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INTRODUCTION

The study of symmetric duality for non-linear problems is well developed by many
researchers, notably Dantzig et al. [1], Mond [2], Bazaraa and Goode [3], and Mond and Weir [4].
Mangasarian [5] was the first to identify second-order dual formulations for the non-linear
programmes. Wolfe type second-order symmetric duality has been discussed by Ahmad and Husain
[6] and Yang et al. [7] for single-objective non-differentiable functions, and by Yang et al. [8] and
Ahmad and Husain [9] for multi-objective programming problems. The duality results for a pair of
Mond-Weir type second-order multi-objective symmetric dual programmes have been considered by
Suneja et al. [10] under 7 -bonvexity/n -pseudo-bonvexity assumptions. Ahmad and Husain [9, 11],
Khurana [12], Mishra and Lai [13], and Padhan and Nahak [14] studied symmetric duality over
arbitrary cones.

Bector et al. [15] and Yang et al. [16] formulated mixed symmetric dual models for multi-
objective differentiable and single-objective non-differentiable programming problems respectively.
Ahmad [17] introduced a mixed-type symmetric duality in multi-objective programming problems,
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ignoring non-negativity restrictions of Bector et al. [15]. Recently, Ahmad and Husain [11] studied
duality results for a pair of multi-objective mixed symmetric dual programmes over arbitrary cones
under K-preinvexity/K-pseudo-invexity assumptions. Li and Gao [18] obtained duality relations for a
mixed symmetric dual model in non-differentiable multi-objective non-linear programming problems
involving generalised convex functions. Recently, Gupta and Kailey [19] formulated a second-order
mixed symmetric dual programme for a class of non-differentiable multi-objective programming
problems and proved usual duality results under second-order F-convexity/pseudo-convexity
assumptions.

In this paper, we formulate a pair of mixed non-differentiable second-order symmetric dual

programmes over arbitrary cones. Weak, strong and converse duality results are proved under
second-order (F',p) convexity/pseudo-convexity assumptions. Several known results are obtained

as special cases.

NOTATIONS AND PRELIMINARIES

Definition 1 [11, 12, 20]. Let C be a closed convex cone in R" with non-empty interior. The
positive polar cone C” of C is defined as

C"={z:x"z>0,forallx e C}.
Now we consider a sub-linear functional F: X x X xR" — R (where X < R").

Definition 2. A twicely differentiable function v : X — R is said to be second-order (F', p) convex
at u € X , if there exists a real-value function d:XxX — R and a real number p, such that for all

geR" and xe X,
1
v (x)—w (1) +EqTVxxl//(u)q > F(x,u;V y (u)+V _w(u)q)+ pd* (x,u).

Definition 3. A twicely differentiable function y : X — R is said to be second-order (F, p) pseudo-
convex at u € X , if there exists a real-value function d: X x X — R and a real number p, such that

forall ge R" and xe X,
1
F(xu;Vy)+V yu)q)20 = y(x) Zw(u)—EqTVxxw(u)q + pd* (x,u).

Generalised Schwartz Inequality

The following generalised schwartz inequality shall be made use of:

1 1
I"Am < (" AD*(m" Am)?,
where /,me R", and A € R" xR" is a positive semi-definite matrix. Equality holds if for some 4 >0,
Al=2AAm.

PROBLEM FORMULATION

For N={1,2,...,n} and M ={12,....m}, let J cN,KcM , J,=N\J, and
K,=M\K,. Let | J,| denote the number of elements in J,. The other symbols, |/, |,| K, | and

| K, |, are defined similarly. Let x' € RY and x> € R, Then any x € R" can be written as (x',x?).
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Similarly for ' € R“!"and y? € R*?',y € R can be written as (', »*). It may be noted here that if
J, =, then |J,|=0,J,=N and therefore |J, |=n. In this case, R R”" and R"'x R™' will be

zero-dimensional, n-dimensional and| K, |-dimensional Euclidean spaces respectively. Similarly we
can describe the cases J, =J,K, =< or K, =¢. Let C,, C,, C, and C, be closed convex cones

Wyl

&y

with non-empty interiors in R, RY ) R™ and R'Kzlrespectively.

Now, consider the following pair of mixed second-order symmetric dual programs:
Primal Problem (SMP)

1 1
Minimise L(x',y',x*,y%,2%, p,r) = f(x',p)+((x") Dx')? + g(x*, ") +((x*)" D,x*)?

