
 

Maejo Int. J. Sci. Technol.  2012, 6(02), 272-281 

Maejo International  
Journal of Science and Technology 

 
ISSN 1905-7873 

Available online at www.mijst.mju.ac.th 
Full Paper 

Bootstrap confidence intervals for the process capability index 
under half-logistic distribution 

Wararit Panichkitkosolkul 1,* and Luckhana Saothayanun 2  
 
1 Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat 

University, Phathum Thani, 12121, Thailand 
2 Department of Applied Statistics, Faculty of Science, University of the Thai Chamber of 

Commerce, Bangkok, 10400, Thailand 
 
* Corresponding author, e-mail: wararit@mathstat.sci.tu.ac.th 

Received: 21 August 2011 / Accepted: 26 July 2012 / Published: 27 July 2012 
 

Abstract:  This study concerns the construction of bootstrap confidence intervals for the 
process capability index in the case of half-logistic distribution. The bootstrap confidence 
intervals applied consist of standard bootstrap confidence interval, percentile bootstrap 
confidence interval and bias-corrected percentile bootstrap confidence interval. Using 
Monte Carlo simulations, the estimated coverage probabilities and average widths of 
bootstrap confidence intervals are compared, with results showing that the estimated 
coverage probabilities of the standard bootstrap confidence interval get closer to the 
nominal confidence level than those of the other bootstrap confidence intervals for all 
situations. 

Keywords: bootstrap confidence interval, process capability index, half-logistic 
distribution. 

________________________________________________________________________________ 
 
INTRODUCTION 
 

Balakrishnan [1] introduced the half-logistic distribution as the distribution of the absolute 
logistic random variable __ that is, if Y  is a logistic random variable, then X Y  has a half-logistic 
distribution. The probability density function ( ( ))f x  and the cumulative distribution function 
( ( ))F x  are given by  
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where   and   are the location and the scale parameters respectively. The graph of the probability 
density function for half-logistic distribution is shown in Figure 1. The mean and the variance of X  
are defined as 

( ) ln(4)E X       and    
2

22( ) .ln(4)
3

Var X      
 

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

D
en

si
ty

 
Figure 1.   Probability density function for half-logistic distribution with 0   and 1    

  
The half-logistic distribution has been widely used for many applications. For example, 

Balakrishnan [1] has suggested the usage of this distribution as a possible lifetime model with an 
increasing hazard rate. In addition, Balakrishnan and Chan [2] have shown that the failure times of 
air conditioning equipment in a Boeing 720 airplane fit the half-logistic distribution quite well. This 
distribution was also applied to environmental and sports records data [3]. In recent papers, several 
authors have applied the half-logistic distribution under progressive Type-II censoring [4-6]. As 
mentioned above, it is known that the half-logistic distribution is an increasing failure rates model 
with considerable importance in quality control and reliability studies [7-9].  

In product quality control, the process capability index (PCI) has been widely adopted as a 
useful tool. Several process capability indices have been proposed to numerically measure whether 
a process is capable of manufacturing products that meet customer requirements or specifications 
[10]. Even though there are many process capability indices, the two most commonly used indices 
are pC  and pkC [11-12]. The more popular process capability index pkC  can be defined as follows 

[11]:  

min , ,
3 3pk

USL LSLC  
 
    

 
    (3) 
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where USL  and LSL denote the upper and lower specification limits of the process respectively,   
is the process standard deviation, and   is the process mean. As the process standard deviation and 
the process mean are unknown, they must be estimated from the sample data 1{ ,..., }.nX X  The 

sample mean ;X  1

1

n

i
i

X n X



   and the sample standard deviation ;S  2

1

1 ( )
1

n

i
i

S X X
n 

 
   are 

used to estimate the unknown parameters   and   respectively in Eq.(3). The estimator of the 
process capability index pkC  therefore is  

min , .
3 3pk

USL X X LSLC
S S

  
  

 
  

However, the underlying process distribution is non-normal in some situations. Hence it may be a 
skewed distribution. To deal with these situations, Clements [13] proposed a new method for 
computing the estimator of the process capability index pkC  when the process distribution is non-

normal. This estimator is defined as  

min , ,pk
p p

USL M M LSLC
U M M L

        


   (4)         

 
where ,p pU L  and M  denote the 99.865th, 0.135th and 50th percentiles of the distribution 

respectively. The advantage of pkC


 shown in Eq.(4) is that it can be applied to any distribution. 

