

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

Maejo International
Journal of Science and Technology

ISSN 1905-7873

Available online at www.mijst.mju.ac.th
Full Paper

IIS-Mine: A new efficient method for mining frequent itemsets

Supatra Sahaphong* and Veera Boonjing

Department of Mathematics and Computer Science, Faculty of Science, King Mongkut’s Institute of
Technology Ladkrabang, Bangkok 10520, Thailand

* Corresponding author, e-mail: supatra@ru.ac.th

Received: 11 September 2011 / Accepted: 4 March 2012 / Published: 23 April 2012

Abstract: A new approach to mine all frequent itemsets from a transaction database is
proposed. The main features of this paper are as follows: (1) the proposed algorithm
performs database scanning only once to construct a data structure called an inverted
index structure (IIS); (2) the change in the minimum support threshold is not affected by
this structure, and as a result, a rescan of the database is not required; and (3) the
proposed mining algorithm, IIS-Mine, uses an efficient property of an extendable itemset,
which reduces the recursiveness of mining steps without generating candidate itemsets,
allowing frequent itemsets to be found quickly. We have provided definitions, examples,
and a theorem, the completeness and correctness of which is shown by mathematical
proof. We present experiments in which the run time, memory consumption and scalability
are tested in comparison with a frequent-pattern (FP) growth algorithm when the
minimum support threshold is varied. Both algorithms are evaluated by applying them to
synthetics and real-world datasets. The experimental results demonstrate that IIS-Mine
provides better performance than FP-growth in terms of run time and space consumption
and is effective when used on dense datasets.

Keywords: association rule mining, data mining, frequent itemsets mining, frequent
patterns mining, knowledge discovering

__

INTRODUCTION

The objective of frequent itemset mining is to identify all frequently occurring itemsets using
a support threshold. Decision-makers are interested in all itemsets associated with high frequencies.
Association rule mining algorithms can be broken down into two major phases. The first phase finds
all of the itemsets that satisfy the minimum support threshold, which are the frequent itemsets. The

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

131

second phase is rule generation, in which all the high confidence rules from the frequent itemsets
found in the previous phase are extracted [1]. Many previous investigations focused on the first
phase. Early algorithms based on generated and tested candidate itemsets have two major defects.
First, the database must be scanned multiple times to generate candidate itemsets, which increases
the I/O load and is time-consuming. The search space of itemsets that must be explored grows
exponentially. Second, enormous candidate itemsets are generated and calculated from their
supports, which consumes a large amount of CPU time [2].

To overcome the above-mentioned problems, a next generation of algorithms using a
compact tree structure was proposed, called a frequent-pattern (FP) tree [3], which finds frequent
itemsets directly from the data structure. However, most of the FP-tree-based algorithms have the
following weaknesses. First, the mining of frequent itemsets from the FP-tree to generate a huge
conditional FP-tree requires a large amount of run time and space. The best case is when a database
has the same set of transactions; an FP-tree then contains only a single branch of nodes. The worst
case is when a database has a unique set of transactions [3]. Second, when the users change to a new
minimum support threshold for their new decision, the algorithm restarts the whole operation and
scans the database twice.

Many researchers have tried to solve the above problems using a vertical data layout.
However, most of the algorithms have the drawback of increasing the run time and space
consumption due to the following reasons. First, when the users change to a new minimum support
threshold for their new decision, the algorithm restarts the whole operation more than one time to
scan a database and construct their data structure. Rescanning the database for a new minimum
support threshold wastes both run time and space. Second, all of the FP-tree-based algorithms
generate a huge conditional FP-tree, which has a large number of recursive processing steps and
requires a large amount of run time and space consumption.

In this paper we present a new, efficient method to solve the above-mentioned problems by
proposing both a data structure and a mining algorithm for decreasing the consumption of run time
and space. First, the proposed method performs database scanning to construct a data structure
called an inverted index structure (IIS) only once. In addition, changing the minimum support
threshold does not affect the IIS; therefore, database rescanning is not required. Second, IIS-Mine is
a new algorithm that mines all of the frequent itemsets without generating candidate itemsets and
uses a new tree structure called the IISitemTree. IIS-Mine employs an efficient property of the
extendable itemset, which decreases the number of recursive processing steps when mining frequent
itemsets. The completeness and correctness of the algorithm is proved using a mathematical proof.
Last, the efficiency of IIS-Mine is compared with that of FP-growth in terms of run time and space
consumption through simulation experiments. Our experiments show that IIS-Mine is more efficient
than FP-growth in run time and space consumption for dense datasets.

RELATED WORK

The first algorithm to generate all frequent itemsets is the AIS algorithm, which was first

introduced by Agrawal et al [4]. However, this algorithm constructs a list of all of the possible

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

132

itemsets at each level of traversal, so infrequent itemsets that are not needed are also generated.
Later, the algorithm was improved upon and renamed the Apriori algorithm by Agrawal et al [5]. The
Apriori algorithm uses a level-wise and breadth-first search approach for generating association
rules. Many efficient association mining techniques have been developed based on the Apriori
algorithm. Vu et al. [6] proposed a rule-based location prediction technique to predict the user’s
featured location, but this proposal generates more candidate itemsets than are required. These
algorithms are also expensive in terms of I/O load and run time when the database must be scanned
multiple times to generate candidate itemsets.

The above-mentioned problems can be improved upon by using a compact tree structure and
finding frequent itemsets directly from the data structure. The algorithms scan a database twice. The
first scan of the database is to discard infrequent itemsets; the second is to construct a tree. The FP-
growth algorithm, developed by Han et al. [7], is the most popular method. It performs a depth-first
search approach in a search space. It encodes a dataset using a compact data structure called an FP-
tree or prefix tree and extracts frequent patterns directly from the FP-tree. Many approaches have
been proposed to extend and improve upon this algorithm. Pei et al. [8] developed the H-mine
algorithm using array- and tree-based data structures to improve the main memory cost. The
PatriciaMine algorithm [9] compressed Patricia tries to store datasets, which is space efficient for
both dense and sparse datasets. The FP-growth algorithm [10] reduces the FP-tree traversal time
using an array technique. Zhu [11] proposed a new method to compress a large database into an FP-
tree with a children table but not a header table, and applied a depth-first search with this tree for the
mining step, which reduces both the run time and the space consumption. Sahaphong and Boonjing
[12] proposed a new algorithm which constructs a pattern base using a new method that is different
from the pattern base in the FP-growth and mined frequent itemsets using a new combination method
without the recursive construction of a conditional FP-tree. An approach based on the FP-tree and
co-occurrence frequent items (COFI) was proposed to find frequent items in multilevel concept
hierarchy by using a non-recursive mining process [13]. A new data structure called improved FP
tree was proposed, which can reduce space consumption and enhance the efficiency of an attribute
reduction algorithm [14]. To maintain the anti-monotone property of approximate weighted frequent
patterns, a robust concept was proposed to relax the requirement for exact equality between the
weighted supports of patterns and a minimum threshold [15]. However, most of the FP-tree-based
algorithms require a large amount of run time and space to generate the huge conditional FP-trees.
Moreover, the algorithm restarts the whole operation and requires that a database be scanned twice
when the minimum support threshold is changed.

