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Abstract: In this paper the fuzzy sequence space  Fp 
  is introduced and some algebraic 

properties such as solidness, symmetricalness, convergence free and sequence algebra are 
studied, and some inclusion relations for the space  Fp 

  are provided.  
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________________________________________________________________________________ 
 
INTRODUCTION 
 

The concept of fuzzy sets was first introduced by Zadeh [1]. Bounded and convergent 
sequences of fuzzy numbers were introduced by Matloka [2], who showed that every convergent 
sequence of fuzzy numbers is bounded. Later on sequences of fuzzy numbers were discussed by 
Nanda [3], Esi [4], Kaleva and Seikkala [5], Tripathy and Baruah [6-8], Tripathy and Borgogain 
[9,10], Tripathy and Dutta [11,12], Tripathy and Sarma [13,14], and Tripathy et al. [15]. Briefly, we 
recall some of the basic notations in the theory of fuzzy numbers and for more information one may 
refer to Matloka [2] and Diamond and Kloeden [16] for more details. 

 A fuzzy number X  is a fuzzy subset of the real line R , i.e. a mapping [0,1])(=: JX R  
associating each real number t  with its grade of membership ).(tX  A fuzzy number X  is convex if 

)},(),({=)()()( rXsXminrXsXtX   where .<< rts  If there exists R0t  such that 1,=)( 0tX  

then the fuzzy number X  is called normal. A fuzzy number X  is said to be upper-semi continuous 
if for each  > 0 and for all aJ, X-1([0,a+ )) is open in the usual topology of .R  Let )(JR  denote 
the set of all fuzzy numbers which are upper semicontinuous and have compact support, i.e. if 

)(JX R , then for any 0,1],[  ][X  is compact, where  
 

,)(:{=][   tXtX R  if 0,1]},[  closureX =][ 0  of  ,>)(:({ tXt R  if 0}).=  
 
The set R of real numbers can be embedded in )(JR  if we define )(Jr R  by  
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 .
if0,

=if1,
=)(




 rt
rt

tr  

 
 The additive identity and multiplicative identity of )(JR  are defined by 0  and 1 respectively. 
 The arithmetic operations on )(JR  are defined as follows: 
 
 ,)},()({sup=))(( R tstYsXtYX  
 
 ,)},()({sup=))(  ( R ttsYsXtYX  
 

 ,)},()({sup=))(( R t
s
tYsXtYX  

 
   .0 provided ,)},()({sup=))(( 0YtsYstXt

Y
X

 R  
 
Let )(, JYX R  and the  level sets be 0,1].[],,[=][],,[=][ 2121  yyYxxX  Then the 
above operations can be defined in terms of  level sets as follows: 
 
 ],,[=][ 2211

 yxyxYX   
 
 ],,[=]  [ 2211

 yxyxYX   
 
 ],max,min[=][

{1,2},{1,2},


ji

ji
ji

ji
yxyxYX


      

 
 1.<0   0,>],)(,)[(=][ 1

1
1

1
2

1   eachforxxxX  
 
For Rr  and ),(JX R  the product rX  is defined as follows: 
 

 
 

.
0=if0,

0if,
=)(

1



 

r
rtrX

trX  

 
 The absolute value , || X , of )(JX R  is defined [5] by  
 

 
    

.
0<if0,

0if,,max
=)(||


 

t
ttXtX

tX  

 
 A mapping {0})()(:  RRR JJd  is defined by 
 
 ).][,]([sup=),(

0




YXdYXd


 

 
It is known that )),(( dJR  is a complete metric space [5]. 
 

 A metric on )(JR  is said to be translation invariant if    
 
 ).(,, ),,(=),( JRZYXforYXdZYZXd   
 

A sequence  kXX =  of fuzzy numbers is a function X  from the set N  of natural numbers 
in  RL . The fuzzy number kX  denotes the value of the function at Nk  [2].  
Let FE  denote the sequence space of fuzzy numbers.  



 
Maejo Int. J. Sci. Technol.  2013, 7(01), 107-112  

 

 

109

A sequence space FE  is said to be solid (or normal) if F
k EY )(  whenever F

k EX )(  and 
|||| kk XY   for all .Nk  

A sequence space FE  is said to be symmetric if F
k EX )(  implies F

k EX )( )(  where   is 
a permutation of .N  

A sequence space FE  is said to be sequence algebra if   F
kk EYX   whenever 

  .(), F
kk EYX   
A sequence space FE  is said to be convergence free if   F

k EY   whenever   F
k EX   and 

0=kX  implies =kY  .0  
A sequence space FE  is said to be monotone if FE  contains the canonical pre-images of all 

its step spaces. 
 
Lemma. If a sequence space FE  is normal then it is monotone. (For the crisp set case, one may 
refer to Kamthan and Gupta [17]). 
 
