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Abstract: To ensure conformance and establish quality, software testing is an integral part in 
software engineering lifecycle. However, because of resource and time-to-market constraints, 
testing all exhaustive possibilities is impossible in nearly all practical testing problems. 
Considering the aforementioned constraints, much research now focuses on a sampling 
technique based on interaction testing (termed as t-way strategy). Although helpful, most t-
way strategies (e.g. AETG, In-Parameter-Order General (IPOG), and GTWay) assume that all 
parameters have uniform interaction. In reality, the interaction among parameters is rarely 
uniform. Some parameters may not even interact, wasting the testing efforts. As a result, a 
number of newly developed t-way strategies that consider variable-strength interaction based 
on input–output relationships have been developed, e.g. Union, ParaOrder, and Density. 
Although useful, these strategies often suffer from lack of optimality in terms of the generated 
test size. Furthermore, no single strategy is dominant because the optimal generation of t-way 
interaction test suite is considered an Nondeterministic Polynomial (NP) hard problem. 
Motivated by the above-mentioned challenges, this paper proposes and implements a new 
strategy, called General Variable Strength (GVS). GVS has been demonstrated, in some 
cases, to produce better results than other competing strategies. 

Keywords: interaction testing, t-way test generation, variable strength interaction, software 
testing 
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INTRODUCTION 
  

Nowadays, we are increasingly dependent on software to facilitate our daily chores, from 
mobile phone applications to sophisticated airplane control system. To ensure quality and 
reliability, we have to consider many combinations of possible input parameters, hardware/software 
environments, and system conditions, tested and verified for conformance. Because of resource and 
time-to-market constraints, testing all exhaustive possibilities is practically impossible. As a result, 
many t-way strategies (where t identifies the interaction strength) have been proposed in the 
literature for the past 20 years. All strategies help in searching, as well as minimising, the final test 
cases, i.e. to form a complete suite that deals with all required interactions. 

Although helpful, most existing t-way strategies, e.g. GTWay [1, 2], In-Parameter-Order 
(IPO) General (IPOG) [3], IBM’s Test Case Handler (ITCH) [4], and Jenny [5], assume that all 
parameters have uniform interaction. In reality, interaction among parameters is rarely uniform. 
Actually, some parameters may not even interact, wasting the testing efforts. To address the 
aforementioned issues, several newly developed t-way strategies have been developed, which 
consider variable-strength interaction based on input-output relationships. Schroeder proposed two 
strategies, called Union [6] and Greedy [7]. Meanwhile, Wang et al. proposed three strategies, 
namely ReqOrder [8], ParaOrder [8] and Density [9]. Finally, a public-domain tool available from 
SourceForge, called Test Vector Generator (TVG) [10], also supports variable-strength interaction 
based on the input-output relationships. Although useful, these newly proposed strategies suffer 
from lack of optimality (i.e. in terms of test size). Furthermore, no single strategy is dominant 
because the optimal generation of t-way interaction test suite is considered an Nondeterministic 
Polynomial (NP) hard problem [11, 12]. Motivated by the aforementioned challenges, this paper 
discusses the design and evaluation of a new strategy, called General Variable Strength (GVS).  
  
Problem Definition Model 
 

Exhaustive testing is impossible because the number of test cases can be exorbitantly large, 
even for simple software and hardware products. Let us consider a hardware product with 20 on/off 
switches. Testing all possible combinations would require 220 = 1,048,576 test cases. If the time 
required for one test case is 5 min, then the test would take nearly 10 years to complete.  

The same argument is applicable in any software system. As an illustration, let us consider 
the option dialog in the Microsoft Excel software (Figure 1). Even if only the View tab option is 
considered, 20 possible configurations have to be tested. Except for the gridline colour that takes 56 
possible values, each configuration can take two values, namely checked or unchecked. Here, we 
must evaluate 220 × 56 or 58,720,256 combinations of test cases. Using the same calculation 
assumption, a complete test of the View tab option would require nearly 559 years. 
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Figure 1. Microsoft excel view tab options 
 

The above-mentioned examples highlight the common combinatorial explosion problem in 
software testing. Given limited time and resources, the main research questions are as follows: 

 What is the minimum number of (sample) tests to be considered? 
 How can one decide (i.e. the strategy) which combination of values to choose over 

the large combinatorial data sets? 
 
