
decolourisation, it is important to have some information related to the nutritive factors affecting the 
growth of the strain. The objective of the present study is to find the nutritional requirements of 
Lactobacillus casei TISTR 1500 for methyl orange decolourisation in a complex medium, 
particularly the MRS medium, and to create suitable culture media for growth and decolourisation. 
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The Plackett-Burman experimental design was applied to screening the main components of the 
MRS medium to establish a supportive condition for the growing cells and the freely suspended cells 
during methyl orange degradation. The information thus obtained should be important for an 
application of the process to the treatment and biodegradation of dyestuff wastewater.  

 
MATERIALS AND METHODS   
 
Chemicals and Equipment  
 Meat extract, peptone from casein and yeast extract were purchased from Difco, Dickinson 
and Co. (USA).  Sucrose, dipotassium hydrogen phosphate, manganese sulphate, magnesium 
sulphate, sodium acetate and diammonium hydrogen citrate were purchased from Fisher Scientific.  
Tween 80 and methyl orange (C.I. 13025) were purchased from Sigma-Aldrich. 
 A Sorvall centrifuge (Super T21), a Genesys 10S UV-Vis Spectrophotometer (Thermo 
Scientific Inc.) and a Memmert incubator were used in the experiment.   
 
Azo-dye-degrading Microorganism 
 

Lactobacillus casei TISTR 1500 was obtained from a culture collection (MIRCEN part unit) 
of Thailand Institute of Scientific and Technological Research (TISTR). Subsequently, the strain was 
transferred from a lyophilised tube to 10 ml of modified MRS liquid medium [17] containing 0.5 g/l 
of methyl orange in a 20-ml screw-capped test tube and incubated at 35C for 24 h. The cultivation 
was used as inoculum for the preparation of freely suspended cells.  
 
Screening of Factors Affecting Microbial Growth 
 

Plackett–Burman factorial design was employed for screening the basal medium components 
that support the growth of the strain TISTR1500 to decolourise methyl orange at 100 mg/l. Ten 
components based on the MRS medium were screened. Each factor was examined at two levels: -1 
for low level and +1 for high level [18-19]. Table 1 depicts the Plackett–Burman experimental design 
with the ten factors under investigation and the levels of each factor used in the experimental design, 
which are based on the following first-order polynomial model (A): 
 

 iiY 0                 
where Y is the response (growth of microorganisms), 0 is the model intercept, i is the linear 
coefficient, and xi is the level of the independent variable.  

This model was used for screening and evaluating important factors that influenced the 
response, although it did not describe the interaction among the factors. The positive or negative 
magnitude of the coefficient indicates the corresponding impact on titre. A coefficient value close to 
zero implies a small or no effect. The P-value is the probability describing the magnitude of a 
contrast coefficient that results from random process variability. A low P-value indicates a “real” or 
significant effect. The significance of each variable is determined by applying the F-ratio. In the 
present study, ten assigned variables (components) were screened in the course of twelve 
experimental runs. The experiments on the decolourisation rate and biomass were carried out in 

(A) 
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triplicate. Based on the regression analysis of the variables, the confidence levels of 95% (P<0.05) 
and 90% (P<0.1) for each factor were considered to have a significant effect on the decolourisation 
and biomass production respectively. 
 
Decolourisation of Methyl Orange and Analysis 
  

The 12 runs of experimental media were set up as shown in Tables 1 and 2 and run under 
sterilised condition using aseptic technique. The culture of freely suspended cells and growing cells 
were prepared by the method of Seeuriyachan et al. [5, 16]. In the preparation of freely suspended 
cells, the strain was inoculated into 1 litre of modified MRS medium with 0.5 g/l of methyl orange in 
a 3-litre flask. It was then incubated at 35C for 12 h, after which the cells were collected by 
centrifugation at 20,000×g for 10 min at 4C. The pelleted cells were washed twice with 0.85% 
(w/v) NaCl and resuspended for further experiment with an initial OD600 of 0.3.  For growing cells, 
the strain was inoculated into 10 ml of modified MRS medium containing 0.5 g/l of methyl orange in 
a 20-ml screw-capped test tube and incubated at 35C for 24 h. It was then used as starter for further 
investigation and inoculated into 800 ml of the investigated medium (12 runs) in a 1-litre Erlenmeyer 
flask. 
 All treatments were incubated in a static condition at 35C in an anaerobic jar and samples 
were collected every hour. All runs were performed in triplicate. The methyl orange concentration 
was measured spectrophotometrically from the supernatant at 444 nm and the decolourisation rate 
was determined using a curve plotting of dye concentration versus time. To determine the cell dry 
weight of the converted biomass, a standard curve was plotted between OD600