As mentioned above, most of the algorithms that mine frequent itemsets use a horizontal data
layout. However, many researchers use a vertical data layout. The Eclat algorithm was proposed
[16] to generate all frequent itemsets in a breadth-first search using the joining step from the Apriori
property when no candidate items can be found. The Eclat algorithm is very efficient for large
itemsets but is less efficient for small ones. The diffset technique [17] was introduced to improve the
memory requirement. Chai et al. [18] detailed a data structure called large-item bipartite graph to
accommodate the data when a database is scanned. Similar to the FP-growth algorithm, this method

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

133

mines frequent patterns using the recursive conditional FP-tree. The BitTableFI algorithm [19] uses
horizontal and vertical data layouts to compress a database. Yen [20] presented an algorithm based
on an undirected itemset graph that finds frequent itemsets by searching undirected graphs. When the
database and minimum support change, this algorithm requires that the graph structure be re-
searched to generate new frequent itemsets. The Index-BitTableFI [21] was developed to reduce the
cost of candidate generation and to support counting. Sahaphong and Boonjing [22] proposed a new
algorithm that reduces the run time. The drawback of this algorithm is its large memory consumption
from generation of many repeated nodes. The JoinFI-Mine algorithm [23] uses a sorted-list structure
constructed from the vertical data layout and finds all frequent itemsets using a depth-first search for
joining frequent itemsets. Therefore, this algorithm consumes time and space in its joining step.

METHODS

Frequent-Itemsets Mining Problem

We introduce the basic concepts of mining frequent itemsets. All terminologies in this section
are proposed by Han et al [2].

Let },...,,{= 21 mxxxI be a set of items and },...,,{= 21 nTTTDB be a transaction database, where
nTTT ,...,, 21 are transactions that contain items in I. The support, or supp (occurrence frequency), of a

pattern A, where A is a set of items, is the number of transactions containing A in DB. A pattern A is
frequent if A’s support is no less than a predefined minimum support threshold, minsup.

Given a DB and a minimum support threshold minsup, the problem of finding a complete set
of frequent itemsets is called the frequent-itemsets mining problem.

For a greater understanding, we provide an example to illustrate the above definitions.
Example 1. An example of the database by Han et al. [2] is used here. Table 1 is a DB. It

consists of 5 transactions (T1, T2, T3, T4, and T5) and 17 items (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o,
p, and s). For example, the first transaction is T1, which contains f, a, c, d, g, i, m, and p.

 Table 1. A transaction database

Transaction Item

T1 f, a, c, d, g, i, m, p

T2 a, b, c, f, l, m, o

T3 b, f, h, j, o

T4 b, c, k, s, p

T5 a, f, c, e, l, p, m, n

IIS: Design and Construction

We present a data structure that contains transaction data called an inverted index structure
(IIS). The IIS is a structure that holds a relationship between items and the transactions included
within. The IIS is constructed from one scan of the DB. This original IIS can support every minsup;

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

134

therefore, it does not need to rescan the DB when the minsup is changed. According to the
definitions in the previous section, we present a new definition with an example and an algorithm to
demonstrate how to construct this IIS.

Definition 1 (IIS). Let DB be a transaction database and I be a non-empty finite set of all
items in each transaction in the DB, where each transaction is a set of items in I associated with an
identifier, and let S be a set of all non-empty subsets of DB. An IIS is the function SIf →: defined
by 1=)(Saf if T contains a for each 1∈ST . This function can be identified as a table consisting of the
attributes of the items in I and the corresponding transactions in the DB. That is, each row in the IIS
contains an item in I as well as the transactions in the DB that contain that item. The set of
transactions are written in the order of their ascending identification numbers.

With the above definition, the IIS represents the relationship between each item in I and its
corresponding transactions; therefore, the IIS can apply to all minimum support thresholds, and a
rescan of the database is not required. We demonstrate the steps to construct the IIS through the
following example.

Example 2. We use the example of a DB in Table 1. The DB is scanned once to create the
IIS. The scan of the first transaction is T1, which consists of items f, a, c, d, g, i, m and p. The
transaction T1 will be inserted for each corresponding item sorted in ascending order (a, c, d, f, g, i,
m, p). T1 will be the first transaction inserted in the transactions of item a. The second examined item
is c, so we insert T1 in item c. Next, we examine item d; we then subsequently insert T1 in item d. The
remaining items (f, g, i, m and p) in T1 can be similarly inserted. The remaining transactions (T2, T3,
T4 and T5) in the DB are performed in a similar manner.

Algorithm 1 shows how to construct the IIS. Figure 1 shows all of the items of the IIS after
scanning the DB once, and the bold items are all frequent items that have a support greater than or
equal to the minsup, which is assumed to be 3.

Algorithm 1 (IIS construction)
Input: DB.
Output: IIS.
Method: The IIS is constructed as follows.
1 Begin
2 Create header that contains all items.
3 For each transaction T in DB do // scanning DB once
4 Sort items in T // ascending order
5 Create transaction to each corresponding item
6 End //For
7 End //Begin

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

135

Item Transaction
a T1 T2 T5
b T2 T3 T4
c T1 T2 T4 T5
d T1
e T5
f T1 T2 T3 T5
g T1
h T3
i T1
j T3
k T4
l T2 T5

m T1 T2 T5
n T5
o T2 T3
p T1 T4 T5
s T4

Figure 1. An example of the IIS

IIS-Mine Algorithm

 We present a new algorithm called IIS-Mine. This algorithm uses a new tree structure, called
the IISitemTree, to mine frequent itemsets. The main features of this algorithm are as follows: (1)
every frequent itemset is found without generating candidate itemsets; (2) the algorithm reduces the
recursion of mining steps using the property of extendable itemset; and (3) the algorithm supports
the mining of frequent itemsets with any value of the minsup without needing to rescan the database.
From the above features, we can quickly find the frequent itemsets and completely and correctly
obtain them. We now introduce the terminologies of the IISitemTree, its construct, the theorem, the
examples and the algorithms to describe how to mine frequent itemsets.

Definition 2 (Itemset-tree structure). An itemset-tree structure is a tree structure
constructed from the IIS. It is a finite set of one or more nodes with the following structure:

(i) It consists of the root which contains an item, a set of item subtrees as the children of the root,
and a set of header tables.

(ii) Each node in this tree comprises five fields: item-name, which registers which item this node
represents; support, which registers the number of transactions represented by the portion of the path
reaching this node; same-item, which represents a pointer that points to the node in the itemset-tree
structure that carries the same item-name; parent, which represents a pointer that points to the
previous node in the same path; and child, which represents a pointer that points to the child node.
 (iii) Each member of the header table consists of two fields, item-name and head of node link,
where head of node link represents a pointer that points to the first node in the itemset-tree structure
carrying the item-name.