Background 
 

Over the years, many sampling-based testing strategies, e.g. equivalence partitioning, cause 
and effect analysis, decision table, and boundary value analysis, have been developed [13]. 
Although helpful, many strategies were not sufficiently effective in dealing with the faults due to 
interaction. Thus, t-way strategies have been proposed to address this issue. Briefly, the t-way 
strategies offer four possible interactions to generate the test suite: uniform strength, variable 
strength, input-output based relationship, and mixed interactions. Figure 2 shows the features of the 
possibilities of each interaction using a software system with five parameter inputs (P0, P1, P2, P3 
and P4) and three outputs (f0, f1 and f2). 
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Figure 2. Interaction possibilities within the software system 
  

Uniform-strength interaction is the basis of interaction testing, where all input parameters 
are assumed to be uniformly interacting (i.e. with constant interaction strength (t) throughout). To 
test all interacting parameters, the test suite must cover all the t-way combinations at least once. In 
this manner, all possible uniform strength interactions can be tested and, hence verified for 
correctness. Mathematically, the uniform-strength test suite can be represented using the covering 
array notation as 
 

F = CA(N,t,C)                 (1) 
 
where: N is the final test suite size, 

 t is the interaction strength, 
 C is the value configuration, which can be represented as , indicating p0 

parameters with v0 values and p1 parameters with v1 values, and so on. 
 

In contrast to the uniform-strength interaction counterpart, the variable-strength interaction 
considers more than one interaction strength for the test suite generation. Here, a particular subset of 
input parameters can have higher interaction dependence than the other parameters, which indicates 
that failure due to the interaction of that subset may have more significant effects on the overall 
system. Thus, stronger interaction strength can be assigned accordingly. Using the covering array 
notation, the variable-strength test suite F can be represented as 
 

F = VCA(N,t,C,S)                 (2) 
 
where: N is the final size of the test suite, 

 t is the dominant interaction strength, 
 C is the value configuration, which can be represented as , 
 S is the multi-set of the disjoint covering array with strength larger than t, as given in Eq. 

(1).  
Although the uniform- and variable-strength interactions assume that all input parameters 

interact with one another, the input-output-based relationships use the knowledge of the input-
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output relationships for the test suite generation. Using similar covering array notations as that in 
the uniform- and variable-strength interactions, the input-output-based relationship F can be 
represented as 
 

F = 1OR(N,C,Rel)                 (3) 
 
where: N is the final size of the test suite, 

 C is the value configuration, which can be represented as ,  
 Rel is the input-output relationship definition set based on the combination index p0 ... pn, 

 |Rel| is the number of input-output relationship definition sets 
 

By combining the uniform strength, variable strength, and input-output-based relationships, 
the mixed interaction represents the amalgam of knowledge on the input and output behaviours of 
the system under test. Mathematically, the mixed interaction adopts the same covering array 
notation as the input-output-based relationships. The uniform and variable strengths can also be 
represented in the same manner. Table 1 summarises the input-output conversion for the earlier 
example shown in Figure 2. 
 
Table 1. Input-output conversions for Figure 2 

F= IOR (N,C, Rel) Input–output interaction representations 
Uniform-strength interaction ( |Rel| = 10) 
 Rel = {{0,1,2}, {0,1,3}, {0,1,4}, {0,2,3},  
{0,2,4}, {0,3,4}, {1,2,3}, {1,2,4}, {1,3,4},  
{2,3,4}} 

{P0,P1,P2}, {P0,P1,P3}, {P0,P1,P4}, {P0,P2,P3}, 
{P0,P2,P4}, {P0,P3,P4}, {P1,P2,P3}, {P1,P2,P4}, 
{P1,P3,P4}, {P2,P3,P4} 

Variable-strength interaction ( |Rel| = 10) 
Rel = {{0,1,2}, {0,1}, {0,2}, {0,3}, {0,4}, {1,2}, {1,3}, 
{1,4}, {2,3}, {2,4}} 

{P0,P1,P2}, {P0,P1,P3}, {P0,P2,P3}, {P1,P2,P3}, {P0,P1}, 
{P0,P2}, {P0,P3}, {P0,P4}, {P1,P2}, 
{P1,P3}, {P1,P4}, {P2,P3}, {P2,P4} 