 and cell dry weight 
(CDW) [16]. All determinations were done in triplicate.  
 

Table 1. Assigned concentrations of variables at different levels in Plackett-Burman design for 
decolourisation of methyl orange by Lactobacillus casei TISTR 1500  
 

Variable Medium component Lower level (-) Higher level (+) 

X1 Meat extract (g/l) 2 20 

X2 Peptone from casein (g/l) 2 20 

X3 Yeast extract (g/l) 1 10 

X4 Sucrose (g/l) 4 40 

X5 Dipotassium hydrogen phosphate (g/l) 0.4 4 

X6 Manganese sulphate (g/l) 0.01 0.1 

X7 Magnesium sulphate (g/l) 0.04 0.4 

X8 Sodium acetate (g/l) 1 10 

X9 Diammonium hydrogen citrate (g/l) 0.4 4 

X10 Tween 80 (ml) 0.2 2 
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Table 2.  Plackett-Burment design for 10 variables with 12 runs of experiment  
 

Component  

Run no. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

1 1 -1 1 -1 -1 -1 1 1 1 -1 

2 1 1 -1 1 -1 -1 -1 1 1 1 

3 -1 1 1 -1 1 -1 -1 -1 1 1 

4 1 -1 1 1 -1 1 -1 -1 -1 1 

5 1 1 -1 1 1 -1 1 -1 -1 -1 

6 1 1 1 -1 1 1 -1 1 -1 -1 

7 -1 1 1 1 -1 1 1 -1 1 -1 

8 -1 -1 1 1 1 -1 1 1 -1 1 

9 -1 -1 -1 1 1 1 -1 1 1 -1 

10 1 -1 -1 -1 1 1 1 -1 1 1 

11 -1 1 -1 -1 -1 1 1 1 -1 1 

12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 

RESULTS AND DISCUSSION 
 
Nutritional Requirements for Decolourisation by Freely Suspended Cells and Growing Cells   
 A total of ten variables that influenced methyl orange decolourisation were analysed using the 
Plackett-Burman experimental design. Various medium components at different concentrations were 
investigated in the course of the study (Tables 1 and 2).  The average decolourisation rates (observed 
values and predicted values) are shown in Table 3. The regression equations of the fitted model of 
the decolourisation and biomass production are represented in Table 4 and the predicted value of 
each response was generated therefrom.   

To examine the fitting quality of the model, the values for each fitting method were 
compared. It was observed that the correlation coefficient (R2) approaching 1 indicated a better 
fitting of the predicted values from the equations to the experimental values. The value of R2 was 
0.9945 for the decolourisation rate obtained using freely suspended cells, which could be interpreted 
as 99.45% variability in the response (Table 5). The magnitude and direction of the coefficient factor 
in equation (1) indicated the influence of the ten medium components on the decolourisation rate: a 
greater magnitude illustrated a larger effect. Variables with a confidence level greater than 95% 
(P<0.05) were considered significant.  