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

136

Definition 3 (IISitemtree). Let x0 be an arbitrary frequent item in a given transaction database
and IIS be the inverted index structure of the transaction database. A tree T constructed from the
IIS is called an inverted index structure- 0x tree, denoted by ,0 treeIIS x if it satisfies the following:

(i) Each node of T is of the form),:(sA where A is a frequent itemset and s is its support. If
):(sA is a node of T and },{= aA where a is a frequent item, then):(sA is simply written by).:(sa

(ii) Let):(00 sx be its root, where 0s is the support of .0x
(iii) Let kxxx ,...,, 10 be frequent items in the IIS, and =is supp },...,,{ 10 ixxx for all .,...,1,0= ki In

this case,)):(),...,:(),:((= 1100 kk sxsxsxP is a path from the root):(00 sx to a leaf):(kk sx of the tree T
if and only if 0>≥...≥ 10 ksss , ,<...<< 10 klll xxx where l is the lexicographic order. If a is a
frequent item in the IIS and if):(sa is a node of T such that axk < or 1+<< illi xax for all ,,...,1,0= ki
then supp 0=},,...,,{ 10 axxx i and):(sa is not a node of P.

The header table of treeIIS x0 is a set of all frequent items a of a node):(sa of this tree.

 Based on the above definition, we have the IISitemTree construction algorithm, as shown in
Algorithm 2. It is evident that if minsup>0 is a minimum support threshold, then every frequent
itemset can be derived from an IISitemTree.

 If no confusion arises, then },...,,{ 21 nxxx and):},...,,({ 21 sxxx n are replaced by ,...21 nxxx and

 sxxx n :...21 respectively, where nxxx ,...,, 21 are items.
 Example 3. In this example, we describe the steps to construct all of the IISitemTrees except
the last frequent item p using the IIS in Figure 1 and minsup = 3. The first frequent item in the IIS is

Algorithm 2 (IISitem Tree construction)
Input: IIS.
Output: IISitem Tree.
Method: An IISitem Tree is constructed as follows.
1Begin
2 Create header table
3 Read frequent item x in IIS
4 Create root R and initial supp(R) to 1
5 Link R to header table
6 For each transaction T of root R where 1= TT to nT do
7 While next frequent item≠(last frequent item)+1 do
8 Read next frequent item (N) that has same T with R
9 Call InsertTree (N,R)
10 End//While
11 End//For
12End //Begin
Procedure InsertTree (N,R)
1Begin
2 If TreeIISR has a node C such that C.item-name = N.item- name then
3 Increment supp(N) by 1
4 Else
5 Create new node N and initial supp(N) to 1
6 Link N to N’s parent
7 Link N to N’s header table
8 Link N to same-item
9 End //If
10End //Begin

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

137

a; therefore, we first construct the IISaTree, and item a is a root. We obtain two paths: (<a:2>,
<c:2>, <f:2>, <m:2>, <p:2>) and (<a:1>, <b:1>, <c:1>, <f:1>, <m:1>). The first path consists of
frequent items (a,c,f,m,p) that appear twice in the DB. Similarly, the second path indicates frequent
items (a,b,c,f,m) that are contained in only one transaction in the DB. These two paths share the
frequent item a; thus, a appears three times in the DB. Other IISitemTrees, except the IISpTree, can be
similarly constructed. In Figure 2, all of the IISitemTrees, except the last IISpTree, are illustrated.

a:3

c:2

f:2 c:1

f:1

b:1

m:2

p:2 m:1

 (a) (b) (c) (d) (e)

Figure 2. IISitemTrees

Definition 4 (A1-tree). Let DB be a transaction database; let T be a tree such that each node
of the tree is of the form):(sA , where A is a frequent itemset in DB and s is the support of A; and let

1A be a frequent itemset in the DB. T is called an A1-tree if, for any path P of T, P is of the form
)),:(),...,:(),:((= 2211 kk sAsAsAP where k is a positive integer; iA and jA are pairwise disjoint

frequent itemsets for all i, j = 1,2,…,k with ji ; si is the support of
i

m
Am
1=

 for i =1,2,…,k; (A1:s1)

is the root of T; and):(kk sA is a leaf of T.
Example 4. According to Figure 2 (a), the ac-tree is shown in Figure 3.
Definition 5 (Prefix subpath). Let T be a tree, a1 be the root of ,T and),...,(1 maaP be a

path of T, where m is a positive integer. Every path),...,(= 1 kaaQ of T is then called a prefix subpath
of P, where mk ≤≤1 .

Example 5. According to Figure 2(a), the paths ((a:3),(c:2)) and ((a:3),(c:2),(f:2)) are prefix
subpaths of ((a:3),(c:2),(f:2),(m:2)).

Definition 6 (Subheader). Let T be an A-tree and (x:s(x)) be a node of T, where x is a
frequent item in a given transaction database and s(x) is the support of x. Suppose that all of the
nodes (of T) containing x are only in the paths P1,…,Pk of T from the root (A:s) to some leafs of T,
and suppose that iQ is a prefix subpath (of Pi) from the root):(sA to))(:(iQsx for all .,...,1= ki The
subheader of T, denoted by SH(A), is defined as the order set SH(A) = {x|x is a frequent item not

contained in A,))(:(iQsx is a node in iQ for i = 1,…,k and ≥∑
1=

)(
k

i
Qs i minsup}.

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

138

Example 6. According to Figure 2(a), SH(a) = {c,f,m}, where SH(a) is the subheader of the
tree in Figure 2 (a), supp(c) = 3, supp(f) = 3, and supp(m) = 3.

Definition 7 (Conditional itemset-tree). Let A1 be a frequent itemset, T be an A1-tree, x2 be
a frequent item with)(∈ 12 ASHx - ,1A and }{∪=: 2121 xAxA be a frequent itemset. A conditional A1x2-
tree, denoted by),(21xAT is a tree that satisfies the following:

(i)):(221 sxA is the root of),(21xAT where s2 is the support of 21xA and ≥2s minsup.
(ii) The number of items in .1>)(1ASH

 (iii) All of the paths are derived from T in the following way:)):(),...,:(),:((= 33221 kk sxsxsxAQ is a
path of)(21xAT if and only if a path)):(),...,:(),:((= 2211 ll sxsxsAP exists from the root):(11 sA to the
leaf):(ll sx of T, where kl ≥ and kx is in);(1ASH and if there is a node):(rr sx of P such that kr >
and)):(),...,:(),:((2211 rr sxsxsA is a prefix subpath of P, then rx must not be in).(1ASH

Example 7. According to Figure 2 (a), the conditional itemset-tree, or conditional ac-tree, is
shown in Figure 4.

Notably, every non-empty subset of a frequent itemset is also frequent. This fact leads to the
following definition.