Input-output-based relationships ( |Rel| = 3) 
 Rel = {{0,1,2}, {1,3}, {2,4}} 

{P0,P1,P2}, {P1,P3}, {P2,P4} 

Mixed interactions ( |Rel| = 11) 
 Rel = {{1,2,3,4}, {0,1,2}, {0,1}, {0,2}, {0,3}, {0,4}, {1,2}, 
{1,3}, {1,4}, {2,3}, {2,4}} 

{P1,P2,P3,P4}, {P0,P1,P2}, {P0,P1,P3}, {P0,P2,P3}, 
{P1,P2,P3}, {P0,P1}, {P0,P2}, {P0,P3}, 
{P0,P4}, {P1,P2}, {P1,P3}, {P1,P4},{P2,P3}, {P2,P4} 

 
The most general representation of any form of parameter interactions is the input-output-

based relationship. Thus, GVS is developed as a general strategy to integrate seamlessly and 
support all interaction possibilities. 
 
Related Work 
 

Many t-way strategies have been proposed for the past 20 years. In a nutshell, existing t-way 
strategies can be categorised either as a one-parameter-at-a-time (OPAT) or a one-test-at-a-time 
(OTAT) strategy.  

The OPAT strategy initially generates an exhaustive test for a few selected parameters. Then 
it iteratively adds OPAT until all parameters are covered, i.e. horizontal extension. Upon 
completion, new test cases may be added to ensure complete interaction coverage, i.e. vertical 
extension. 
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In-Parameter-Order (IPO) is the precursor of the OPAT strategy developed by Lei and Tai 
[14]. Because IPO is limited to pairwise interaction [15], IPOG was developed as the general 
version of IPO to support higher order interactions. As far as interaction support is concerned, IPOG 
addresses the uniform-strength, as well as the variable-strength, interaction. No support is provided 
for the input-output-based relationships. 

A number of IPOG variants exist in the literature, including TConfig [16], ParaOrder, and 
ReqOrder [8]. Similar to IPOG, TConfig adopts variation in the horizontal and vertical extensions 
as part of its algorithm. In contrast to IPOG, TConfig only addresses the uniform-strength 
interaction. ParaOrder and ReqOrder differ from their predecessor in terms of how the initial test 
case is generated [8]. In IPOG, the initial test case is generated in the defined order of parameters 
found, whereas in ParaOrder, the initial test case is generated based on the first defined input-output 
relationship. In ReqOrder, the selection of the initial test case does not necessarily follow the first 
defined input-output relationship. Additionally, in contrast to IPOG, ParaOrder and ReqOrder 
address uniform strength, variable strength, and input-output-based relationships. 

In contrast to the OPAT strategy, the OTAT strategy greedily generates one complete test 
case into the final test suite per iteration until all tuples are covered. Based on the main approaches 
of each strategy, the OTAT strategy can be further characterised into three categories: artificial 
intelligence (AI)-based, iterative-based, and heuristic-based strategies. 

The AI-based OTAT strategy adopts an AI technique. Simulated annealing (SA) [17], ant 
colony-based strategy (ACS) [18], and variable-strength particle swarm optimisation (VS-PSTG) 
[19] are some of the AI-based techniques adopted in generating interaction test suite.  

Concerning SA, the strategy is based on the annealing process, i.e. maximising the crystal 
size of the material via heating and slow cooling. Heating excites the atom to move from its initial 
position to avoid a local minimum of internal energy, whereas slow cooling allows the atom to 
settle for lower internal energy configurations for better crystal size. Analogous to the physical 
process, the SA strategy starts with a randomly generated test suite, i.e. initial state, and applies a 
series of transformations according to a probability equation, which depends heavily on parameter T 
(the controlling temperature of the simulation to simulate heating and cooling).  

In ACS, the candidate test cases are searched by colonies of ants for some possible paths. 
The path qualities are evaluated in terms of the pheromones which signify convergence. The 
optimum paths correspond to the best test candidate included in the final test suite. For the VS-
PSTG, the search process is inspired by the behaviour of flocks of birds. Internally, the strategy 
iteratively combines local and global searches to find the best test cases that cover the given 
interaction tuples. We should note that SA, ACS and VS-PSTG address uniform- and variable-
strength interactions. 