It was found that with the response Y1 (decolourisation by freely suspended cells), four 
variables, namely sucrose (X4), meat extract (X1), sodium acetate (X8) and peptone (X2), had a low 
P-value of 0.0270, 0.0284, 0.0322 and 0.0334 respectively (Table 5). These variables thus 
significantly influenced the azo dye decolourisation. The estimated effects in the table indicate  
relative contribution of the variables on the response from the regression model. A positive value 
indicates  that  a higher setting of  the variable  resulted  in a  higher response while a  negative  value   
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Table 3.  Comparison of methyl orange decolourisation rate between observed values and predicted 
values generated by the linear regression models 
 

Decolourisation rate 

by freely suspended cells 

(g/l/h) 

Decolourisation rate 

by growing cells 

(g/l/h) 

 

 

Run 
no. Observed rate Predicted rate Observed rate Predicted rate 

1 13.6 4.34 14.11 14.24 

2 12.54 12.62 9.21 9.08 

3 9.84 9.76 8.66 8.79 

4 13.60 13.52 10.91 11.04 

5 14.90 14.82 8.72 8.85 

6 8.92 9.00 16.95 16.82 

7 10.1 10.18 14.48 14.35 

8 7.32 7.40 5.43 5.30 

9 5.25 5.17 6.61 6.74 

10 8.81 8.89 7.41 7.28 

11 5.32 5.24 4.76 4.89 

12 4.72 4.80 1.81 1.68 

 

 
Table 4. Regression equations of the fitted models of decolourisation and biomass production by 
Lactobacillus casei TISTR 1500 
 

 

Response 

 

 

Equation 

 

Y1 : Decolourisation by 

freely suspended cells 

 

Y1 = 8.8117 + 1.7200X1+ 1.4583X2+0.2217X3+ 1.8067X4 + 0.3617X5 - 
0.145X6 - 0.3333X7 - 1.5167X8 - 0.3183X9 + 0.7600X10.........................(1) 

Y2 : Decolourisation by 

growing cells 

 

Y2 = 9.0883 + 2.1300X1 + 1.3750X2 + 2.6668X3 + 0.1383X4 - 0.1250X5 + 
1.0983X6 + 0.0633X7 + 0.4233X8 + 0.9917X9 - 1.3583X10……………(2) 

Y3 : Biomass production by 

freely suspended cells 

Y3 = 0.6075 + 0.0875X1 + 0.1025X2 + 0.1508X3 + 0.3192X4 - 0.2342X5 + 

0.0758X6 - 0.0425X7 - 0.1575X8 + 0.1392X9 + 0.0692X10…………….(3) 

 

Y4 : Biomass production by 

growing cells 

 

Y4 = 0.6225 + 0.0575X1 + 0.0842X2 + 0.0625X3 + 0.2625X4 - 0.1742X5 - 

0.0058X6 - 0.0125X7 - 0.1642X8 + 0.0692X9 + 0.0208X10…………….(4) 
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indicates the reverse effect (a lower setting resulting in a higher response). Sucrose had the highest 
estimated effect of 3.6133 on the decolourisation by the freely suspended cells of L. casei TISTR 
1500. This implies that sucrose was an important factor in enhancing the decolourisation at a 
minimum concentration of 4 g/l. It thus follows that a deficiency of this component or using a lower 
sucrose concentration than this level could slow down the decolourisation. Sodium acetate, on the 
other hand, had a negative effect on the decolourisation.  Addition of ammonium citrate or sodium 
acetate in the MRS medium is to inhibit other types of bacteria and fungal flora while favouring the 
growth of Lactobacilli [20]. For example, sodium acetate can stimulate the growth of Lactobacillus 
salivarius CRL 1328 and its bacteriocin production [21]. It also induces the production of lactic acid 
in Lactobacillus sakei NRIC 1071 and Lactobacillus plantarum NRIC 1067 [22].  
 

Table 5.  Estimated effect, linear regression coefficient of model, and the corresponding analysis of 
variance of F-ratio and P values for methyl orange decolourisation by freely suspended cells of 
Lactobacillus casei TISTR 1500 for the ten variables by Plackett-Burman experimental design at a 
confidence level of 95%  
 