Definition 8 (Frequent itemset* of length m derived from tree). Let A be a frequent
itemset, x be a frequent item, and Ax . Suppose that T is a conditional Ax-tree, m is a positive
integer greater than 1, and }{∪= xAAx has m elements. Ax is called a frequent itemset* of length m
derived from T, denoted by)(* AxFS m , if T contains precisely two nodes and Ax is a frequent itemset,
or if }.{=)(xASH

Example 8. According to Figure 5, the frequent itemset* of length 4 derived from the
conditional acf-tree is .=)(*

4 acfmacfmFS .

Figure 3. ac-tree Figure 4. Conditional ac-tree Figure 5. Conditional acf-tree

 Definition 9 (Extendable frequent itemset*). Let m be a positive integer greater than 1, T

be a)(AxT defined as in definition 7 with AA =1 and ,=1 xx and Ax be a frequent itemset* of length
m derived from T. Each itemset in)(* AxFSm is said to be extendable if 3≥m . For every k = 2, 3,…,
m, we let)(* AxExtk denote the set of all itemsets containing exactly k items of),(* AxFSm where 3≥m .
Each element of)(* AxExtk is called an extendable frequent itemset* (derived from T) of length k for
all 2≥k . The set of all extendable frequent itemsets* of length k that is denoted
by AyAyExtkExt k |)(*{∪=* is a frequent itemset* of length at least k derived from a conditional Ay-

tree} for all 2≥k .

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

139

 Example 9. According to the previous example, the length of)(*
4 acfmFS is 4; we then find

that)(*
2 acfmExt = {ac, af, am, cf, cm, fm} and =)(*

3 acfmExt {acf, acm, afm, cfm}. Therefore, =*2Ext
{ac, af, am, cf, cm, fm, and all members of other)(*2 AyExt } and =*

3Ext {acf, acm, afm, cfm, and all
members of other)(*3 AyExt }.

Definition 10 (Frequent itemset* of length m). Let k be the maximum length of all frequent
itemsets in a transaction database,)(* AxFS m and Extk

* be given as in definitions 8 and 9 respectively;

let AxAxFS mAm |)(*{= being a frequent itemset* of length m derived from T} for m = 2, 3,…, k;
define AxAxAFS |{∪= 2

*
2 being a frequent itemset of length 2}; and define AmFS m =* for m = 2, 3,…,

k}. Let FI m* be defined by xxFI |}{{=*
1 being a frequent item} and *** ∪= mmm ExtFSFI for m = 2, 3,…,

k}. Any element of FI m* is called the frequent itemset* of length m.
Example 10. According to the previous example, we find that *

2FI = {ac, af, am, cf, cm,
fm}, *

3FI = {acf, acm, afm, cfm}, and *
4FI = {acfm}.

Definition 11 (Frequent itemset*). Let FI m* be given as in definition 10, and let *FI denote
,∪ *

1= m
k
m FI where k is the maximum length of all frequent itemsets in a transaction database. Any

element of *FI is called a frequent itemset*.
Example 11. According to the previous example, *FI is {ac, af, am, cf, cm, fm, acf, acm,

afm, cfm, acfm}.
On the basis of the above definitions and examples, Algorithm 3 presents the IIS-Mine

algorithm to show how it can be used to mine all frequent itemsets.

Algorithm 3: (IIS-Mine: Mining frequent itemsets using IISitemTree)
Input: IIS, IISitem Trees constructed according to Algorithm 2, and minsup
Output: FI*
Procedure AllFreqItemset (IIS, FI*)
1 Begin
2 For each frequent item x in the IIS do
3 ,∈|{{=*

1 IxxFI supp(x)≥ minsup}
4 Call TreeIIS x , which is constructed from Algorithm 2
5 If Tree≠{}
6 Call IIS-Mine (Tree, x)
7 End //If
8 End //For
9 Find *

1=
* ∪= m

k
m FIFI // FI* is given in definition 11

10 End //Begin
Procedure IIS-Mine(Tree, x)
1 Begin
2 Call SubHeader (A-tree, subheaderA)
3 Generate all Ax with its support
 //All Ax are the frequent itemsets where A is the root of A-tree and ∈x subheaderA
4 For each 1>|λ| do // λ is Ax
5 Flag=1
6 While Flag = 1 do
7 Call SkipFreqItemset (subheaderA, λ , δ ,FlagRepeat, FlagTree)
8 If FlagRepeat=0 and FlagTree=0 then // (δ *

mFI)
9 Call CondItemsetTree (A-tree, δ , conditional δ -tree)

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

140

10 Else
11 Flag=0
12 End // If
13 If conditional Ax-tree contains greater than two nodes
14 Call IIS-Mine(conditional δ -tree, x)
15 Else Flag=0
16 End //If
17 End //While
18 If 3≥|)δ(| *

mFS and)δ(*
mFS *

mFI then

19 Call ExtFreqItemset()δ(*
mFS , *

kExt) // *
mFS is given in definition 8

20 Save)δ(*
mFS and all *

kExt to *
mFI // *

mFI is given in definition 10
21 Else
22 If)δ(*

mFS *
mFI then

23 Save)δ(*
mFS to *

mFI
24 End //If
25 End //If
26 End //For
27 End //Begin
Procedure SubHeader (A-tree, subheaderA)
1 Begin
2 Each frequent item x of A-tree // SH(A) is given in definition 6
3 Find {(x:s(x))|x∈SH(A), s(x) is the support of x in A-tree}
4 End // Begin
Procedure CondItemsetTree(Tree, δ , conditional δ -tree)
1 Begin
2 Scan tree once to collect the paths that have an association with root δ
3 For all paths are derived from tree do
4 Connect all paths to δ
5 End //For
6 End //Begin
Procedure SkipFreqItemset (SubheaderA, λ , δ , FlagRepeat, FlagTree)
1 Begin // To skip the construction of conditional item tree
2 // x is the frequent item in subheaderA // λ is the root of tree; or a frequent itemset
3 // FlagRepeat=0 means δ *

mFI // FlagTree=0 means the conditional item-tree is constructed
4 // n is the maximum number of elements of itemsets in subheaderA
5 FlagRepeat =1, FlagTree=1
6 β=α,λ=β
7 While(FlagRepeat=1 and (order of nx ≤)) do
8 If β *

mFI then
9 FlagRepeat=0, FlagTree=0
10 If x is the last item
11 If 2=|δ| then FlagTree=1
12 End //If
13 α=δ
14 End //If
15 Else
16 If x is the last item then
17 Increment order of item x
18 Else
19 Increment order of item x
20 x∪δ=β
21 δ=α
22 End// If

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

141

23 β=δ
24 End //If
25 End //while
26 End //Begin
Procedure ExtFreqItemset()δ(*

mFS , *
kExt)

1 Begin // *
kExt is given in definition 9

2 Generate all subsets of)δ(*
mFS and save to *

kExt
3 End // Begin

Example 12. This example is given to demonstrate how the proposed IIS-Mine algorithm

can be used to mine all frequent itemsets. Assume minsup = 3 for all of the definitions above, and for
Examples 1-3, Figure 2 and Algorithm 3. For simplicity, this example is divided into five main steps
ordered by five frequent items in the IIS. The proposed mining algorithm proceeds as follows.