Regarded as the most popular approach, the iterative-based OTAT strategy often performs 
systematic iterative search to generate the final test suite. GTWay [1], ITCH [20], Jenny [5], TVG 
[10], PICT [21], Union [6, 22] and Greedy [7] are few examples of the iterative-based OTAT 
strategy.  

As far as implementation is concerned, GTWay starts by generating all the required 
interaction tuples using its tuple generation algorithm. Then the strategy iterates all tuples and tries 
to merge any ‘combinable’ tuples based on its backtracking algorithm. Although it adopts similar 
merger algorithm as GTWay does, ITCH relies heavily on its exhaustive search algorithm to find 
the best combinable tuples. Both GTWay and ITCH address uniform-strength interaction. 
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With regard to Jenny, PICT and TVG, their implementations can be downloaded from the 
developer’s website. Jenny starts by constructing a test suite that covers one-way interaction first. 
The strategy then extends the test suite to cover two-way interaction, and the process is repeated 
until the test suite covers the required t-way interactions. In contrast to Jenny, PICT generates the 
test suite by selecting one uncovered tuple and iteratively fills the ‘don’t care’ parameters 
(parameters that do not contribute to the current tuple of interest) with the best found value to cover 
the most uncovered tuples. TVG adopts three algorithms for test suite generation, namely T-
Reduced, Plus-One, or Random Set algorithm. Because of limited literature, how each algorithm (T-
Reduced, Plus-One, or Random Sets) works is yet unclear. Based on our experiences with TVG, T-
Reduced often produces the most optimal test suite compared with Plus-One and Random Sets. 
Relative to interaction support, Jenny addresses uniform-strength interaction whereas PICT and 
TVG support uniform strength, variable strength and input-output based relationships. 

Union [6, 22] and Greedy [7] are two related iterative-based OTAT strategies. In the case of 
Union, partial test cases are first generated based on the defined input-output relationships. Then 
random values are assigned to all parameters that do not contribute to the defined input-output 
relationships to complete the test cases. Upon completion, union operations are performed for all 
test cases to remove repetition. Based on the Union strategy, the Greedy strategy also works in the 
same manner. In contrast to the Union strategy, however, the Greedy strategy completes the partial 
test cases greedily to cover the most uncovered interactions. In this manner, the Greedy strategy 
often generates a more optimal test size than Union does. Both Union and Greedy address uniform-
strength interaction, variable-strength interaction, and input-output-based relationships.  

The last category of the OTAT strategy is the heuristic-based strategy. The heuristic-based 
OTAT strategy typically uses some form of heuristic models to decide on the test case selection. 
Bryce’s Density strategy [23, 24] and Wang’s Density strategy [9] are examples of heuristic-based 
OTAT strategy. Bryce’s Density strategy pioneers the use of density calculation model [23, 24] in 
constructing the test suite. For each test case, the ‘parameter density’ of every unassigned parameter 
is calculated and the parameters with the highest value are selected. Then, the ‘value density’ that 
corresponds to the selected parameters is calculated, and the highest value density is fitted in 
accordingly. This process is repeated OTAT until all parameters have valid value assignments and 
the complete test suite is formed. In contrast to Bryce’s strategy, which addresses only the uniform-
strength interaction, the Wang’s Density strategy extends its support to the input-output-based 
relationships. To enable the support, Wang introduced ‘local density’ and ‘global density’ 
calculations. During the test generation process, the Wang’s strategy chooses one input-output 
relationship with the highest local density value. Then for each exhaustive combination of the 
selected input-output relationship, the strategy selects the combination with the highest global 
density value to fit into the current test case. The process continues until the complete test suite is 
formed. 
 
METHODS 
 

The GVS search algorithm is inspired by earlier work in GTWay by Klaib and Zamli et al. 
[1, 2]. The GVS search algorithm works as follows: in contrast to the GTWay’s search algorithm, 
which generates all tuples before iterating them, GVS generates one tuple at a time before the start 
of the iteration to minimise memory requirements. After requesting one tuple from the tuple 
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generator, the search algorithm selects one ‘don’t care’ parameter at a time (indicated by X) to 
establish a value that can produce another uncovered tuples.  