Component Estimated 
effect 

Coefficient Standard 
error 

Sum of 
squares 

Df Mean 
square 

F-ratio P- value 

Intercept 8.8117 8.8117 0.0767      

X1 3.4400 1.7200 0.1533 35.5008 1 35.5008 503.3200 0.0284 

X2 2.9167 1.4583 0.1533 25.5208 1 25.5208 361.8300 0.0334 

X3 0.4433 0.2217 0.1533 0.5896 1 0.5896 8.3600 0.2120 

X4 3.6133 1.8067 0.1533 39.1685 1 39.1685 555.3200 0.0270 

X5 0.7233 0.3617 0.1533 1.5696 1 1.5696 22.2500 0.1330 

X6 -0.2900 -0.1450 0.1533 0.2523 1 0.2523 3.5800 0.3096 

X7 -0.6667 -0.3333 0.1533 1.3333 1 1.3333 18.9000 0.1439 

X8 -3.0333 -1.5167 0.1533 27.6033 1 27.6033 391.3500 0.0322 

X9 -0.6367 -0.3183 0.1533 1.2160 1 1.2160 17.2400 0.1505 

X10 1.5200 0.7600 0.1533 6.9312 1 6.9312 98.2700 0.0640 

Total error    0.0705 1 0.0705   

Total    139.7560 11    
 
Note:   R2 = 0.9945  

Adjusted R2 = 0.9944 
Standard Error of Estimation = 0.2656 
Mean absolute error = 0.0767 

 

  As indicated in Table 6, factors with P-value less than 0.05 were considered to have a 
significant effect on the response Y2 (decolourisation by growing cells). Only two variables [yeast 
extract (X3) and meat extract (X1)] with positive effects were selected as a source of nitrogen for 
the bacterial growth and decolourisation at 96.98% with a P-value of 0.0302, and at 96.22% with a 
P-value of 0.0378, with confidence levels at 1 and 2 g/l concentration respectively. It was evident 
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that yeast extract exercised the highest influence upon decolourisation by the growing cells with the 
highest estimated effect and regression coefficient of 5.3367 and 2.6683 respectively. Other factors 
proved to be statistically insignificant at a confidence level of 95%. 
 

Table 6.  Estimated effect, linear regression coefficient of model, and the corresponding analysis of 
variance of F-ratio and P values for methyl orange decolourisation by growing cells of Lactobacillus 
casei TISTR 1500 for the ten variables by Plackett-Burman experimental design at a confidence level 
of 95% 
 

Component Estimated 
effect 

Coefficient Standard 
error 

Sum of 
squares 

Df Mean 
square 

F-ratio P-value 

Intercept 9.0883 9.0883 0.1267      

X1 4.2600 2.1300 0.2533 54.4428 1 54.4428 282.77 0.0378 

X2 2.7500 1.3750 0.2533 22.6875 1 22.6875 117.84 0.0585 

X3 5.3367 2.6683 0.2533 85.4400 1 85.4400 443.77 0.0302 

X4 0.2767 0.1383 0.2533 0.2296 1 0.2296 1.19 0.4720 

X5 -0.2500 -0.1250 0.2533 0.1875 1 0.1875 0.97 0.5042 

X6 2.1967 1.0983 0.2533 14.4760 1 14.4760 75.19 0.0731 

X7 0.1267 0.0633 0.2533 0.0481 1 0.0481 0.25 0.7048 

X8 0.8467 0.4233 0.2533 2.1505 1 2.1505 11.17 0.1851 

X9 1.9833 0.9917 0.2533 11.8008 1 11.8008 61.29 0.0809 

X10 -2.7167 -1.3583 0.2533 22.1408 1 22.1408 115.00 0.0592 

Total error    0.1925 1 0.1925   

Total    213.7960 11    
 
Note:   R2 = 0.9991  

Adjusted R2 = 0.9901 
Standard error of estimation = 0.4388 
Mean absolute error = 0.1267 

 

 The results obtained indicated the difference in nutritional requirements between the freely 
suspended cells and the growing cells during process of decolourisation. The freely suspended cells 
of the strain TISTR 1500 required considerably more medium components than the growing cells. 
The strain required sucrose, meat extract and peptone to increase its decolourisation capacity. The 
growing cells could also increase the azo-dye decolourisation if adequate yeast extract and meat 
extract were supplied.   
  