Let step 1 be the first main step. According to Procedure AllFreqItemset, the frequent item a
is the first frequent item in the IIS that is mined. The IISaTree is constructed, as illustrated in Figure
2(a). The algorithm calls Procedure IIS-Mine, so Procedure Subheader is called in order. The SH(a)
is (c,f,m), where supp(c) = 3, supp(f) = 3 and supp(m) = 3. After line 3 in the procedure, IIS-Mine
generates all of the frequent itemsets with its support, i.e. ac, af and am; all of these frequent
itemsets have support equal to three. Let steps 1.1, 1.2 and 1.3 represent each of the frequent
itemsets.

The step 1.1, the first frequent itemset is ac, which has support equal to three. The algorithm
checks |ac|>1 and then calls Procedure SkipFreqItem. At this procedure, ac is not in ,*

2FI so the
algorithm rolls back to line 9 of Procedure IIS-Mine. The frequent itemset ac with its support is
defined to be the root; then, the conditional ac-tree, which has root “<ac:3>”, is constructed using
the input IISaTree. The conditional ac-tree is illustrated in Figure 4. The algorithm is iterated by
calling Procedure IIS-Mine again because the conditional ac-tree contains more than two nodes; let
this call be step 1.1.1.

In step 1.1.1, the Procedure IIS-Mine is called; SH(ac) = (f,m), where supp(f) and supp(m)
are then equal to 3. At line 3, the algorithm generates frequent itemsets, which are acf and acm,
where supp(acf) and supp(acm) are then equal to 3. The first frequent itemset in this step is acf and

1>|| acf , so the procedure SkipFreqItem in line 7 is processed, and it finds that acf is not in .*
3FI

Next, the algorithm rolls back to line 9 to construct a conditional acf-tree that has a conditional ac-
tree as an input tree, which is illustrated in Figure 5. The condition of line 13 is that the conditional
acf-tree contains only two nodes, so the algorithm obtains acfmacfmFS =)(*

4 . At line 18, the size of
)(*

4 acfmFS is greater than three and FIacfmFS *
4

*
4)(. Thus, at line 19, Procedure ExtFreqItemset is

called to find all of the subsets of)(*
4 acfmFS , which are)(*

2 acfmExt and)(*
3 acfmExt :)(*

2 acfmExt = {ac,
af, am, cf, cm, fm} and)(*

3 acfmExt = {acf, acm, afm, cfm}; hence, *
2FI = {ac, af, am, cf, cm, fm},

*
3FI = {acf, acm, afm, cfm}, and *

4FI = {acfm}.
In step 1.1.2, the next frequent itemset generated together with step 1.1.1 is acm. At line 7 of

Procedure IIS-Mine, the algorithm calls Procedure SkipFreqItem and obtains acm, which is already a

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

142

member of *
3FI ; m is the last frequent item in SH(ac), so we exit from this step without the

construction of a conditional acm-tree.
In step 1.2, at line 4 of Procedure IIS-Mine, the next frequent itemset is af, and at line 7,

Procedure SkipFreqItem is called and obtains af, which is contained in *
2FI . In the loop in line 20 of

Procedure SkipFreqItem, after af is combined with the next frequent item in SH(a), which is m, afm
is obtained, which is contained in *

3FI , and item m is the last item in SH(a). The algorithm rolls back
to line 8 of Procedure IIS-Mine, so the conditional af-tree is not constructed.

In step 1.3, at line 4 of Procedure IIS-Mine, the next frequent itemset is am. At line 7,
Procedure SkipFreqItem is called and obtains am, which is contained in *

2FI , and there is no frequent
item in SH(a). Therefore, the conditional am-tree is not constructed.

Let step 2 be the second main step. According to line 2 of Procedure AllFreqItemset, b is the
second frequent item in the IIS that is mined. After line 4, the IISbTree is constructed, as illustrated
in Figure 2(b). The algorithm calls Procedure IIS-Mine at line 6. At line 2 of Procedure IIS-Mine,
Procedure Subheader is called and obtains an empty SH(b), so the size of the frequent itemset
generated with b is one. The processing of this step is terminated, and we return to line 2 of
Procedure AllFreqItemset.

Let the third main step be step 3. According to line 2 of Procedure AllFreqItemset, c is the
third frequent item in IIS that is mined. Line 4 is called to construct the IIScTree, as illustrated in
Figure 2(c). At line 6, the algorithm calls Procedure IIS-Mine to mine frequent itemsets. At line 2 of
Procedure IIS-Mine, Procedure Subheader is called to obtain the SH(c) that is (f,m,p). Next, at line
3, the algorithm generates frequent itemsets, which are cf, cm and cp, where supp(cf), supp(cm) and
supp(cp) = 3. Let steps 3.1, 3.2 and 3.3 represent each of the frequent itemsets.

In step 3.1, at line 4 of Procedure IIS-Mine, the first frequent itemset is cf, where |cf| > 1; line
7 then calls Procedure SkipFreqItemset. At Procedure SkipFreqItemset, cf combines with the next
frequent item in SH(c), which is m, so cfm with a support of 3 is obtained after processing lines 19-
23. Next, line 8 is checked, and as cfm is already obtained in *

3FI , lines 19-23 are checked again, and
cfmp is obtained. The frequent itemset cfmp is not a member in *

4FI , and p is the last frequent item in
SH(c), so cfm is set to be a root for a conditional cfm-tree. The algorithm goes back to line 8 of
Procedure IIS-Mine to construct a conditional cfm-tree, where the IIScTree is an input tree, which is
illustrated in Figure 6. Supp(p) is less than minsup, hence cfmcfmFS =)(*

3 . Procedure ExtFreqItemset
in line 18 is not called because)(*

3 cfmFS is contained in *
3FI . In this step, the algorithm skips the

construction of the conditional cf-tree.
In step 3.2, according to line 4 of Procedure IIS-Mine, the next frequent itemset is cm, and

Procedure SkipFreqItemset in line 7 is called. Line 8 of Procedure SkipFreqItemset checks that cm is
a member in *

2FI . Next, lines 19-23 are checked, so cm combines with the next item in SH(c), which
is p, and we obtain cmp with a support of 3. The frequent itemset cmp is not in *

3FI , and p is the last
frequent item in SH(c), so cm is set to be a root for a conditional cm-tree. The algorithm goes back
to line 8 of Procedure IIS-Mine to construct a conditional cm-tree, where the IIScTree is an input
tree, which is illustrated in Figure 7. Supp(p) is less than minsup, hence cmcmFS =)(*

2 and)(*
2 cmFS

are already members in *
2FI .

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

143

Figure 6. Conditional cfm-tree Figure 7. Conditional cm-tree

In step 3.3, according to line 4 of Procedure IIS-Mine, the next frequent itemset is cp. Next,
at line 5, Procedure SkipFreqItemset is called, and cp is not a member in *

2FI . There is no frequent
item in SH(c), so this procedure is terminated, and we return to line 8 of Procedure IIS-Mine. After
lines 22-23 are checked, the new answer is contained in *

2FI , which is cp. This step skips the
construction of a conditional cp-tree.