Let us consider four 2-valued parameter systems, and the interaction strength required is 
three. The first uncovered tuples generated are “0”, “0”, “0” and X. Here, the first ‘don’t care’ 
parameter is parameter X3, which consists of two values (i.e. “0” and “1”). The search algorithm 
attempts to fit “0” first into the incomplete test case and check whether uncovered tuples produced 
by “0” exist. In this case, because the algorithm has just started its search, no tuple is covered yet, 
i.e. the covered tuple list is empty. Thus, “0” is selected; following the selection of “0” for X3, {“0”, 
“0”, “0”, X} is produced as one uncovered tuple (for the first input-output relationship), and {“0”, 
X, X, “0”} is produced as another uncovered tuple (for the second input-output relationship). Then 
the same process is repeated for the other parameter selections in case more ‘don’t care’ parameters 
are found. After completing all parameters, the search algorithm checks the generated test case and 
determines whether the generated test case has covered the most uncovered tuples. If it does, the 
generated test case is selected in the final test suite list, and the covered tuples are added to the 
covered tuple list. This process is repeated until all tuples are covered by test cases in the final test 
suite. The GVS search algorithm is further summarised in Figure 3. 

 
Output: Final Test Suite, T 
 
Begin: 
Initialise k as the total tuple involve 
Initialise Ct as covered tuple list 
 
While (no of tuples in Ct != k) 
   P = get next tuple 
   if(P not in Ct) 
      for every don’t care in P 
         select value that can produce uncovered tuples 
      if(P has the most uncovered tuples) 
         store the tuples covered by P in Ct 
         store P in T 
      if(P still consist don’t care) 
          replace don’t care with the first value of the parameter 
      store the tuples covered by P in Ct 
      store P in T 
End 

 

Figure 3. GVS search algorithm 
 
RESULTS AND DISCUSSION 
 

The GVS evaluation was divided into three parts. In the first part, the performance of GVS 
(in terms of generated test suite size) against the other competing uniform-strength strategies was 
compared based on the experimental results [2]. In the second part, the performance of GVS against 
existing variable-strength strategies was evaluated based on the experimental results [18, 19]. 
Finally, the experimental results obtained by Wang [8, 9] were adopted to benchmark GVS against 
the existing input-output-based strategies. In all parts, the generated test suite size, rather than the 
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execution time for the test generation, was compared because access to all the strategy 
implementations was not available. Comparing the execution time of each strategy is impossible, 
even from published results, which provided different running environments. Attempting to do so is 
counterproductive because the execution time is directly affected by the computer hardware 
performance, operating system and data structure, as well as language implementation.  

For each part, the best test suite size for GVS on a single run was reported. GVS is a 
deterministic strategy, viz. multiple runs always produce identical test suite. Hence, no change 
occurred as far as the test size is concerned. The running environment consisted of a desktop PC 
with Windows XP, 2.8 GHz Core 2 Duo CPU, and 1 GB RAM. The GVS strategy was coded and 
implemented in Java (JDK 1.6). The results are presented in Tables 2-8. The darkened cells indicate 
the best obtained result for the configuration of interests. Cells marked as NA indicate that the 
results are not available in the publications. 

 
GVS as Uniform Strength t-Way Strategy 
 

Based on the benchmarking experiments [2], four groups of experiments were conducted 
and each group has the following system configurations: 

i. Group 1: The number of parameters (P) and the value (V) were constant (10 and 5 
respectively), but the interaction strength (t) varied from two to six. 

ii. Group 2: The interaction strength (t) and the value (V) were constant (4 and 5 respectively), 
but the number of parameters (P) varied from 5 to 15. 

iii. Group 3: The number of parameters (P) and the interaction strength (t) were constant (10 
and 4 respectively), whereas the value (V) varied from 2 to 10. 

iv. Group 4: The common traffic and collision avoidance system (TCAS), which consisted of 
12 multi-valued parameters (two 10-valued parameters, one 4-valued parameter, two 3-
valued parameters, and seven 2-valued parameters) and interaction strength (t) varied from 2 
to the exhaustive testing (i.e. 12-way testing). 
The results for Groups 1-4 are shown in Tables 2-5 respectively. The results for the other 

strategies are obtained from Zamli et al. [2]. 
 