Nutritional Requirements for Biomass Production by Freely Suspended Cells and Growing 
Cells in the Presence of Methyl Orange 
 
 The main factors affecting biomass production were investigated by means of Plackett-
Burmann experimental design using two types of cells of the strain TISTR 1500, namely the freely 
suspended cells at  OD600 = 0.3 and  the growing cells.  The observed and predicted responses of  the  
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Table 7. Comparison of biomass production during the process of decolourisation between freely 
suspended cells and growing cells at several media runs generated by Plackett-Burmann experimental 
design 
 

Biomass production 

by freely suspended cells 

(g/l) 

Biomass production 

by growing cells 

(g/l) 

 

 

Run 
no. Observed rate Predicted rate Observed rate Predicted rate 

1 0.42 0.45 0.43 0.45 

2 1.25 1.22 1.10 1.08 

3 0.52 0.55 0.53 0.55 

4 1.47 1.50 1.20 1.22 

5 0.53 0.56 0.84 0.86 

6 0.18 0.15 0.16 0.14 

7 1.62 1.59 1.36 1.34 

8 0.34 0.31 0.43 0.41 

9 0.35 0.38 0.38 0.40 

10 0.32 0.29 0.35 0.33 

11 0.16 0.19 0.25 0.27 

12 0.13 0.10 0.44 0.42 

 

12 different runs (Table 2) are given in Table 7. It can be seen that the observed biomass production 
by  the  freely  suspended  cells varied  between 0.13-1.62 g/l, whereas  the predicted  values ranged 
between 0.1-1.59 g/l. The first-order model was generated using the experimental data. The  
screening of the MRS medium components was represented via the F-ratio for ANOVA. The 
estimated effect of the component variables on biomass production, the values of coefficients, the F-
ratio and the P-value of each component from the response Y3 (biomass production by freely 
suspended cells) are represented in Table 8. From the design analysis of the regression coefficient, it 
was found that only sucrose showed a positive-effect value with an estimated effect of 0.6383, a 
coefficient of the regression model of 0.3192 and a P-value of 0.0646 on biomass production in the 
presence of methyl orange in the mixture. On the other hand, dipotassium hydrogen phosphate (X5) 
showed a negative effect with an estimated effect of -0.4683, a coefficient of the regression model of 
-0.2342, and a P-value of 0.0878 on the same. These components were screened based on their F-
ratio and P-value at a confidence level of 90% (P<0.1).    
 As indicated in Table 9, three variables, namely sucrose (X4), dipotassium hydrogen 
phosphate (X5) and sodium acetate (X8) were the main factors influencing decolourisation by the 
growing cells of L. casei TISTR 1500. With the response Y4 (biomass production by growing cells; 
Table 4), sucrose enhanced the biomass production at a confidence level of 95% during the azo-dye 
decolourisation with an estimated effect of 0.5250, a coefficient of the regression model of 0.2625, 
and a P-value of 0.0424.  In contrast, dipotassium hydrogen phosphate and sodium acetate showed a  
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Table 8.  Estimated effect, linear regression coefficient of model, and the corresponding analysis of 
variance of F-ratio and P value for biomass production by freely suspended cells of Lactobacillus 
casei TISTR 1500 for the ten variables by Plackett-Burman experimental design at a confidence level 
of 90%  
 