Kantam et al. [8] discussed the relationship between pkC


 and the probability of a product falling 

outside the specification limits. When X  has a half-logistic distribution, this probability is given by 
 

( ) ( ) 1 ( ) ( ),tP P X LSL P X USL F LSL F USL        
 
where ( )F   is the cumulative distribution function of a half-logistic distribution shown in Eq.(2). In 
the case of standard half-logistic distribution, i.e. 0,  1   in Eq.(1), the values of 

,p pU L and M are 7.300122639, 0.002700002 and ln(3) 1.098612289  respectively. On the other 
hand, if a scale parameter   is introduced and known, i.e.  0,   1   in Eq.(1), the optimal 
estimator of pkC  is given by [8]:  

min , .
( ) ( )pk
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In practice, the scale parameter   is unknown. Therefore, the unknown   must be estimated by its 
estimator. In this paper the method of moments is used for calculating this estimator. The estimator 
of pkC  for a half-logistic distribution therefore is 

ˆ ˆˆ min , .
ˆ ˆ( ) ( )pk

p p

USL M M LSLC
U M M L

 
 

        
   (5)         

 
where ̂  is the method of moments estimator of   given by ˆ / ln(4).X   The properties of the 
estimator of pkC  with mean squared error (MSE) and absolute of bias (|Bias|) are considered. Using 

Monte Carlo simulations, the MSE and |Bias| are plotted in Figure 2. If   is fixed and n  , 
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ˆ( ) 0pkMSE C   and ˆ| ( ) | 0.pkBias C   Therefore, the estimator of pkC given in Eq.(5) is an 

approximate estimator in terms of MSE and |Bias|.   
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Figure 2.   (a) MSE of the estimator of pkC and (b) |Bias| of the estimator of pkC   

 when 0   and 1,1.5, 2.5    
 
BOOTSTRAP CONFIDENCE INTERVALS 
 

The bootstrap is a computer-based and resampling method for assigning measures of 
accuracy to statistical estimates [14]. The advantage of the bootstrap method is that it is a simple 
approach for estimating biases, standard errors, confidence intervals and so forth for complicated 
estimators. Furthermore, the distribution of the variable of interest is not mathematically estimated, 
but rather empirically developed on the characteristics of the distribution of original data [15]. 
There are many types of bootstrap methods for constructing confidence intervals that have been 



 
Maejo Int. J. Sci. Technol.  2012, 6(02), 272-281  

 

 

276

introduced, e.g. the standard bootstrap method (SB), the percentile bootstrap method (PB) and the 
bias-corrected percentile bootstrap method (BCPB) [14].  

For a sequence of independent and identically distributed random variables, the bootstrap 
procedure can be defined as follows [14]. Let the random variables *

,{ ,1 }n jX j m   be the results 
from sampling m times with replacement from n observations 1,..., .nX X  The random variables 

*
,{ ,1 }n jX j m   are called the bootstrap samples from the original data 1,..., .nX X  The construction 

of confidence intervals of the process capability index pkC  using bootstrap techniques are described 

in what follows.  
 

Standard Bootstrap (SB) Confidence Interval  
Let *,bX  where 1 b B  , be the thb  bootstrap sample and let * *

1 ,..., BX X  be the B  bootstrap 
samples. The thb  bootstrap estimator of pkC  is computed by [14]: 
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Thus, the standard bootstrap (1 )100%  confidence interval is 
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where 1 / 2Z   is a  1 / 2 th  quantile of the standard normal distribution * 1 *( )
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Percentile Bootstrap (PB) Confidence Interval  

The percentile bootstrap (1 )100%  confidence interval is given by [14]: 
 

* *

1
2 2

ˆ ˆ, ,pkPB B pk B
C CCI              

   
 

           (7)                  
 
where  

*ˆ
pk rC  is the thr ordered value on the list of the B  bootstrap estimator of .pkC    