Table 2. Generated Test Size For CA(N, t, 510) 
 

t 
N 

IPOG ITCH Jenny TConfig TVG GTWay GVS 

2 48 45 45 48 50 46 44 

3 308 225 290 312 342 293 288 

4 1843 1750 1719 1878 1971 1714 1701 

5 10119 NA 9437 NA NA 9487 9237 

6 50920 NA NA NA NA 44884 45732 
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Table 3. Generated Test Size For CA(N, 4, 5P) 
 

P N 

IPOG ITCH Jenny TConfig TVG GTWay GVS 

5 784 625 837 773 849 731 733 
6 1064 625 1074 1092 1128 1027 1012 
7 1290 1750 1248 1320 1384 1216 1215 
8 1491 1750 1424 1532 1595 1443 1398 
9 1677 1750 1578 1724 1795 1579 1556 

10 1843 1750 1719 1878 1971 1714 1701 
11 1990 1750 1839 2038 2122 1852 1837 
12 2132 1750 1964 NA 2268 2022 1955 
13 2254 NA 2072 NA 2398 2116 2088 
14 2378 NA 2169 NA NA 2222 2193 
15 2497 NA 2277 NA NA 2332 2294 

 
 
Table 4. Generated Test Size For CA(N, 4, V10) 
 

V 
N 

IPOG ITCH Jenny TConfig TVG GTWay GVS 

2 46 58 39 45 40 46 45 
3 229 336 221 235 228 224 217 
4 649 704 703 718 782 621 688 
5 1843 1750 1719 1878 1971 1714 1701 
6 3808 NA 3519 NA 4159 3514 3502 
7 7061 NA 6482 NA 7854 6459 6405 
8 11993 NA 11021 NA NA 10850 8263 
9 19098 NA 17527 NA NA 17272 17188 
10 28985 NA 26624 NA NA 26121 25927 
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Table 5. Generated Test Size For TCAS Module, CA(N, t, 102413227) 
 

t 
N 

IPOG ITCH Jenny TConfig TVG GTWay GVS 

2 100 120 108 108 101 100 100 

3 400 2388 412 472 434 402 404 

4 1361 1484 1536 1476 1599 1429 1302 

5 4219 NA 4580 NA 4773 4286 4255 

6 10919 NA 11625 NA NA 11727 10530 

7 NA NA 27630 NA NA 27119 28760 

8 NA NA 58865 NA NA 58584 59477 

9 NA NA NA NA NA 114411 119040 

10 NA NA NA NA NA 201728 206000 

11 NA NA NA NA NA 230400 230400 

12 NA NA NA NA NA 460800 460800 

 
GVS produces the best test size for the 2-, 4- and 5-way interactions. ITCH produces the 

best test size for the 3-way interaction, and GTWay produces the best test size for the 6-way 
interaction (Table 2). GVS also produces the best test size for the 7-, 8-, 9- and 10-parameter 
systems. ITCH produces the best test size for the 5-, 6-, 11- and 12-parameter systems, whereas 
Jenny produces the best test size for the rest of the cases (Table 3). GVS outperforms all other 
strategies in most cases except for the system with two and four values, where Jenny and GTWay 
outperform all other strategies (Table 4). For the TCAS system in Table 5, GTWay outperforms the 
other strategies in almost all cases, i.e. for 2-, 7-, 8-, 9-, 10-, 11- and 12-way interactions. GVS and 
IPOG obtain the same test size as that of GTWay for the 2-way interaction. In the 4-, 6- and 11-way 
interactions, GVS outperforms all other strategies. Similarly, IPOG outperforms all other strategies 
for the 3- and 5-way interactions.  

As far as the algorithmic complexity analysis of GVS is concerned, the test size grows 
exponentially with the interaction strength (t) (Tables 2 and 5). Additionally, the test suite grows 
logarithmically with the number of parameters (P) and quadratically with the number of values 
(Tables 5 and 6). Theoretically, these results are consistent with those in the existing literature with 
O (vt log p) [25]. 

