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Abstract: Two novel fluoroionophores (Sensors 1 and 2) possessing one and two units of 
diphenylmaleimide fluorophore covalently bound to 2-[3-(2-aminoethylsulfanyl)propylsulfanyl] 
ethanamine were prepared for the selective detection of Hg2+ ions. The binding ability with Hg2+ 
was investigated by fluorescence spectroscopy. Sensor 1 exhibited highly sensitive and selective 
off-on fluorescence enhancement at 500 nm upon binding to Hg2+ and was shown to discriminate 
various competing metal ions, particularly Cu2+ and Pb2+, as well as Li+, Na+, Mg2+, Cd2+, K+, 
Al3+, Fe3+, Ca2+, Ba2+, Co2+, Mn2+ and Zn2+ with a detection limit of 6.72 x 10-7 M. On the other 
hand, Sensor 2 was found to be inferior fluoroionophore to Sensor 1 in terms of selectivity in the 
presence of competitive ions such as Mn2+ and Al3+. 
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INTRODUCTION  
 

Mercury is one of the most highly toxic and hazardous pollutants with recognised accumulative 
characters in the environment and biota [1-3]. Mercury can cause serious human health problems since 
it can easily pass through the skin, respiratory and cell membrane, leading to DNA damage, mitosis 
impairment and permanent damages of the central nervous system, including Minamata disease [4-7]. 



 
Maejo Int. J. Sci. Technol.  2012, 6(03), 449-460  

 

 

450

Recent techniques for the determination of Hg2+, including atomic absorption spectroscopy [8], 
inductively coupled plasma mass spectrometry [9] and electrochemistry [10], often require a large 
amount of samples, high cost and sophisticated instrumentation, which pose serious limitations on the 
detection of Hg2+ in biological samples and the tracking of Hg2+ for environmental monitoring. 
Alternatively, fluorometric sensing for the detection of Hg2+ offers many advantages since it is highly 
sensitive and allows nondestructive, prompt determination and real time tracking for the detection of 
Hg2+.  

While many fluorescent sensors have been designed for Hg2+-sensing, many lack the suitability 
for practical uses due to multi-step syntheses, synthetic difficulty, high costs of starting materials or 
high detection limits for the determination of Hg2+ [11-21]. In addition, they often suffer from cross-
sensitivity towards other ions, particularly potential competitors such as copper (Cu2+) and lead (Pb2+), 
due to their similar chemical behaviours to Hg2+ [15-16, 18-19, 22-25].  Notably, most of the reported 
Hg2+ fluorescent chemosensors reveal a fluorescent quenching “turn-off” mechanism due to the 
quenching characteristic of Hg2+ ions, which limits the number of fluorescent enhancement “turn-on” 
Hg2+ sensors  reported so far  [11, 14, 26].  

In the present study, the major motivation is the design and synthesis of new fluorescent 
enhancement “turn-on” Hg2+ sensors which are expected to provide high sensitivity and selectivity to 
Hg2+, but with a significantly reduced synthetic effort.  

These novel sensors were fabricated from the structure of 2-[3-(2-aminoethylsulfanyl) 
propylsulfanyl]ethanamine, which consists of two sulphur and nitrogen atoms into the platform. It is 
expected that the sensor can provide appropriately located sulphur and nitrogen atoms as donor atoms 
that can self-assemble around the Hg2+ ions due to the favorable electrostatic interactions [26-28]. This 
study also focused on the effect of utilising diphenylmaleimide as a fluorophore to increase the 
sensitivity of the sensor system due to its photostability, relatively high fluorescence quantum yield 
and long emission wavelengths (~ 500 nm) in the visible region [29-31]. Although many modified 
structures of diphenylmaleimide fluorophores have been utilised for optoelectronic applications such 
as organic light emitting diodes [32, 33] and fluorescence photopatterned images materials [34], there 
are no known reports of utilisation of diphenylmaleimide fluorophores for Hg2+ fluorometric sensing 
applications.  