 
Bias-Corrected Percentile Bootstrap (BCPB) Confidence Interval  

The bootstrap distributions obtained using only a sample of the complete bootstrap 
distribution may be shifted higher or lower than would be expected. Therefore, this approach has 
been introduced in order to correct for the potential bias. Firstly, using the ordered distribution of 

*ˆ
pkC , compute the probability  *

0
ˆ ˆ( ).pk pkP P C C   Then, 1

0 0( ).Z P   Therefore, the percentile of 

the ordered distribution * *ˆ( )pkG C ,  0 1 / 22LP Z Z     and  0 1 / 22UP Z Z     are obtained, 
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where ( )   is the standard normal cumulative function. Finally, the bias-corrected percentile 
bootstrap (1 )100%  confidence interval is defined as follows [14]: 

    * *ˆ ˆ, ,
ULBCPB pk pk P BP BC CCI            (8)         

 
where  

*ˆ
pk rC  is the thr ordered value on the list of the B  bootstrap estimator of .pkC    

 
To study the different confidence intervals, their estimated coverage probabilities and 

average widths are considered. For each of the methods considered, a (1 )100%  confidence 
interval denoted by ( , )L U  is obtained (based on 10,000M   replicates). The estimated coverage 
probability and the average width are given by [16]: 

 
#( )

Coverage Probability ,pkL C U
M

 
  

and  

1

( )
Average Width .

M

i i
i

U L

M






 

In the following section, the simulation results are presented in order to evaluate the 
performance of the confidence intervals ,SBCI  ,PBCI  and  BCPBCI  based on their estimated coverage 

probabilities and average widths.      
 
SIMULATION RESULTS 
 

In the following, the bootstrap confidence intervals ,SBCI  PBCI  and BCPBCI  are compared 

via Monte Carlo simulation. Using R statistical software [17-19], the data sets are generated from a 
half-logistic distribution given by Eq.(1) with   = 0,   = 1.0, 1.5 and 2.5. The scope of the 
simulation is set under the sample sizes n  = 10, 20, 30, 50 and 100, and LSL  and USL  are taken as 

1LSL   and 29.USL  To obtain the estimated coverage probabilities and average widths, the 90% 
and 95% confidence levels are computed by drawing 1,000 bootstrap samples of sizes m n . The 
simulation results are summarised in Tables 1-2. As expected, the results show that the estimated 
coverage probabilities for all confidence intervals get closer to the nominal confidence level with 
increasing sample sizes n . Likewise, the average widths of all confidence intervals get shorter when 
n  increases. This is intuitive in nature because as n  increases, it is possible to estimate the scale 
parameter   more accurately. A more interesting result is that the estimated coverage probabilities 
of the SBCI  get closer to the nominal confidence level than those of PBCI  and .BCPBCI  For example, 
the estimated coverage probabilities attained by the ,SBCI  ,PBCI  and  BCPBCI  are 0.9451, 0.9335 
and 0.9341 respectively, for 50n   and 1.0.   Consequently, the average widths of SBCI  are 
longer than those of PBCI  and BCPBCI  for all situations.  

     
 
 
 
 



 
Maejo Int. J. Sci. Technol.  2012, 6(02), 272-281  

 

 

278

Table 1.  Estimated coverage probabilities and average widths of 90% bootstrap confidence 
 intervals of the process capability index 
 

n    
Coverage probability  Average width 

SB PB BCPB  SB PB BCPB 
10 1.0 0.8926 0.8250 0.8310  0.9829 0.9098 0.8730 

 1.5 0.8892 0.8206 0.8222  0.6524 0.6052 0.5813 
 2.5 0.9102 0.8335 0.8057  0.3937 0.3638 0.3421 

20 1.0 0.8992 0.8634 0.8650  0.6150 0.5962 0.5819 
 1.5 0.8942 0.8630 0.8645  0.4095 0.3969 0.3873 
 2.5 0.8906 0.8555 0.8524  0.2471 0.2395 0.2331 

30 1.0 0.8958 0.8713 0.8734  0.4853 0.4754 0.4674 
 1.5 0.8890 0.8669 0.8674  0.3248 0.3182 0.3128 
 2.5 0.8934 0.8695 0.8705  0.1947 0.1908 0.1876 