 
GVS as Variable Strength t-Way Strategy 
 

The benchmark experiments using the test size results were adopted from Chen et al. [18] 
and Ahmed and Zamli [19]. Three basic system configurations are defined as follows: 

i. Fifteen 3-valued parameter systems: VCA(N, 2,315,{C}), 
ii. Three 4-valued parameter, three 5-valued parameter, and two 6-valued parameter systems: 

VCA(N, 2,435362,{C}), 
iii. Twenty 3-valued parameter and two 10-valued parameter systems: VCA(N, 2,320102,{C}) 

 

  The generated test size for GVS is shown in Table 6, along with the other existing variable-
strength strategies.  
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Table 6. Generated test size for different variable strength t-way strategies 
 

{C} 
N 

SA Density Para 
Order PICT TVG ACS VS-PSTG GVS 

VCA(N, 2,315,{C}) 
ф 16 21 33 35 22 19 19 19 

CA(3,33) 27 28 27 81 27 27 27 27 
CA(3,33)2 27 28 33 729 30 27 27 27 
CA(3,33)3 27 28 33 785 30 27 27 27 
CA(3,34) 27 32 27 105 35 27 30 28 
CA(3,35) 33 40 45 121 41 38 38 39 
CA(4,34) NA NA NA 245 81 NA 81 81 
CA(4,35) NA NA NA 301 103 NA 97 99 
CA(4,37) NA NA NA 505 168 NA 158 157 
CA(5,35) NA NA NA 730 243 NA 243 243 
CA(5,37) NA NA NA 1356 462 NA 441 445 
CA(6,36) NA NA NA 2187 729 NA 729 729 
CA(6,37) NA NA NA 3045 1028 NA 966 947 
CA(3,34) 
CA(3,35) 
CA(3,36) 

34 46 44 1376 53 40 45 42 

CA(3,36) 34 46 49 146 48 45 45 45 
CA(3,37) 41 53 54 154 54 48 49 48 
CA(3,39) 50 60 62 177 62 57 57 58 
CA(3,315) 67 70 82 83 81 76 74 75 

VCA(N, 2,435362,{C}) 
ф 36 41 49 43 44 41 42 40 

CA(3,43) 64 64 64 384 67 64 64 64 
CA(3, 4352) 100 131 141 781 132 104 124 127 

CA(3,53) 125 125 126 750 125 125 125 125 
CA(4, 4351) NA NA NA 1920 320 NA 320 320 
CA(5, 4352) NA NA NA 9600 1600 NA 1600 1600 

CA(3,43) 
CA(3,53) 125 125 129 8000 125 125 125 125 

CA(4, 4351) 
CA(4, 5262) NA NA NA 288000 900 NA 900 900 

CA(3,43) 
CA(4, 5361) NA NA NA 48000 750 NA 750 750 

CA(3,43) 
CA(5, 5362) NA NA NA 288000 4500 NA 4500 4500 

CA(4, 4352) NA NA NA 2874 496 NA 472 463 
CA(5, 4353) NA NA NA 15048 2592 NA 2430 2380 

CA(3, 435361) 171 207 247 1266 237 201 206 202 
CA(3, 5162) 180 180 180 900 180 180 180 180 

CA(3, 435362) 214 256 307 261 302 255 260 237 
VCA(N, 2,320102,{C}) 

Ф 100 100 100 100 101 100 102 100 
CA(3,320) 100 100 103 940 103 100 105 102 

CA(3,320102) 304 401 442 423 423 396 481 413 
CA(4,33101) NA NA NA 810 270 NA 270 270 
CA(5,33102) NA NA NA NA 2700 NA 2700 2700 
CA(6,34102) NA NA NA NA 8100 NA 8100 8100 

 
Table 6 shows that SA produces the best test size in all system configurations with low 

interaction strength (t ≤ 3). For high interaction strength (3 < t ≤ 6), GVS, VS-PSTG and TVG 
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regularly outperform all other strategies in most configurations. ACS, Density, and ParaOrder also 
display competitive results: in some cases, some of their results also match the best test size. PICT 
produces the worst overall results. 
 