 
MATERIALS AND METHODS 
  

All reagents and solvents were purchased from Fluka Chemical Corporation and were used as 
received.  All of the metal salts used in this study were perchlorate salts and were purchased from 
Strem Chemicals, Inc. NMR spectra were obtained with a Bruker Avance 300 spectrometer operating 
at 300 MHz for 1H and 75 MHz for 13C. All NMR spectra were obtained in CDCl3 solutions with TMS 
as internal standard. Mass spectra were performed by a ThermoElectron LCQ-DECA-XP, electrospray 
ionisation trap mass spectrometer. Fluorescence measurements were performed on a Perkin Elmer 
Luminescence spectrometer LS 50B. Samples were measured in a 1x1 cm quartz cuvette. The 
excitation and emission slit widths were 5.0 nm. The scan rate was 300 nm/min. Molecular modelling 
was performed with the Discovery Studio 2.5 program package. 
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Synthesis: 2-[3-(2-Aminoethylsulfanyl)propylsulfanyl]ethanamine 
 

The synthesis of the titled compound was performed in the same manner as described 
previously [28] by alkylation of cysteamine hydrochloride with 1,3-dibromopropane and the synthetic 
steps are outlined in Scheme 1. 

 
Synthesis of Sensor 1 
 

Sensor 1 was prepared according to the synthetic pathway in Scheme 1.  In a round bottom 
flask, 2-[3-(2-aminoethylsulfanyl)propylsulfanyl]ethanamine (0.155 g, 0.80 mmol) and triethylamine 
(0.20 mL, 3.4 mmol) were dissolved in dry ethanol (15.0 mL) under an argon atmosphere. 
Diphenylmaleic anhydride (0.100 g, 0.40 mmol) was added and the mixture was stirred for 2 hr at 
45C. The solvent was then removed under vacuum to give a yellow oil. The crude product was 
purified by preparative thin layer chromatography using silica gel as a stationary phase and 10 
methanol in dichloromethane as mobile phase (Rf = 0.63) to yield 39 mg of a yellow oil (23). 1H 
NMR (300 MHz, CDCl3):  1.84-1.94 (m, 2H), 1.95 (s, NH2), 2.59-2.63 (m, 4H), 2.69-2.75 (m, 2H), 
2.80-2.89 (m, 4H), 3.87 (t, J = 7.5, 2H), 7.32-7.49 (m, 10H) ppm. 13C NMR (75 MHz, CDCl3):  29.2 
(CH2), 30.0 (CH2), 30.4 (CH3), 30.5 (CH2), 36.0 (CH2), 37.5 (CH), 42.5 (CH2), 128.5 (2CH), 129.8 
(8CH), 136.2 (4C), 170.5 (2C) ppm. HRMS calculated for C23H27N2O2S2

+ (M+H)+ 427.1508 (found 
427.1487).  
 
Synthesis of Sensor 2 
 

Sensor 2 was obtained according to the synthetic pathway in Scheme 1. In a round bottom 
flask, 2-(3-(2-aminoethylsulfanyl)propylsulfanyl)ethanamine (0.078 g, 0.40 mmol) and triethylamine 
(0.20 mL, 3.4 mmol) were dissolved in dry toluene (8.0 mL) under an argon atmosphere. 
Diphenylmaleic anhydride (0.200 g, 0.80 mmol) was added and the mixture was refluxed for 24 hr.  
The solvent was then removed under vacuum to give a yellow oil. The crude product was purified by 
preparative thin layer chromatography using silica gel as a stationary phase and 15 ethyl acetate in 
hexane as mobile phase (Rf = 0.42) to yield 123 mg of a yellow oil (47). 1H NMR (300 MHz, 
CDCl3): δ 1.94 (quintet, J = 7.2, 2H), 2.74 (t, J = 7.2, 4H), 2.84 (t, J = 6.9, 4H), 3.87 (t, J = 7.5, 4H), 
7.33-7.51 (m, 20H) ppm. 13C NMR (75 MHz, CDCl3):  28.9 (2CH2), 29.9 (CH2), 30.4 (2CH2), 37.5 
(2CH2), 128.6 (4CH), 129.9 (4C), 130.0 (16CH), 136.2 (4C), 170.5 (4C) ppm. HRMS calculated for 
C39H34N2O4S2Na+ (M+Na)+ 681.1852 (found 681.1773).  
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Scheme 1. Syntheses of Sensors 1 and 2 

 
RESULTS AND DISCUSSION  
 

The target sensors were prepared using a conventional two-step synthesis (Scheme 1). Sensors 
1 and 2 contain two sulphur atoms and two nitrogen atoms for the binding sites which are covalently 
bound to diphenylmaleimide fluorophore(s). The selective binding was expected to take place through 
favorable electrostatic interactions between the carbonyl carbon as well as sulphur and nitrogen atoms 
of the sensors and Hg2+ ions. 