1
-()'E,z? —(y‘)T[Vy] Fyh+ Vy]y]f(x‘,y')p]—gprvylylf(x‘ ,p

—%FTVyzyzg(xz,yz)r,
subject to

-V SOGB4V f Ly pleC, (1)
[V .8y =By’ 4V, g6, 37 )] e C )
OV L8y ) =Bz +V 5 8(x, y7)r] 20, 3)
(Y EZ <1, 4)
(22 E,z> <1, (5)
x'eC,x’eC,. (0)

Dual Problem (SMD)

1 1
Maximise M (u',v',u’,v’,w*,q,5)= f@' V)= (V") Ep) + g’ v?)—((v) E,v*)?

1
R O VO R A R Y e A RV IR DY

_%Srvxzng(uz’vz)&
subject to
V[ V)+DW V| fu' Vg e, (7)
2 2 2 2 2 *
Vg  v)+Dyw +V , ,gu”,v)sel,, (8)
@)V ,gW®,v)+Dyw* +V , ,g(’,v*)s]<0, 9)

wH' Dw' <1, (10)
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(W) D,w <1, (11)

vieC,,v' eC,. (12)
where
.1 R"xR™ -5 R and g: R xR*? 5 R are differentiable functions,
2. Dy, D,, E; and E, are positive semi-definite matrices in R R'J“, R x R‘Jz‘, R M

and R*? x R respectively, and

1 1K 2 K5 1 [ 2 [J5]
3. ppzeR ", r,z2eR?,gqw eR"" and s,w” € R"?

RESULTS AND DISCUSSION

In this section, we prove weak, strong and converse duality results for the dual pair, SMP and
SMD, formulated above.

Theorem 1 (Weak duality)

Let (x',y',x%,y°,2', 2% p,r) be feasible for (SMP) and (u',v',u*,v*,w',w*,q,s) be feasible
Yo

for (SMD). Let the sublinear functionals F : RIS R R s R, F,: RN RMU s gAY s R,
G,: ‘R xR xR""— R and G,: RY xR RS R satisfy the following conditions:
F(x'u';a")+(a")u' >0, foralla' e C, (A)
E,(v',y"a*)+(a*) y' >0, forall @’ € C, (B)
G,(x*,u’;b")+(b") u* >0, forallb' € C;, (©)
G,(v*,y*;b%)+(b*) y* >0, forall b* € C,. (D)

Further, let

i) f(,v)+()" Dw be second-order (F;,p,) convex at u', and —(f(x',.)— ()" E,z') be second-
order (F,,p,) convex at y',

(i) g(.,v*)+ ()" D,w’ be second-order (G,,o,) pseudo-convex at u”, and —(g(x°,.)—(.)" E,z*) be
second-order (G,,o,) pseudo-convex at y~,

(iii) either p,d} (x',u")+ p,d;(v',¥")>0 or p,,p, >0, and

(iv) either o,d; (x*,u’)+0,d;(v?,y*)=0 or 0,,0,>0.

Then

1 1 2 2 2 1 1 2 2 2
L(x',y ,x",y",z°,p,r) 2 M(u ,v,u",v-,w",q,s).

Proof. By the second-order (F,,p,) convexity of f(.,v')+() " Dw' at u' and the second-order
(F,,p,) convexity of —(f(x',.)= ()" E,z') at y', we have

1
f(x]avl)+(x1)TD1W] _f(u]avl)_(ul)TDlwl +5qrv 1 ]f(u],v])q

> F(xLulsV o f v+ Dw' +V o fh vDg) + pd! (xu') (13)
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and
SO =ON Ez = f( )+ (V) EZ —%pTV LS
Yy
2 B0 (VS =B 4V D)+ pad] (0. (14)
Adding the inequalities (13) and (14), we obtain

SO =@ V) + ) D' = () Dw' = () Bz + (V) E 2’

1 1
+5qrvx1x1f(u]’vl)q_Eprvylylf(xl’yl)p 2 F](x]’ul;vxlf(ul’vl)"'Dlwl +Vx1x1f(u]’V])Q)