GVS as Input-Output Based Relations Strategy 
 

Two experiments were adopted, which involved 60 input-output relationships for the 10-
parameter system taken from Wang et al. [8, 9]. The input-output relationship definitions for both 
experiments are Rel = {{1, 2, 7, 8}, {0, 1, 2, 9}, {4, 5, 7, 8}, {0, 1, 3, 9}, {0, 3, 8}, {6, 7, 8}, {4, 9}, 
{1, 3, 4}, {0, 2, 6, 7}, {4, 6}, {2, 3, 4, 8}, {2, 3, 5}, {5, 6}, {0, 6, 8}, {8, 9}, {0, 5}, {1, 3, 5, 9}, {1, 
6, 7, 9}, {0, 4}, {0, 2, 3}, {1, 3, 6, 9}, {2, 4, 7, 8}, {0, 2, 6, 9}, {0, 1, 7, 8}, {0, 3, 7, 9}, {3, 4, 7, 8}, 
{1, 5, 7, 9}, {1, 3, 6, 8}, {1, 2, 5}, {3, 4, 5, 7}, {0, 2, 7, 9}, {1, 2, 3}, {1, 2, 6}, {2, 5, 9}, {3, 6, 7}, 
{1, 2, 4, 7}, {2, 5, 8}, {0, 1, 6, 7}, {3, 5, 8}, {0, 1, 2, 8}, {2, 3, 9}, {1, 5, 8}, {1, 3, 5, 7}, {0, 1, 2, 
7}, {2, 4, 5, 7}, {1, 4, 5}, {0, 1, 7, 9}, {0, 1, 3, 6}, {1, 4, 8}, {3, 5, 7, 9}, {0, 6, 7, 9}, {2, 6, 7, 9}, 
{2, 6, 8}, {2, 3, 6}, {1, 3, 7, 9}, {2, 3, 7}, {0, 2, 7, 8}, {0, 1, 6, 9}, {1, 3, 7, 8}, {0, 1, 3, 7}}. 

For the first experiment, a system with ten 3-valued parameters was adopted. The 
experiment started with |Rel| = 10, viz. only the first ten relationships in Rel were used in generating 
the test suite. Subsequently, the first 20 relationships in Rel were used, until all 60 relationships 
were finally used. The test size obtained from the first experiment is shown in Table 7. 

The second experiment involved the same relationships but using a system with multi-value 
parameters consisting of three 2-valued parameters, three 3-valued parameters, three 4-valued 
parameters, and one 5-value parameter. The result obtained from the second experiment is shown in 
Table 8.   
 
Table 7. Generated Test suite Size for IOR{N, 310, |Rel|} 
 

|Rel| 
N 

Density ReqOrder ParaOrder Union Greedy TVG GVS 

10 86 153 105 503 104 86 104 

20 95 148 103 858 110 105 98 

30 116 151 117 1599 122 125 116 

40 126 160 120 2057 134 135 117 

50 135 169 148 2635 138 139 127 

60 144 176 142 3257 143 150 140 

 
Table 8. Generated Test suite Size for IOR{N, 23334351, |Rel|} 
 

|Rel| 
N 

Density ReqOrder ParaOrder Union Greedy TVG GVS 

10 144 154 144 505 137 144 144 

20 160 187 161 929 158 161 162 

30 165 207 179 1861 181 179 169 

40 165 203 183 2244 183 181 170 

50 182 251 200 2820 198 194 200 

60 197 250 204 3587 207 209 200 
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For |Rel| = 10, Density and TVG produce the best test size. For |Rel|= 20, Density produces 
the best result. For |Rel| = 30, both Density and GVS produce the best test size. Concerning |Rel| = 
40 until |Rel| = 60, GVS produces the most optimum result (Table 7). We note that in all cases, 
Union produces the worst result.  

In Table 8, Greedy produces the best test size for |Rel| = 10 and |Rel| = 20, whereas Density 
produces the best test size for all other configurations. Although it does not produce the best result, 
GVS nevertheless produces acceptable results in all cases, i.e. second to Density in almost all values 
of R. Union produces the worst result for all configurations. 
 
CONCLUSIONS 
 

A new variable strength t-way test suite-generation strategy called GVS, which is based on 
input-output relationships, has been proposed and evaluated. The evaluation was encouraging 
because GVS produces good results for uniform number of parameter values and system with high 
interaction strength (i.e. t > 3). As an area for further research, we are investigating new searching 
algorithm for integration into GVS to produce better test size, especially where the parameter values 
are non-uniform. Additionally, we are also considering automating the process of determining the 
input-output relationships among system parameters. 
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