The remaining steps such as the fourth main step, which constructs the IISfTree and is
illustrated in Figure 2(d), and the fifth main step, which constructs the IISmTree and is illustrated in
Figure 2(e), are performed in the same way in sequence.

The complete frequent itemsets are shown by item in Table 2 and by length in Table 3.

Table 2. Complete frequent itemsets by item

Item Frequent itemset

a a, acfm, ac, af, am, cf, cm, fm, acf, acm, amf, cfm

b b

c c, cp

f f

m m

p p

Table 3. Complete frequent itemsets by length

m-Length Frequent itemset

1 a, b, c, f, m, p

2 ac, af, am, cf, cm, cp, fm

3 acf, acm, afm, cfm

4 acfm

The advantages of our algorithm are as follows. First, according to step 1.1.1 of Example 12,

the frequent itemsets acfm are obtained, which are derived from a conditional acf-tree. This step
shows the properties of an extendable frequent itemset*, which are given in Definition 9 and
Procedure ExtFreqItemset in Algorithm 3. This step then finds all of the subsets of acfm, so we
derive ten frequent itemsets, which are ac, af, am, cf, cm, fm, acf, acm, amf and cfm, without
contributing more trees or using recursion to mine. Therefore, our algorithm can reduce many

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

144

subsequent steps in mining frequent itemsets. It can be noticed that if |)(| * AxFS m is large, then the
property of an extendable frequent itemset* is frequently used. Second, the method is also good for
reducing run time and space consumption, and its performance will be shown in the experimental
section. Last, according to step 3.1 of Example 12, the conditional cfm-tree is obtained, which
reduces one node in the tree because of the step that sets frequent itemsets as the root node in
Procedure SkipFreqItemset in Algorithm 3. The algorithm reduces the number of nodes, levels and
size of the tree, thus reducing space consumption. In general, users change many minimum support
thresholds to make their decision. Our method, which uses an IIS and the restart algorithm shown in
Algorithm 3, supports the ability to make these changes without rescanning the database.

Correctness

The following theorem and proof are given to demonstrate that the proposed IIS-Mine
algorithm can mine frequent itemsets completely and correctly.

Theorem: The set of all frequent itemsets* derived from IIS-Mine is the complete set of all of
the frequent itemsets.

Proof: Let I be the nonempty finite set of all items in a given transaction database, FI denote
the set of all frequent itemsets in the transaction database, and minsup 0 . It must be proved that

.= *FIFI
First, we prove that .⊆ *FIFI Let FIaaF k ∈},...,{= 1 with ,<...<1 kll aa and =is supp },...,{ 1 iaa

for all .,...,1 ki Then, α≥≥...≥1 kss , and an item b exists such that 1ab , and treeIIS b contains

kaa ,...,1 . It can be assumed that b is the item in I having these properties because I is the nonempty
finite set of all items. Because α≥≥...≥ ki ss for all ki ,...,1 , there exists a path)):),...(:((''

11 ll sbsb of
treeIISb containing);:(),...,:(11 kk sasa that is, for all ki ,...,1 , there exists lj ,...,1 such that

).:(=):(jjii sbsa It is obvious from the IIS-Mine algorithm that .⊆ *FIFI

We also show that I⊆* FFI . Let *
1 ∈},...,{= FIaaF k with kll aa <...<1 . Then, for some

positive integer m, .∈ *
mFIF It is evident from definition 10 that if 1m , *∈ mFIF implies FIF ∈ .

Now, suppose 2m ; then, *∈ mFIF or .∈ *
mExtF In the first case, ,∈ *

mFSF and from Definition 8,
SH{a1,…,ak-1}=(ak) or the conditional kk aaa },...,{ 11 tree contains exactly two nodes,

):},...,({ 111 kk saa and):(kk sa , where =is supp },...,{ 1 iaa for kki ,1 . Then from definitions 7 and
8, we obtain .},...,{},...,{ 111 FIFaaaaa kkk In the other case, suppose that ExtmF *∈ for 2m .
Then from definition 9, an Ax exists such that)(*∈ AxExtmF , and Ax is a frequent itemset* of length at

least m derived from the conditional Ax-tree. Again, from definition 9, a positive integer k greater
than 2 exists such that F has itemsets containing precisely m items of)(* AxFS k , and from definitions
6 and 8,)(* AxFS k is a frequent itemset, hence .∈FIF The proof is complete.

RESULTS AND DISCUSSION

We have presented the experiments in which the run time, memory consumption and
scalability are tested for the IIS-Mine algorithm and FP-growth algorithm with different datasets and
varying minimum support thresholds. The experiments were performed on a Microsoft Windows XP

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

145

Professional Version 2002 Service Pack 3 operating system on a personal computer with 1 GB of
main memory and Pentium (R) CPU 3.00 GHz. All algorithms were coded using C language. Two
groups of benchmark datasets, i.e. two synthetic datasets and two real datasets, were used.

For the first group of datasets, we also presented the experimental results for two synthetic
datasets generated by the IBM Almaden Quest research group [24-25]. The datasets serve as the
FIMI repository, which is a result of the workshops on frequent itemset mining implementations [26,
27]. The two original databases of synthetic datasets are T10I4D100K and T40I10D100K, which are
sparse datasets. The notation TxIyDzK denotes a dataset where K is 1,000 transactions. Table 4 lists
the parameters of the synthetic datasets, which vary in the number of transactions, i.e. 20%, 40%,
60% and 80% of the original database.

Table 4. Parameters of the synthetic datasets

|T| Average number of items per transaction

|I| Average length of a frequent itemset

|D| Number of transactions

For the second group of datasets, the real datasets from the UCI machine learning repository
[28] were used to test the proposed method. The real datasets used in the experiment were Chess
[29] and Mushroom [30], which are dense datasets with a great number of long frequent itemsets.
The characteristics of the real datasets are shown in Table 5.

 Table 5. Characteristics of real datasets

Run Time

Figures 8(a) and 8(b) show the performance of the algorithms on two synthetic datasets,
T10I4D100K and T40I10D100K respectively. In Figure 8(a), IIS-Mine performs better than FP-
growth in every support threshold. The gap in the graph becomes larger as the support threshold
decreases. In Figure 8(b), when the minimum support is set at 20%, 17.5%, 15% or 12.5%, the run
time between the two algorithms is not very different. However, when the minimum support is set at
10%, 7.5% or 5%, the run time of FP-growth increases significantly when compared to that of IIS-
Mine, which confirms that IIS-Mine performs better than FP-growth. The results shown in Figures
8(a) and 8(b) can be explained as follows. With sparse datasets, when the minimum support is high,
the number of frequent itemsets is low. However, when the minimum support is low, many frequent
itemsets are obtained. IIS-Mine is always faster than FP-growth method, especially when the

Real dataset Description

Chess Average number of items per transaction = 37, number of transactions = 3,196, and
number of items = 75

Mushroom Average number of items per transaction = 23, number of transactions = 8,124, and
number of items = 119

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

146

minimum support is low, because FP-growth constructs bushy and wide FP-trees when the minimum
support is low. So FP-growth is computationally expensive for tree traversing the FP-trees. IIS-Mine
has the step of finding the root node from previous frequent itemsets, which can reduce the number
of nodes and levels of the conditional itemset-tree. Therefore, traversing in the conditional itemset-
tree is on a reduced tree, which can result in a low run time consumption. However, the run time of
both algorithms relies on the length of the transaction (as observed in a comparison of the graphs in
Figures 8(a) and 8(b) with a minimum support of 5%); when the transaction is long, so it the run
time of both algorithms.