Component Estimated 
effect 

Coefficient Standard 
error 

Sum of  
squares 

Df Mean 
square 

F-ratio P- value 

Intercept 0.6075 0.6075 0.0325      

X1 0.1750 0.0875 0.0650 0.0919 1 0.0919 7.25 0.2264 

X2 0.2050 0.1025 0.0650 0.1261 1 0.1261 9.95 0.1955 

X3 0.3017 0.1508 0.0650 0.2730 1 0.2730 21.54 0.1351 

X4 0.6383 0.3192 0.0650 1.2224 1 1.2224 96.44 0.0646 

X5 -0.4683 -0.2342 0.0650 0.6580 1 0.6580 51.91 0.0878 

X6 0.1517 0.0758 0.0650 0.0690 1 0.0690 5.44 0.2578 

X7 -0.0850 -0.0425 0.0650 0.0217 1 0.0217 1.71 0.4156 

X8 -0.3150 -0.1575 0.0650 0.2977 1 0.2977 23.49 0.1295 

X9 0.2783 0.1392 0.0650 0.2324 1 0.2324 18.34 0.1461 

X10 0.1383 0.0692 0.0650 0.0574 1 0.0574 4.53 0.2796 

Total error    0.0127 1 0.0127   

Total    3.0622 11    
 
Note:   R2 = 0.9959  

Adjusted R2 = 0.9545 
Standard error of estimation = 0.1126 
Mean absolute error = 0.0325 

 
negative effect at a confidence level of 90% in biomass production with estimated effects of -0.3483 
and -0.3283,  coefficients of  the regression  model  of  -0.1742 and -0.1642, and P-values of 0.0638 
and 0.0676 respectively. These results suggested that high concentrations of dipotassium hydrogen 
phosphate and sodium acetate at 4 g/l and 10 g/l decreased the biomass production, which was 
reflected by the decrease in decolourisation.   

Lactic acid bacteria are fastidious microorganisms that require complex nutrients as they lack 
the ability to synthesise amino acids and vitamins. Thus, it is necessary to add complex nitrogen 
sources such as meat extract, peptone and yeast extract to their medium components. An interesting 
fact from this study is that sucrose is mainly required in the mixture with the freely suspended cells in 
order to increase the azo-dye decolourisation while meat and yeast extracts are the major stimulators 
of the decolourisation by the growing cells. In the case of L. amylophilus GV6, the strain does not 
require a high carbon source at 20 g/l of corn steep liquor for its growth and activity [23]. However, 
Lactobacillus sp. KCP01 requires a high carbon concentration at 25 g/l of reducing sugar for 
increasing the bacterial activity. In addition, all organic nitrogen sources (peptone, beef extract and 
yeast extract), dipotassium hydrogen phosphate and sodium acetate are positive factors for the strain 
[24-25].  Glucose is the main source of carbon for the growth of Lactobacillus sp. SK007 [26].  
Under   an   acidic  condition,   glucose   as   a   metabolisable  carbohydrate  like  sucrose  possesses 
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Table 9.  Estimated effect, linear regression coefficient of model, and the corresponding analysis of 
variance of F-ratio and P values for biomass production by growing cells of Lactobacillus casei 
TISTR 1500 for the ten variables by Plackett-Burman experimental design at a confidence level of 
90%  
 

Component Estimated 
effect 

Coefficient Standard 
error 

Sum of 
squares 

Df Mean 
square 

F-ratio P- value 

Intercept 0.6225 0.6225 0.0175      

X1 0.1150 0.0575 0.035 0.0397 1 0.0397 10.80 0.1881 

X2 0.1683 0.0842 0.035 0.0850 1 0.0850 23.13 0.1305 

X3 0.1250 0.0625 0.035 0.0469 1 0.0469 12.76 0.1738 

X4 0.5250 0.2625 0.035 0.8269 1 0.8269 225.00 0.0424 

X5 -0.3483 -0.1742 0.035 0.3640 1 0.3640 99.05 0.0638 

X6 -0.0117 -0.0058 0.035 0.0004 1 0.0004 0.11 0.7952 

X7 -0.0250 -0.0125 0.035 0.0019 1 0.0019 0.51 0.6051 

X8 -0.3283 -0.1642 0.035 0.3234 1 0.3234 88.00 0.0676 

X9 0.1383 0.0692 0.035 0.0574 1 0.0574 15.62 0.1578 

X10 0.0417 0.0208 0.035 0.0052 1 0.0052 1.42 0.4448 

Total error    0.0037 1 0.0037   

Total    1.7544 11    
 
Note:   R2 = 0.9979  

Adjusted R2 = 0.9769 
Standard error of estimation = 0.0606 
Mean absolute error = 0.0175 
 

protective effects as bacteria demand high energy for maintaining pH homeostasis [27-28].  
Peptone is a rich source of amino acids and partially involves pH homeostasis mechanism. 