+F2(v17yl;_(vylf(xliyl)_EIZI +Vy1y1f(xl=yl)l7))+Pldlz(xlaul)+Pzdzz(vl,yl)- (15)
Since (x',y',x*,y%,z',2%, p,r) is feasible for primal problem (SMP) and (u',v',u’,v*,w',w*,q,s) is

feasible for dual problem (SMD), by the dual -constraint (7), the vector
=V  f' V)+Dw +V , f(u',v)qeC;,and so from the hypothesis (A4), we obtain

F(x",u';a")+ (@) u' > 0. (16)
Similarly,
F,(v',y55a*)+(@@*)" y' 20, (17)

for the vector a’ = —[Vylf(x‘,y‘)—Elzl +Vy1y1f(x',y')p] eC;.
Using (16) and (17) and hypothesis (ii7) in (15), we have
SELY = f@ )+ () Dw' =) Dw' = (V) Ez + (V) E, 2’
24V WGP Pz Y a - ()
Substituting the values of ¢' and a”, we get
1 1 INT 1 INT 1 1 1 1 1 T 1 1
SO+ ) Dw =) IV f (YD +V S O0yIPl=2 PV f(, )P
1
> fu' vH)-()'E,z —(u])r[vxlf(u]aV])+Vxlxlf(u]’V])(]]—Eqrvxlxlf(”]’V])(]-

Applying the Schwartz mequahty and using (4) and (10), we have

FEL Y+ DIX)Z OOV ]f(x Y )+V 0 Sy )p]——p Vo JESYHp

2 f(u‘,v])—((V])TEIV‘)E—(u) [V @' V)+V | f'v)g]l- —q VoWV (18)
By hypothesis (C) and the dual constraint (8), we obtain

G,(xz,uz;V 2g(uz,vz)+D2w2 +V, 2g(uz,vz)s) > —(uz)T[V 2g(uz,vz)+D2w2 +V, 2g(uz,vz)s],
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which on using the dual constraint (9) yields

G (x> u*;V g’ v)+D,w +V , ,g’,v*)s) > 0.
Since g(.,v?)+(.) D,w” is second-order (G,,o,) pseudo-convex at u”, we have
1
g V) + (' Dw > g’ v+ W) D,w? —Esrvxzng(uz,vz)s+0]d32(x2,u2). (19)

Similarly, from (2) and (3) and hypothesis (D), along with second-order (G,,o,) pseudo-convexity
of —(g(x*,.)— () E,z*) at y*, we get

1
g0 ) =0 B2 2 g V) =) B2+ rTV ey Ik endi 07 0).(20)
Adding inequalities (19) and (20) and using hypothesis (iv), we obtain
1
gy )+ () Do’ () Byt =11V g ()
Yy
1
> g’ v)+ @) Dw —-(v) E,zZ° —Esrvxzng(uz,vz)s.
Applying the Schwartz inequality and using (5) and (11), we have

1
! 1
g(x*, y)+((x*) Dyx*)? = (y*) E,2° —EFTV};yzg(xz,yz)r
1

- 1
> g(uz,vz)+(uz)TD2w2 —((VZ)TEZVZ)Z —ESTszng(uz,vz)s. (21)

The expressions (18) and (21) together yield
! 1
SELYHH(D) D) +g(x, y*) +((x*) Dx?)? = (v*) E,2° —(y])T[Vylf(x‘,y‘)

1

1 1 !
+V S yDP] —EPTV},]},] f&x'yHp —EFTV},zyzg(xz,yz)r > f' v - () Epv')?

1
+ g V) (A By + @Y Dow @Y [V, S )+ 1 )]
1
'V g5V g,

that 1s,

1 1 2 2 2 1 1 2 2 2
Lx',y,x",y",z°,p,r) 2 M ,v,u”,v-,w",q,s).