T10I4D100K

0

20

40

60

80

5 3 2 1
Minimum support (%)

Ru
n

tim
e

(s
)

IIS-Mine

FP-growth

T40I10D100K

0

1000

2000

3000

4000

20

17
.5 15

12
.5 10 7.
5 5

Minimum support (%)

R
un

 ti
m

e
(s

)

IIS-Mine

FP-growth

(a) (b)

Chess

0
10
20
30
40
50

90 80 70 60 50
Minimum support (%)

R
un

 ti
m

e
(s

)

IIS-Mine

FP-growth

Mushroom

0
2
4
6
8

40 30 20 10

Minimum support (%)

R
un

 ti
m

e
(s

)

IIS-Mine

FP-growth

 (c) (d)

Figure 8. Run time of mining on: a) T10I4D100K; b) T10I4D100K; c) Chess; d) Mushroom

Figures 8(c) and 8(d) show the performance of algorithms on two dense datasets: chess and

mushroom. Figure 8(c) shows that the run time of IIS-Mine is better than that of FP-growth in every
support threshold. The run time of both algorithms increases when the minimum support threshold is
reduced to 50%. In Figure 8(d), IIS-Mine again performs better than FP-growth in every minimum
support. The run time of FP-growth increases significantly compared with IIS-Mine when the
minimum support is less than 30%. The results shown in Figures 8(c) and 8(d) can be explained as
follows. In the two Figures, IIS-Mine is faster than FP-growth for dense datasets. The main work in
FP-growth is traversing FP-trees and constructing new conditional FP-trees after the first FP-tree is
constructed from the original database. For dense datasets, we have found from numerous
experiments that the time spent on traversing FP-trees is very long. IIS-Mine improves this problem
using the property of extendable itemsets to reduce the number of recursive mining steps so that the
size and number of constructing and traversing the trees are reduced. The run time of IIS-Mine is
then less than that of FP-growth.

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

147

Memory Consumption

Figures 9(a) and 9(b) show the memory consumption of the algorithms on the synthetic
datasets. In Figure 9(a), FP-growth consumes more memory than IIS-Mine. The graphs clearly
separate out when the minimum support is less than 3%. In Figure 9(b), there is no difference in
memory consumption until the minimum support is less than 15%. Thus, we can see that IIS-Mine
consumes less memory than FP-growth on synthetic datasets. The large memory consumption of FP-
growth when running on synthetic datasets can be explained by the fairly low minimum support and
the presence of many single items in the datasets; therefore, FP-growth constructs wide and bushy
trees to mine all frequent itemsets. However, IIS-Mine uses the property of extendable itemsets,
which reduces the construction of conditional itemset-trees, and uses the step of finding the root
node from previous frequent itemsets. Therefore, the node construction and tree sizes are reduced,
resulting in a reduction in memory consumption.

T10I4D100K

0
1000000
2000000
3000000
4000000

5 3 2 1
Minimum support (%)

M
ai

n
m

em
or

y
(K

)

IIS-Mine

FP-growth

T40I10D100K

0

5000000

10000000

15000000

20 15 10 5
Minimum support (%)

M
ai

n
m

em
or

y
(K

)

IIS-Mine

FP-growth

(a) (b)

Chess

0
2000000
4000000
6000000
8000000

10000000

90 80 70 60 50
Minimum support (%)

M
ai

n
m

em
or

y(
K

)

IIS-Mine

FP-growth

Mushroom

0
100000
200000
300000
400000
500000

40 30 20 10
Minimum support (%)

M
ai

n
m

em
or

y(
K

)

IIS-Mine

FP-growth

 (c) (d)

Figure 9. Memory consumption of mining on: a) T10I4D100K; b) T40I10D100K; c) Chess;

 d) Mushroom

 Figures 9(c) and 9(d) show that the memory consumption of IIS-Mine is less than that of FP-
growth on dense datasets. Figure 9(c) shows that when the minimum support is less than 80%, the
memory consumption of FP-growth increases significantly compared with that of IIS-Mine. Figure
9(d) also shows that when the minimum support is less than 30%, the gap of the graphs clearly
widens, which confirms that FP-growth consumes more memory than IIS-Mine. In both figures, FP-
growth consumes a great deal more memory when the minimum support is low because FP-growth
has constructed large FP-trees for mining all frequent itemsets, whereas IIS-Mine uses the property
of extendable itemsets, which perform better for dense datasets. Consequently, the recursion of

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

148

mining frequent itemsets in the next loops is reduced. Therefore, the construction of nodes and the
sizes of the conditional item-trees are reduced.

Scalability

The scalability of the algorithms was tested by running them on datasets generated from
T10I4 and T40I10. The number of transactions in the datasets ranged from 20K to 100K, where K is
1000 transactions. In Figure 10(a) and Figure 11(a), the algorithms were run on all of the datasets
generated from T10I4 at a minimum support of 1%. Both run time and memory consumption were
recorded. Figure 10(a) shows the speed scalability, which means that the number of transactions
increases as the run time increases. Figure 11(a) shows the memory scalability of the algorithms; the
curve of FP-growth is over that of IIS-Mine, which means that FP-growth consumes more memory
than IIS-Mine. The figure also shows that the memory consumption of the algorithms increases
linearly with the size of the datasets.

In Figures 10(b) and 11(b), the algorithms were run on all of the datasets generated from
T40I10 at a minimum support of 5%. Both run time and memory consumption were recorded.
Figure 10(b) confirms that the run time of both algorithms relies on the length and number of
transactions: if the length or number of transactions increases, so does the run time of both
algorithms. However, the run time of IIS-Mine was better than that of FP-growth for every number
of transactions. Figure 11(b) confirms that the memory consumption of the algorithms increases with
the length and number of transactions. However, the memory consumption of IIS-Mine was better
than that of FP-growth for every number of transactions.