50 1.0 0.9015 0.8863 0.8861  0.3675 0.3629 0.3592 
 1.5 0.8932 0.8781 0.8789  0.2463 0.2432 0.2407 
 2.5 0.8932 0.8730 0.8778  0.1467 0.1449 0.1434 

100 1.0 0.9003 0.8930 0.8922  0.2565 0.2546 0.2532 
 1.5 0.8983 0.8905 0.8900  0.1709 0.1696 0.1687 
 2.5 0.9007 0.8932 0.8928  0.1024 0.1017 0.1012 

 
 
Table 2.  Estimated coverage probabilities and average widths of 95% bootstrap confidence  
intervals of the process capability index 
 

n    
Coverage probability  Average width 

SB PB BCPB  SB PB BCPB 
10 1.0 0.9357 0.8757 0.8809  1.1651 1.1234 1.0788 

 1.5 0.9428 0.8806 0.8818  0.7817 0.7526 0.7234 
 2.5 0.9508 0.8881 0.8602  0.4689 0.4495 0.4222 

20 1.0 0.9438 0.9102 0.9121  0.7325 0.7219 0.7049 
 1.5 0.9386 0.9078 0.9091  0.4878 0.4806 0.4693 
 2.5 0.9442 0.9170 0.9143  0.2919 0.2874 0.2799 

30 1.0 0.9448 0.9247 0.9256  0.5829 0.5768 0.5672 
 1.5 0.9458 0.9215 0.9238  0.3859 0.3819 0.3756 
 2.5 0.9424 0.9220 0.9212  0.2321 0.2296 0.2257 

50 1.0 0.9451 0.9335 0.9341  0.4396 0.4364 0.4318 
 1.5 0.9493 0.9358 0.9373  0.2930 0.2907 0.2876 
 2.5 0.9475 0.9327 0.9331  0.1758 0.1744 0.1726 

100 1.0 0.9470 0.9393 0.9377  0.3055 0.3038 0.3021 
 1.5 0.9509 0.9409 0.9428  0.2037 0.2025 0.2014 
 2.5 0.9509 0.9419 0.9428  0.1222 0.1215 0.1209 
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ILLUSTRATIVE EXAMPLE  
To illustrate the bootstrap confidence intervals of the process capability index developed in 

Section 2, a simulated example is presented. The random samples of sizes 20n   are generated 
from the half-logistic distribution with 0   and 1.   In this case, we set 1LSL  , 29USL  , 
and the true process capability index, pkC  = -1/3. The random samples generated are:   

0.04 0.14 0.19 0.20 0.23 0.44 0.75 0.81 0.88 1.07 
1.07 1.09 1.29 1.50 1.62 1.83 1.91 3.56 5.04 5.15. 

In addition, the density plot of the generated samples is displayed in Figure 3. Assuming the half-
logistic distribution for the corresponding random samples, three bootstrap confidence intervals of 
the process capability index with a confidence level of 95% are constructed, and they are shown in 
Table 3. The value of the true pkC  lies in the bootstrap confidence intervals. Additionally, the 

widths of the confidence intervals are similar to the simulation results.  
 
                         Table 3.  Bootstrap confidence intervals and their widths for the  
                          process capability index 
 

Method Confidence interval Width 
SB ( -0.3608 , 0.5187 ) 0.8795 
PB ( -0.4499 , 0.4111 ) 0.8610 

BCPB ( -0.4448 , 0.4129 ) 0.8577 
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Figure 3.   Density plot of generated random samples   

 

CONCLUSIONS 
 

The bootstrap confidence intervals of the process capability index for half-logistic 
distribution have been proposed. The following were considered: the standard bootstrap confidence 
interval, the percentile bootstrap confidence interval and the bias-corrected percentile bootstrap 
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confidence interval. By means of Monte Carlo experiments, the performance of the bootstrap 
prediction intervals was compared by considering their coverage probabilities and average widths. 
Based on simulation study, the standard bootstrap confidence interval achieved better coverage 
probability than the other confidence intervals. Thus, the standard bootstrap confidence interval is 
more appropriate than its counterparts in this setting.  
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