Theorem 2 (Weak duality)

Let (x',y',x*,y%,2",2%, p,r) be feasible for SMP and (u',v',u’,v*,w',w’*,q,s) be feasible
for SMD. Let the sub-linear functionals F RUXRxRMM S R F, RO X RO S R
G, R xR xR 5 R and G,:R 'xR

Ky Ky

'xR*' >R satisfy the following conditions:

F(x',u';a)+(a") u' >0, foralla' e/, “
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E,(v',y";a*)+(a*) y' >0, forall @’ € Cj, (B)
G,(x*,u’;b")+(b") u* >0, forallb' € C;, (©)
G,(v*,y*;b)+(b*) y* >0, forall b* € C,. (D)
Suppose that

i) f(,v)+() Dw' is second-order (F,,p,) convex at u', and —(f(x',.)— ()" E,z') is second-
order (F,,p,) convex at y',

(i) g(.,v*)+ ()" D,w* is second-order (G,,o,) convex at u”, and —(g(x°,.)—(.)" E,z°) is second-
order (G,,o,) convex at y°,

(iii) either p,d} (x',u")+ p,d;(v',»")>0 or p,,p, >0, and

(iv) either o,d; (x*,u’)+0,d;(v?,y*)=0 or 0,,0,>0.

Then
L(x]’y]’XZ’yZ’ZZ’p’r) 2 M(u]’vl’MZ’VZ’WZ’q’S).
Proof. By the second-order (F,,p,) convexity of f(.,v')+(.)" Dw' at u' and the second-order

F,, convexity of —(f(x',.)— ()" E.z") at y', we have
(£, p, Yy 1 y

1
f(x]avl)+(x1)TD1W] _f(u]avl)_(ul)TDlwl +5qTVx,x,f(u‘,v‘)q

> F](x],u];Vx,f(u],v])+D,w] +Vx]x]f(u],v])q)+p]df(x',u') (22)
and
SEYD =D Ez = (VD) + () E;Z —%Prvylylf(xl,yl)]ﬂ

> B0V ) = B2+ VS yDp) + peds (051, (23)

Adding the inequalities (22) and (23), we obtain
SO =@ V) + () D' = () Dw' = (Y Ez' + (V) B2

1 1
+2a'V STV PP 2 BV ) D Vv )g)

ROV LD =B Y S yDp)+ pid! (Fu) + puds (0,5, (24)
Since (x',y',x*,y%,z',2%, p,r) is feasible for primal problem (SMP) and (u',v',u’,v*, W', w*,q,s) is

feasible for dual problem (SMD), by the dual -constraint (7), the vector
a' =V fW' vV)Y+Dw +V f(u',v)geC,,andso fromhypothesis (4), we obtain

F(x"u';a")+ (@) u' > 0. (25)

Similarly,
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F,(v,yha*)+ @)y 20, (26)
for the vector a’ =-[V , f(x',y")—Ez' +V , f(x',y")pleC;.
y yy
Using (25) and (26) and hypothesis (ii7) in (24), we have
SELYD = f@ V) +(x) D' = () D' =(V) Ez' + (V) E 2’
FaTV S pTY G 2 - - (0

Substituting the values of ¢' and a”, we get
SO+ D! —(y‘)T[Vy]f(X‘,y‘)+Vy1y1f(x‘,y‘)p]—%prvylylf(x‘,y‘)p

> flu' v - EzZ _(u])r[vx]f(u]’vl)+Vx]x]f(u]’V])q]_%qrvx]x]f(u]’vl)q’
Applying the Schwartz inequality and using (4) and (10), we have

1 1 INT 1 l INT 1 1 1 1 1 T 1 1
JOLY)H() D) =) IV S, y)+V Sy )p]—Ep VoS Gy)p
1

2 [0 ) =) Ey)? @)V S W)Y gl 2d 'Y e @)

By second-order (G,,o,) convexity of g(.,v*)+(.)" D,w* at u* and the second-order (G,,o,)

convexity of —(g(x*,.)—(.)" E,z*) at y*, we have

1
g V) + () Dow’ — g’ v - W) Dw +5STV , L8’ v)s

> G, (xz,uz;szg(uz,v2)+ D,w* + szng(uz,vz)s) +o,di(x”,u’). (28)
and
g(x*, ¥ = () Eyz’ —g(x”,v) + (V) Eyz? —%rrvyzyzg(xz,yz)r
> G005V ,8( ) = B2 4V, 18(8, 37 )n) +00d (v, ). (29)