 
Sensitivity Studies of Sensors 1 and 2 
 

The sensing properties of Sensors 1 and 2 were investigated in order to elucidate the 
quantitative binding affinity of the sensors to Hg2+. Herein, the sensitivity studies of Sensors 1 and 2 
were examined by measuring the fluorescence signals in the presence of various concentrations of 
Hg2+ ions. Figures 1 and 2 show the fluorescence spectra of Sensors 1 and 2 respectively, in the 
presence and absence of different concentrations of Hg2+, which exhibited fluorescence emission 
maximum at 500 nm when excited at 367 nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Fluorescence emission spectra (λex=367 nm) of Sensor 1 (1.0 μM) in dichloromethane as a 
function of [Hg2+]. a: 0 µM, b: 0.7 µM, c: 1.0 µM, d: 1.3 µM, e: 1.7 µM, f: 2.0 µM, g: 2.7 µM 
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When an ion-complexation was operative, the fluorescence behaviour of Sensor 1 clearly 
demonstrated the off-on switching mechanism that occurred in response to Hg2+ ion complexation, as 
demonstrated in Figure 1. In the absence of Hg2+ ions, the fluorescence response was at a minimum 
and the fluorescence “turn on” as the Hg2+ concentration was increased. When the added mercury 
perchlorate attained a concentration 2.7 times higher than that of Sensor 1, the fluorescence response 
reached a maximum point and reached a plateau. The fluorescence quantum yield (f) of Sensor 1 with 
6.7 equiv. of Hg2+ was determined to be 0.021, using quinine sulphate standard with a f of 0.54 in 0.1 
M H2SO4 as a reference [35]. The association constant, Kassoc, was obtained  by Benesi-Hildebrand plot 
of the signal changes in the fluorescence titration results [14, 36] and was found to be 3.27 x 105 M-1 
and the 1:1 complex formation of 1-Hg2+ was suggested. The 1:1 complex formation was consistent 
with molecular modelling studies. The detection limit of Sensor 1 for the analysis of Hg2+ was 
determined from the plot of fluorescence intensity as a function of the Hg2+ concentrations [37]. It was 
found that Sensor 1 had a detection limit of 6.72x10-7 M for Hg2+ ions, which is sufficient for the 
detection of sub-micromolar concentrations of Hg2+ ions found in many environmental systems such as 
edible fish [38]. In addition, Sensor 1 offered long-wavelength emission and the change in 
fluorescence signals in the visible regions, which could be employed to fabricate an economical Hg2+ 
testing tool.  

In a similar study, the fluorescence titrations of Sensor 2 with Hg2+ were carried out and Sensor 
2 acted as an off-on fluorescence switch upon Hg2+ binding as illustrated in Figure 2. The sensor 
showed a high Hg2+-sensitivity and the emission intensity of Sensor 2 was effectively enhanced upon 
the addition of Hg2+ ions.  However, Sensor 2 was found to be a comparable sensor to Sensor 1 in 
terms of sensitivity. It was found that Sensor 2 provided a detection limit of 6.67 x 10-7 M for Hg2+ 
ions. The fluorescence quantum yield (f) of Sensor 2 with 6.7 equiv. of Hg2+ was found to be 0.06, 
based on quinine sulphate standard. The association constant was found to be 5.81 x 105 M-1 and the 
1:1 complex formation of Sensor 2-Hg2+ was suggested. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 2. Fluorescence emission spectra (λex=367 nm) of Sensor 2 (1.0 μM) in dichloromethane as a 
function of [Hg2+]. a: 0 µM, b: 0.7 µM, c: 1.0 µM, d: 1.3 µM, e: 1.7 µM, f: 2.0 µM, g: 2.7 µM 
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Binding Modes of the Sensors  
 