Increasing the peptone concentration in the medium can enhance the buffering capacity and bacterial 
survival [29]. In this case of Lactobacillus casei TISTR 1500, the increasing rate of azo dye 
degradation might have caused the buffering effect when the medium contained high peptone 
concentration. Both peptone and yeast extract have a positive effect on the growth of L. fermentum 
[30] and L. lactis subsp. lactis [31]. As yeast extract is a rich source of amino acids and vitamins, 
this could account for its positive influence on the bacterial growth  [25, 32]. Attempts have been 
made to replace yeast extract in stimulating the bacterial growth and lactic acid production by 
various nitrogen sources. However, none of these sources are comparable to yeast extract, nor do 
they yield bacterial productivity as high as yeast extract [33].  

In our previous study [5, 16], pH was seen as a limiting factor of dye decolourisation for the 
strain TISTR 1500. Besides, meat extract and peptone were observed to play an important role in 
controlling the pH [34]. For the strain TISTR 15000, the mechanism of methyl orange 
decolourisation starts with azo dye translocation across the bacterial membrane [16]. A low pH with 
a high concentration of lactic acid can lead to the disruption of some metabolic pathways. Thus, a 
high buffering capacity of the mixture can increase the decolourisation rate as demonstrated in the 
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present study, the results of which have also shown the unconventional findings on the difference in 
requirements between the freely suspended cells and the growing cells. These finding suggest that 
during decolourisation the freely suspended cells require a high buffer capacity or pH regulation in 
comparison to the growing cells.  

The results obtained in the present study for the strain TISTR 1500, with sucrose being the 
only main positive factor and the inorganic phosphate and sodium acetate exerting a negative 
influence on biomass production in the presence of an azo dye, apparently differ from other studies. 
It was observed that lactose and peptone have a positive influence on biomass production [35]. 
Bevilacqua et al. demonstrated an increasing trend in the biomass production when the carbon source 
increased up to 20 g/l in a nonlinear way at pH 6, but the interaction effect between carbon source 
and pH on biomass production was small [36].  

As mentioned in our previous study [16], the strain TISTR 1500 possesses cytoplasmic 
azoreductase and the azo dye has to be imported through the bacterial membrane in the first step of 
the dye degradation. The study of Schär-zammaretti et al. [37] suggests that the morphology and  
structure of the bacterial cell wall changes depending on the composition of the medium. Both 
peptone and yeast extract have the major influences on the physicochemical properties of the cell 
wall, particularly the membrane-bound proteins. They may cause a change in the hydrophobicity of 
the cell wall. In MRS medium, the cell wall has a low hydrophobicity in the absence of 
carbohydrates. However, in the absence of peptone and yeast extract in the MRS medium, the 
hydrophobicity of the bacterial cell wall becomes high. Similarly, the electrical charge on the bacterial 
cell wall surface correlates with its N/C ratio [37]. A change in the cell wall structure and its 
physicochemical properties can thus affect the rate of azo dye translocation across the cell 
membrane. The current findings of this study should be useful for improving the culture media for 
the strain TISTR 1500 in order to rejuvenate the microbial cells when the strain is applied in a system 
of wastewater treatment.   

 
CONCLUSIONS 
 

The composition of the fermentation medium has been observed to be a major factor 
affecting the methyl orange decolourisation capacity and biomass production of the strain TISTR 
1500 of Lactobacillus casei. A difference in the nutritional requirements of the freely suspended cells 
in comparison to the growing cells has also been demonstrated. Sucrose, meat extract and peptone 
increased methyl orange decolourisation by the freely suspended cells while sodium acetate had a 
negative effect on the decolourisation. Both yeast extract and meat extract enhanced the degradation 
of the azo dye by the growing cells. Sucrose was found to be important for the biomass production 
by freely suspended cells and growing cells in the presence of 100 mg/l of methyl orange. On the 
other hand, dipotassium hydrogen phosphate and sodium acetate decreased biomass production. 
These findings should promote an understanding of the requirements of azo dye decolourisation by 
Lactobacillus casei.  
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