Adding the inequalities (28) and (29), we get

g, )+ Dw - () Ez —gw’ v) - W) Dow + (V) E,Z°

+%STVX2X2 gW?,v?)s —%rrvyzyzg(xz,yz)r > G, (xz,uz;szg(uz,vz) +D,w’ + szng(uz,vz)s)
+G,(v’ ,);2;—(Vy2 g(x*,y)—E,z* + Vy2y2 g(x*, v +o,d; (x*u’)+o,d; (v, 7). (30)
Since (x',y',x*,y%,z',2%, p,r) is feasible for primal problem (SMP) and (u',v',u’*,v*,w',w*,q,s) is

feasible for dual problem (SMD), by the dual -constraint (8), the vector
b'=V g’ v)+Dw +V , ,g(u’,v*)s e C,, and so from hypothesis (C), we obtain
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G, (xz,uz;szg(uz,vz) +D,w* + szng(uz,vz)s) > — (uz)T[szg(uz,v2)+ D,w* + szng(uz,vz)s],
which on using the dual constraint (9) yields
G, (xz,uz;szg(uz,v2)+ Dw* + szng(uz,vz)s) > 0. 31
Similarly, from (2), (3) and hypothesis (D), we have
G, (v 7=V L8P, y) — Ey2* 4V, 1 g(x7,y7)r) 2 0. (32)
Using (31), (32) and hypothesis (iv) in (30), we obtain
GO 3+ () Do = () Ba® =0V g0

> g’ v)+ ) Dw -(v) E,zZ° —%srvxzng(uz,vz)s.

Applying the Schwartz inequality and using (5) and (11), we have

1
! 1
g(x*, y)+((x*) Dyx*)? = (y*) E,z° —EFTV};yzg(xz,yz)r
1

- 1
> g(uz,vz)+(uz)TD2w2 —((vz)TEzvz)2 —ESTszng(uz,vz)s. (33)

Inequalities (27) and (33) together yield

FEYYHGD D) +g (o, ) () D) = (7)) Enz® = (0 [V 1 f (6,51

1 1 !
+Vo f&! ,y‘)p]—EPTVyly] FGyhp —EFTVyzyzg(xz,yz)r > fu' v () Ey')?

+ g V) =) En)? +@) Dow = @)V £ V)4V £ v)g)
1

1
_Eqrvx]x] f(u]avl )q —Esrvxzng(uz,vz)s,

that 1s,
L(x]’y]’XZ’yZ’ZZ’p’r) 2 M(u]’vl’u2’v2’w2’q’s).

Theorem 3 (Strong duality)

Vil o ol

Let f:R""xR'"—>R and g:lezlxR — R Dbe differentiable functions and let
(x',y.,x%,y%,2z',2%,p,7) be alocal optimal solution of SMP. Suppose that

1K, |

(i) the matrix V | , f(x',y') is non-singular,
yy
(ii) Vyzyzg(fz,fz) is positive definite and FT(Vyzg()_cz,fz)— E,z*)>0 or Vyzyzg(fz,fz) is
negative definite and 7' (V zg()_cz,fz)— E,z*)<0,
y

(iii) V. g(x*,y)-Ez" + Vi g(x*,y°)r 20, and
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(iv) one of the matrices %(V S ,)7‘)),1’2 1,2,...,| K, |, is positive or negative definite.
iy

Then p=0, 7=0and there exist w' eR” and W eR”™ such that
(x',y,x*, 9, w,w’,qg =0,5 =0) is feasible for SMD and the objective function values of SMP and

SMD are equal. Furthermore, if the assumptions of weak duality theorem (1 or 2) are satisfied for all
feasible solutions of SMP and SMD, then (x',3',x°,7°,2',2%,p,7) and (X', 7', X°,7°,Ww,w°,q,5)

are global optimal solutions for SMP and SMD respectively.

Proof. Since (¥',y',x°,3%,Z',Z°,p,7) is a local solution of SMP, there exist a €R,, B eC;,
yeC,, 6eR , neR, and veR, such that the following by Fritz John optimality conditions
studied in Suneja et al. [20] and in Schechter [21] are satisfied at (x',¥',x*,7°,2',2°, p,7):

o' (V I+ DY, @B -]

YLV E TP e+ P - F) 2 0, V' eC, (34)
(o (V g3+ D)+ V (@ 5y -5

YLV g TIl -6 -l -7 2 0, V' e, (35)
VGNPl DI+ (7, S PIE - al 5 P1=0, (36)

(V8@ 5~ EE)a—8]+V , eyl 87 +7)]

YLV g TN - 5 o] =0, G7)
(~PE, + uEZ) =0, (39)
aE,y’ +E,(y —&°)=2VE,Z°, (39)
Vo SE B e+ PO, (40)
Vo8 - —ar] =0, @n
BV S F)-EE 4V (5P =0, @)
PV L& T B2 Y g0, @)
BT IV 18,5~ B2+ 07,5771 =0, (#4)
Y D' = (Y D), 45)
() D" = () DY (46)

wH'Dw' <1, (47)



Maejo Int. J. Sci. Technol. 2012, 6(03), 356-371

(W' Dw? <1,
H(ZH' EZ' -1)=0,
v(Z)"E,Z-1)=0,

(a,B,y,0,u,v)#0.