To explain the coordination geometry of Sensors 1 and 2 and Hg2+ upon binding, molecular 
modelling was performed using the Discovery Studio 2.5 program. The structures of Sensors 1 and 2 
were initially modified from the X-ray crystal structure of N,N'-(3,7-diazanonylene)-bis-napthalimide 
in the protein databank PDB ID = 1CX3 and diphenylmaleic anhydride from PubChem compound 
(CID 78530), and optimised using density functional theory with local density approximation (LDA) 
of local functional PWC [39]. Then, the initial structures were optimised using CHARMm force field. 
The complexation energy of the host-guest structure was calculated from the Energy of complex – 
Energy of compound – Energy of Hg2+ using density functional theory with LDA of local functional 
PWC with implicit distance-dependent dielectrics. 
 
 
                 a)                                                                b)   
 
 
 

 
 
 
 
 
 
 
Figure 3. Optimised structures of 1:1 complexes of (a) 1-Hg2+ and (b) 2-Hg 2+ from molecular 
dynamic with LDA of local functional PWC. The Hg 2+ ions were shown in ball model. The C, N, O, 
S, H were in grey, blue, red, yellow and white respectively. The distances are shown in Angstrom  
 

The optimised structures of the host-guest complexes are shown in Figure 3, indicating that ion-
recognition of the sensors originated from self-assembly processes of the sensors and Hg2+ from the 
favorable electrostatic interactions (ion-dipole interactions) of the carbonyl carbon as well as the 
sulphur and nitrogen atoms to Hg2+ to form a wrapping structure. The distances to indicate the binding 
sites of Hg2+ bound to Sensors 1 and 2 are illustrated in Figure 3. For Sensor 1, Hg2+ was coordinated 
to the carbonyl oxygen, two sulphur atoms and nitrogen atom with the distances of 2.94, 2.55, 2.57 and 
2.38 Å respectively. As to Sensor 2, Hg2+ was bound by carbonyl carbon and sulphur atom with the 
distances of 2.62 Å and 2.95 Å respectively. 

 
Selectivity Studies of Sensors 1 and 2 
 

The selectivity studies of Sensors 1 and 2 were performed in dichloromethane solutions by 
recording the fluorescence spectra of the solutions before and after the addition of each representative 
metal ion. In this study, the selectivity studies were obtained by a similar method to the separate 
solution method (SSM) used in ion-selective electrode applications [40]. This method involves the 
measurement of a series of separate solutions, with each solution containing only a salt of the 
determined ion. Figure 4 represents the dependence of the fluorescence intensity of Sensors 1 and 2 as 
a function of cation concentrations of Hg2+, Cu2+, Pb2+, Li+, Na+, Mg2+, Cd2+, K+, Al3+, Fe3+, Ca2+, 
Ba2+, Co2+, Mn2+ and Zn2+.  

2.62 

2.95 
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                                    a) 
 
 
 
 
 
 
 
 

                        
                       b)   

 
 
 
 
 
 
 
 
 
 
Figure 4. a) Normalised fluorescence intensity of Sensor 1 (1.0 μM) and b) normalised fluorescence 
intensity of Sensor 2 (1.0 μM) at 500 nm versus the concentrations of various metal ions, i.e. Hg2+, 
Cu2+ Li+, Na+, Mg2+, Cd2+, K+, Al3+, Fe3+, Ca2+, Ba2+, Co2+, Mn2+, Zn2+ and Pb2+ 
 

The values in the plots were normalised to the fluorescence intensity at 500 nm. The selectivity 
studies clearly exhibited the excellent selectivity of Sensors 1 and 2 to Hg2+ ions in comparison with 
other metal ions. The results showed that the fluorescence responses at 500 nm increased as a function 
of added Hg2+ until it reached the maximum points. On the other hand, the responses of Sensors 1 and 
2 did not cause any significant changes after the addition of Cu2+, Pb2+, Li+, Na+, Mg2+, Cd2+, K+, Al3+, 
Fe3+, Ca2+, Ba2+, Co2+, Mn2+ and Zn2+ under identical conditions.   