 In this paper, we define the p-absolutely  summable sequence space of fuzzy real numbers  
 Fp 
 as follows: Let  n =  be a non-decreasing sequence of positive numbers such that 

 nnn  1,=1, 11  as n ,  nnI nn 1,=   and we define: 

      



























<0,1:==
1=

p

k

nIknn
k

F
p XdXX


  

where .<1  p  It is noted that    pCesF
p =


  for nn =  for all .Nn  

 
MAIN RESULTS 
 

Theorem 1. The sequence space  Fp 
  is closed under addition and scalar multiplication.  

 
Proof:  Let X=(Xk)  Fp 

  and .R  Then  

   .<0,1
1=















p

k

nIknn
Xd


 

Then we write: 

    
p

k

nIknn

p

k

nIknn
XdXd 





























0,1=0,1
1=1=







 

 

   .<0,1=
1=















p

k

nIknn

p Xd


  

This implies that X=(Xk)  Fp 
 .  Now let X=(Xk), Y=(Yk)  Fp 

 . Then 

     .<0,1and<0,1
1=1=






























p

k

nIknn

p

k

nIknn
YdXd


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Then we can write: 

  
p

kk

nIknn
YXd 
















0,1
1= 

    .<0,10,1
1=1=






















 








p

k

nIknn

p

k

nIknn
YdXd


 

 
Thus X+Y=(Xk+Yk)   Fp 

 .    
 
Theorem 2. The sequence space  Fp 

  is solid and hence monotone.  
 
Proof: Let  kXX =  and  kYY =  be two sequences of fuzzy real numbers such that 

   0,0, kk XdYd   for all .Nk  If X=(Xk)   Fp 
 . Then 

   .<0,1
1=















p

k

nIknn
Xd


 

 
Now, we have 

     .<0,10,1
1=1=






























p

k

nIknn

p

k

nIknn
XdYd


 

 
Hence Y=(Yk)   Fp 

 . Thus, the sequence space  Fp 
  is solid and hence monotone.    

 
Theorem 3.  The sequence space  Fp 

  is sequence algebra.  
 
Proof: Let X=(Xk), Y=(Yk)   Fp 

 . Then 

     .<0,1and<0,1
1=1=






























p

k

nIknn

p

k

nIknn
YdXd


 

 
Thus, we can write: 

  
p

kk

nIknn
YXd 
















0,1
1= 

   
p

kk

nIknn
YdXd 










 





0,.0,1
1= 

 

 

                                              .<0,1.0,1
1=1=





















 








p

k

nIknn

p

k

nIknn
YdXd


 

 
Thus, (XkYk)   Fp 

 . So the sequence space  Fp 
  is sequence algebra.    

 
Theorem 4.  The sequence space  Fp 

  is not symmetric in general.  
 
Proof: We shall prove it by the following example:    
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Example 1.  Let 1=p , nn =  for all .Nn  Consider the sequence )(= kXX  defined by: 

 














otherwise0,
0if,1

0if1,
= 22

22

kttk
tktk

tX k  .   

Then  

   .<1=0,1 2

1=1=































 k
n

Xd
nIkn

p

k

nIknn 
 

 
Hence X=(Xk)  Fp 

 . Now we consider the rearrangement of )(= kXX  defined as 

   .,...0,,0,,0,== 321 XXXYY k   Then we have:  

   .0,1
1=















p

k

nIknn
Yd


 

 
Then Y=(Yk)  Fp 

 .    Hence the sequence space  Fp 
  is not symmetric in general. 

 
Theorem 5.  The sequence space  Fp 

  is not convergence free in general.  
 
Proof: We shall prove it by the following example:    
 
Example 2. Let 1=p  and nn =  for all .Nn  Consider the sequence )(= kXX  defined by: 
 

   .
otherwise0,

0if,1
0if1,

= 22

22















kttk
tktk

tX k    

Then  

   .<1=0,1 2

1=1=































 k
n

Xd
nIkn

p

k

nIknn 
 

 
Thus,   .)(= F

pk lXX


  Now we consider the sequence  kYY =  defined by: 
 

   .
otherwise0,

0if,1

0if1,

= 2
1

2
1

2
1

2
1




















kttk

tktk

tYk  

Then 

   .=1=0,1 2
1

1=1=




















 









 k
n

Yd
nIkn

p

k

nIknn 
 

Thus, Y=(Yk)  Fp 
 . Hence the sequence space  Fp 

  is not convergence free in general. 
 
Theorem 6.  Let .<<0 qp  Then   Fp 

    .F
q 
   
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Proof: It is clear from the following inclusion relation: for any X=(Xk)  Fp 
  ,    

     .0,10,1
1=1=

q

k

nIknn

p

k

nIknn
XdXd 































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