T10I4

0
20
40
60
80

20 40 60 80 100

Number of transactions (K)

R
un

 ti
m

e
(s

)

IIS-Mine

FP-growth

T40I10

0
1000
2000

3000
4000

20 40 60 80 100

Number of transactions (K)

R
un

 ti
m

e
(s

)

IIS-Mine

FP-Growth

(a) (b)

Figure 10. Scalability of runtime on a) T10I4; b) T40I10

T10I4

0

1000000

2000000

3000000

4000000

20 40 60 80 100

Number of transactions (K)

M
ai

n
m

em
or

y(
K

)

IIS-Mine

FP-growth

T40I10

0

5000000

10000000

15000000

20 40 60 80 100
Number of transactions (K)

M
ai

n
m

em
or

y(
K

)

IIS-Mine

FP-growth

(a) (b)

Figure 11. Scalability of memory consumption on: a) T10I4; b) T40I10

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

149

CONCLUSIONS

A data structure called inverted index structure (IIS) can store transaction data by scanning a
database only once. Changing the minimum support does not affect the IIS and rescanning of the
database is not required. A new algorithm called IIS-Mine can find frequent itemsets without
generating candidate itemsets. It employs a more efficient use of the extendable-itemset property to
reduce the number of recursive steps of mining. The node construction and the size of trees are then
reduced, thereby reducing the run time and memory consumption. Although the proposed method
accesses the IIS structure multiple times, experimental results demonstrated that for dense datasets
the IIS-Mine algorithm is better than FP-growth algorithm in run time and space consumption.

ACKNOWLEDGEMENTS

 This work was supported by the National Centre of Excellence in Mathematics, PERDO,
Office of the Higher Education Commission, Thailand.

REFERENCES

1. J. Han and M. Kamber, “Data Mining: Concepts and Techniques”, Elsevier, Maryland Heights

(MO), 2006, pp.227-231.
2. J. Han, J. Pei, Y. Yin and R. Mao, “Mining frequent patterns without candidate generation: A

frequent-pattern tree approach”, Data Mining Knowl. Discov., 2004, 8, 53-87.
3. G. Grahne and J. Zhu, “Fast algorithms for frequent itemset mining using FP-Trees”, IEEE

Trans. Knowl. Data Eng., 2005, 17, 1347-1362.
4. R. Agrawal, T. Imielinski and A. Swami, “Mining association rules between sets of items in

large databases”, Proceedings of ACM SIGMOD International Conference on Management of
Data, 1993, Washington, DC, USA, pp.207-216.

5. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules”, Proceedings of 20th
International Conference on Very Large Data Bases, 1994, Santiago de Chile, Chile, pp.487-
499.

6. T. H. N. Vu, J. W. Lee and K. H. Ryu, “Spatiotemporal pattern mining technique for location-
based service system”, ETRI J., 2008, 30, 421-431.

7. J. Han, J. Pei and Y. Yin, “Mining frequent patterns without candidate generation”, Proceedings
of ACM SIGMOD International Conference on Management of Data, 2000, Dallas (TX), USA,
pp.1-12.

8. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang and D. Yang, “H-mine: Hyper-structure mining of
frequent patterns in large databases”, Proceedings of IEEE International Conference on Data
Mining, 2001, San Jose (CA), USA, pp.441-448.

9. A. Pietracaprina and D. Zandolin, “Mining frequent itemsets using Patricia tries”, Proceedings
of 3rd IEEE International Conference on Data Mining, 2003, Melbourne (FL), USA.

10. G. Grahne and J. Zhu, “Efficiently using Prefix-Trees in mining frequent itemsets”, Proceedings
of 3rd IEEE International Conference on Data Mining, 2003, Melbourne (FL), USA.

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

150

11. Q. Zhu and X. Lin, “Depth first generation of frequent patterns without candidate generation”,
Proceedings of 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2007,
Nanjing, China, pp.378-388.

12. S. Sahaphong and V. Boonjing, “The combination approach to frequent itemsets mining”,
Proceedings of 3rd International Conference on Convergence and Hybrid Information
Technology, 2008, Busan, Korea, pp.565-570.

13. V. K. Shrivastava, P. Kumar and K. R. Padasani, “FP-tree and COFI based approach for mining
of multiple level association rules in large database”, Int. J. Comp. Sci. Inf. Secur., 2010, 7,
273-279.

14. L. Huang, J. Z. Liang, Y. Pan and Y. Xian, “A complete attribute reduction algorithm based on
improved FP tree”, Proceedings of International Conference on Circuits, Communications and
System, 2010, Beijing, China, pp.1-4.

15. U. Yun and K. H. Ryu, “Approximate weighted frequent pattern mining with/without noisy
environments”, Knowl.-Based Syst., 2011, 24, 73-82.

16. M. J. Zaki, “Scalable algorithms for association mining”, IEEE Trans. Knowl. Data Eng., 2000,
12, 372-390.

17. M. J. Zaki and K. Gouda, “Fast vertical mining using diffsets”, Proceedings of 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003,
Washington, DC, USA, pp.236-355.

18. D. J. Chai, L. Jin, B. Hwang and K. H. Ryu, “Frequent pattern mining using bipartite graph”,
Proceedings of 18th International Conference on Database and Expert Systems Applications,
2007, Regensburg, Germany, pp.182-186.

19. J. Dong and M. Han, “BitTableFI: An efficient mining frequent itemsets algorithm”, Knowl.-
Based Syst., 2007, 20, 329-335.

20. W. Yen, “A new mining algorithm based on frequent item sets”, Proceedings of International
Workshop on Knowledge Discovery and Data Mining, 2008, Adelaide, Australia, pp.410-413.

21. W. Song, B. Yang and Z. Xu, “Index-BitTableFI: An improved algorithm for mining frequent
itemsets”, Knowl.-Based Syst., 2008, 21, 507-513.

22. S. Sahaphong and V. Boonjing, “Mining of frequent itemsets by using the property of
extendable-itemset”, Proceedings of 7th International Joint Conference on Computer Science
and Software Engineering, 2010, Bangkok, Thailand, pp.168-173.

23. S. Sahaphong and G. Sritanratana, “Mining of frequent itemsets with JoinFI-Mine algorithm”,
Proceedings of 10th WSEAS International Conference on Artificial Intelligence, Knowledge
Engineering and Database, 2011, Cambridge, United Kingdom, pp.73-78.

24. Frequent Itemset Mining Dataset Repository, “T10I4D100K”, http://fimi.cs.helsinki.fi/data/,
2003 (Accessed: January 11, 2010).

25. Frequent Itemset Mining Dataset Repository, “T40I10D100K”, http://fimi.cs.helsinki.fi/data/,
2003 (Accessed: January 11, 2010).

26. Workshop on Frequent Itemset Mining Implementations, http://fimi.ua.ac.be/fimi03/, 2003
(Accessed: January 2, 2010).

Maejo Int. J. Sci. Technol. 2012, 6(01), 130-151

151

27. Workshop on Frequent Itemset Mining Implementations, http://fimi.ua.ac.be/fimi04/, 2004
(Accessed: January 2, 2010).

28. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/, 2007 (Accessed: March 15,
2010).

29. UCI Machine Learning Repository, “Chess”, http://archive.ics.uci.edu/ml/datasets.html, 1989
(Accessed: July 19, 2010).

30. UCI Machine Learning Repository, “Mushroom”, http://archive.ics.uci.edu/ml/datasets.html,
1987 (Accessed: July 19, 2010).

© 2012 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for
noncommercial purposes.