Because of the non-singularity of V , , (X', "), (40) yields
Yy

B =a(y' +Dp).

Since V , ,g(X°,¥’) is positive or negative definite, (41) gives
yoy

y =6y +ar.

Now, we claim that o > 0. If possible, let « = 0; then (53) gives y = &y°.

Using (53) in (37), we get

-2 — _ —2 —2yoq, | -2 —2\—
(@ =8NV 8@ F) - B2 +V , (@ 7+ 2V ,(V e 7y - =0,

366

(48)
(49)
(50)
(1)

(52)

(53)

which, on using hypothesis (iii) and y = & °, yields a=6. As a =0, therefore the equations
a=35 and y=6y° give =0 and y =0 respectively. Equation (52) gives B =0. Also from

equations (38) and (49), we have

u=u(EY EZ)=E) (uEZ) = E) (ES)=0.

From (39) and (50), we get v =0. Consequently, (a,f,y,0,u,v) =0, contradicting (51). Hence

a>0.

Subtracting (44) from (43) yields

[ =8GOV 8 (57~ B2 +V , ,g(F.7)F] = 0.

Using (53) and (54) in above equation, we get

FT(vyzg(fzayz)_E252)+’7Tvy2y2g(3_5233_’2)’7ZO,

which contradicts hypothesis (i7) unless
r=0.

Equation (53) yields

Y=

Using (56) and (57) in (37), we obtain

(@=6)V ,g(*, 7"~ E;Z) =0,

which on using hypothesis (iii) and (56) gives

(54)

(35)

(56)

(57)
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a=9o.
Since o > 0, then obviously
0>0.
Now, using (52) and (54) in (36), we get
V(Y S E TP =0,
which by hypothesis (iv) implies
p=0.
By equations (52) and (60), we have
B=ay'.
From (54) and (61), we obtain
y = E eC,.
a
Using (58)-(61) in (34), we get
(' =x)"(V  f(x,y)+Dw') 20, for all x' eC,.

Let x' € C,. Then x' +x' € C, as C, is a closed convex cone, and so (62) implies
'V L fELYHY+Dw') >0, for all x' eC,.
Therefore,

V. &, yY+Dw' eC.

From (35) and (56)-(59), we have

(x> =x)"(V ,g(x*,y*)+D,w?) >0, for all x* eC,.

Let x> € C,. Then x*> +x* € C, as C, is a closed convex cone, and so (64) implies
x>V ,g(x*,y*)+D,w*) >0, for all x* eC,.

Therefore,

vV ,g(x*,y)+D,w’ eC,.

Also from (57) and (59), we have
—2_7
y = 5 eC,.

Now, letting x> =0 and x* =2x” in (64), we get
(x")'(V ,g(x*,y")+D,w")=0.

367

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)
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Thus (x',7',%*,7°,w',w’,q = 0,5 = 0) satisfies the dual constraints from (7) to (12) and so it is a
feasible solution for the dual problem (SMD).

Now let 2 a.Then a>0 and from (39) and (57)
a

E,y* =aE,z’, (67)
which is the condition for equality in the Schwartz inequality. Therefore
1
) EZ = () E7 ) (E) ).
In the case of v >0, (50) gives (z*)" E,z> =1 and so ()_/Z)TEZE2 =((y)'E,y )2 In the case of

v =0, (67) gives E,5° =0 and so (¥*) E,z> =((y*)" E,y )2 0. Thus, in either case,

(V) Ez =((3") E,y )2 (68)
By putting x' =0 and x' =2x' in (62), we obtain
x)'(V, f(x",y)+Dw') =0. (69)
Also, (45) yields

1
D'V fGELY) =) Dw' = ~((x) DX')?. (70)
From (42), (54), (60) and (61) we get
(f')TVylf(f'J‘)=(7)TE15'- (71)
Equation (38), implies
Ep= #Elgl-
Using (61) in the above equation,

Ey = LE, z'. (72)

Since equation (72) is the condition for the Schwartz inequality to hold as equality, so
I
YV EZ =) EFY @V EZY.
In the case of x>0, the equation (49) implies (z')" E,;z' =1 and so (') E;z' =((3")" E] )2
In the case of u =0, the equation (72) gives E])_/‘ =0 andso () Ez' =((3") E' )E =0

Thus, in either case (y') Ez' =((y) Ey )2.