To explore further utilisation of 1 and 2 as Hg2+-selective sensors, competitive studies of 
Sensors 1 and 2 were performed. Figures 5 and 6 demonstrated the competitive signalling behaviours 
of Sensors 1 and 2 respectively, with Hg2+ in the presence of environmentally important metal ions 
(Cu2+, Pb2+, Li+, Na+, Mg2+, Cd2+, K+, Al3+, Fe3+, Ca2+, Ba2+, Co2+, Mn2+ and Zn2+).  
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Figure 5. Competitive experiment in the 1-Hg2+ system with common foreign metal ions: [1] = 1.0 
μM,  [Hg2+] = [Mn+] = 1.0 μM  in dichloromethane solutions (λex 367 nm) 
 

The bars in the Figure represent the final fluorescence emission response (IF) over the initial 
fluorescence emission response (I0) at 500 nm. IF was the fluorescence emission of Sensor 1 in the 
presence of competitive cations (1.0 μM each of Cu2+, Li+, Na+, Mg2+, Cd2+, K+, Al3+, Fe3+, Ca2+, Ba2+, 
Co2+, Mn2+, Zn2+ and Pb2+) and Hg2+(1.0 μM). IF/I0 (where IF was the fluorescence intensity of Sensor 
1 in the presence of Hg2+ only) was used as a reference and the IF/I0 reference value was equal to 4.8.  
The IF/I0 values were found to lie between 4.1-4.8, indicating that a relatively consistent Hg2+-induced 
fluorescence enhancement was observed in the presence of equimolar amounts of competing ions. It 
should be noted that the sensing ability of Sensor 1 showed the sensitivity for Hg2+ in the presence of 
Cu2+ and Pb2+, which are potential competitors. The observed selectivity for Hg2+ was remarkable 
compared to many multidentate thioether-containing ligands, i.e. calixarenes, cyclams and cyclens, in 
previous reports [15, 16, 18, 19, 22-25]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Competitive experiment  in the 2-Hg2+ system with common foreign metal ions: [2] = 1.0 
μM,  [Hg2+] = [Mn+] = 1.0 μM  in dichloromethane solutions (λex 367 nm) 
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Figure 6 shows the competitive signalling behaviours of Sensor 2 with Hg2+ in the presence of 
equimolar amounts of competing ions. Sensor 2 was found to be inferior to Sensor 1 in terms of 
selectivity in the presence of competitive ions since the sensing ability of Sensor 2 showed poor 
selectivity for Hg2+ in the presence of equimolar amounts of Mn2+ and Al3+. The lower selectivity of 
Sensor 2 might be due to the steric effect from two diphenylmaleimide fluorophores upon ion binding. 
From the computational data, these two bulky groups give rise to a larger binding site from the self-
assemble process. Therefore, in a competitive experiment, the Hg2+ binding could be interfered and 
replaced by some other ions such as Mn2+ and Al3+ in this case. 

 
CONCLUSIONS  
 

The first use of diphenylmaleimide fluorophore as new fluorescent enhancement “turn-on” 
Hg2+ sensors was successfully demonstrated. Two new sensors based on the 2-[3-(2-
aminoethylsulfanyl)propylsulfanyl]ethanamine ligand covalently bound to one and two units of the 
diphenylmaleimide fluorophore, Sensors 1 and 2, were prepared by a conventional two-step synthesis. 
Especially, Sensor 1 showed highly sensitive and selective fluorescence “turn-on” behaviour toward 
Hg2+ in solutions and was shown to discriminate various foreign ions, i.e. Cu2+, Pb2+, Li+, Na+, Mg2+, 
Cd2+, K+, Al3+, Fe3+, Ca2+, Ba2+, Co2+, Mn2+ and Zn2+. The molecular design presented could serve as 
an alternative mercury fluorometric sensor due to the advantages of synthetic simplicity, cost-efficient 
synthetic route, high sensitivity to Hg2+ by “turn-on” fluorescence response in the visible region and 
high selectivity with particular discrimination of the potential competitors including Cu2+ and Pb2+. 
The new off-on type fluorescence enhancement sensor based on diphenylmaleimide fluorophore could 
serve as a new potential design for future development of sensor systems. 
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