Now equation (71) becomes

YV SE =GN EE =) EY )2- (73)

Therefore, using (46), (56), (60), (68), (70) and (73), we obtain the following:
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SEFYHE) DI + (.5 +((F) D) = (37 B2 =)'V, f (3.3

1 1 Y o a 1
+Vy1y1f(X‘,y‘)p]—EPTV},]},]f(x‘,y‘)p—EFTV},zyzg(xz,yz)r = f&LyH)-((H EY')?
1
+g(7€2,J72)—((7)TE27)2+(7€2)TD2W2—(f])T[Vxlf(f]J])+Vx1x1f(7€]d7])(?]
1

_ o 1 _ e
—EqTVX,x,f(x],y])q —ESTszng(xz,yz)S,

that is, the two objective function values are equal.

Finally, from Theorem 1 or 2, we get that (x',3',x*,7%,2',2%,p,7) and (X', 7', X°,7°,Ww" ,W°,q,5)

are global optimal solutions for SMP and SMD respectively.

Theorem 4 (Converse duality)

el —> R be differentiable functions and let

Let f:R'J‘lxR'K‘| — R and g:lezlxR
u',v',u*, v, w',w’,q,5) be alocal optimal solution of SMD. Suppose that
(i) the matrix V |, f(u",v") is non-singular,
(ii) szng(ﬁz,vz) is positive definite and ET(szg(LTZ,VZ)+ D,w*)>0 or szng(ﬁz,vz) is
negative definite and 57 (szg(ﬁz,vz)+ D,w?)<0,
(i) V g@®,v)+D,w’ + Vo g, v*)5s 20, and
(iv) one of the matrices %(Vx]xlf(ﬁ‘ ,V‘)),i =1,2,...,|J, |, is positive or negative definite.

Then ¢g=0, s=0and there exist z'e RM and z2eR"™  such that
@', v',u*,v’,z",z*,p=0,7 =0) is feasible for SMP and the objective function values of SMP and

SMD are equal. Furthermore, if the assumptions of weak duality theorem (1 or 2) are satisfied for all

are global optimal solutions for SMD and SMP respectively.

Proof. It follows on the lines of Theorem 3.

Special Cases

In this section, we consider some of the special cases of our problems: SMP and SMD. For
all these cases, D,={0}, D,={0}, E ={0}, E,={0}, C = R'f",C2 = R|+J2|,C3 = RLK‘l
c,=R".
1. If J,=C and K, =, then our problems: SMP and SMD reduce to the programmes: SP and
SD studied by Gulati et al. [22] and if J,=¢ and K, =& in SMP and SMD, then the

programmes SP1 and SD1 in Gulati et al. [22] are obtained.

and

2. By eliminating the second-order terms, our problems: SMP and SMD reduce to the mixed
symmetric dual programmes studied by Chandra et al. [23].
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3.1f J,=C and K, =O, then SMP and SMD reduce to programmes studied by Yang [24] with the
omission of non-negativity constraints from SMP and SMD.

4. 1f p=0,¢9=0, J,= and K, =< in SMP and SMD, then the programmes WP and WD in
Chandra et al. [25] are obtained and if we take =0, s=0, J, = and K, =, then our
problems become the programmes MP and MD studied by Chandra et al. [25].

CONCLUSIONS

Weak, strong and converse duality theorems have been established for a pair of non-
differentiable second-order mixed symmetric dual programmes with cone constraints under second-
order (F,p) convexity/pseudo-convexity assumptions. It is to be noted that previously known
results are special cases of our study. However, it is not clear whether the second-order mixed
symmetric duality in mathematical programming can be further extended to second-order multi-
objective symmetric dual programmes.
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