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________________________________________________________________________________ 
 

INTRODUCTION 
 

            It is well known that complex physical phenomena are related to non-linear partial differential 
equations, which are involved in many fields of science, especially in optical fibres, chemical 
kinematics, chemical physics and general relativity. Further, the investigation of exact solutions of 
non-linear partial differential equations has an important role in the study of non-linear physical 
phenomena. The literature abounds with many different techniques that have been invoked in an 
effort to obtain new exact solutions for different configurations of matter.  
            Lie group analysis method [1-3], also called the symmetry method, is one of the most 
effective methods for determining solutions of non-linear partial differential equations. Since the 
second half of the 19th century and about 200 years after Leibniz and Newton introduced the 
concept of the derivative, solving ordinary differential equations (ODEs) has been one of the most 
important problems in applied mathematics. Sophus Lie (1842-1899) became interested in this 
problem and with inspiration from Galois's theory [1] for solving algebraic equations discovered 
what is known today as Lie group analysis. Lie showed that the majority of known methods of 
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integration of ordinary differential equations, which until then had seemed artificial, could be derived 
in a unified manner using his theory of continuous transformation groups [3]. Recently there have 
been considerable developments in finding exact solutions of non-linear differential equations, as 
evident by a number of research work [4-6]. For many years after Einstein proposed his general 
theory of relativity, only a few exact solutions were known. Today the situation is completely 
different and we now have a vast number of solutions of Einstein field equations for various fields 
[7]. However, very few are well understood in the sense that they can be clearly interpreted as the 
fields of real physical sources. The obvious exceptions are the Schwarzschild [8] and Kerr solutions 
[9], which have been very thoroughly analysed and which clearly describe the gravitational fields 
surrounding static and rotating black holes respectively. 
            Thus, the study of exact solutions to Einstein field equations for various fields is an important 
part of the theory of general relativity. Einstein field equations, which play a central role in Einstein 
theory of general relativity, have symmetry consideration as one of the most important mathematical 
properties apart from applications and implications in astrophysics. The heart of the classification 
schemes for the solutions of these equations is the symmetry methods based on the Lie group. 
Einstein field equations were studied by various authors [6, 10, 11, 12] to establish exact solutions 
by using Lie group analysis. 
            In this paper, we study the exact solutions of Einstein field equations for perfect fluid 
distribution and pure radiation fields. Lie symmetry method is used to generate various symmetries of 
the equations and then an optimal system comprising basic vector fields is identified, and finally the 
reduced systems of ODEs and their exact solutions are presented. The exact solutions thus obtained 
can be utilised for checking the validity of numerical and approximation techniques and programmes 
of the theory of general relativity.  
 
EINSTEIN FIELD EQUATIONS FOR PERFECT FLUID DISTRIBUTION 
 
            The possibility of the existence of gravitational waves propagated with the speed of light was 
first pointed out by Einstein in the case of weak gravitational field [13].  The usual procedure in 
Cartesian coordinates is to start with a field: 
                                               ,4,3,2,1,  kihg ikikik                                                   (1) 
 

where ik  is the Galilean metric and  ikh  describes the modifications due to a weak gravitational 
field. In view of the linearised field equations 0ikR  coupled with a set of coordinates conditions,  

ikh  satisfies the wave equation. In particular, when ikh  depends on t  and x  only, there exists a 
coordinate system [14] in which one can take all the components ikh  to vanish except 
 
                                              0,0 32233322  hhhh                                                      (2) 
where the non-vanishing components are arbitrary functions of the argument )( xt  . Since general 
relativity is essentially a non-linear theory, its intrinsic consequences cannot be based on a weak field 
approximation and there must be certain reservations about the conclusions drawn from the 
linearised field. Bondi et al. [15] demonstrated the existence of plane gravitational waves described 
by an exact solution of Einstein field equations for empty space-time. In the present paper, we 
consider the exact gravitational field equations: 
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18                                                                   (3) 

for a line element:  
                               vdydzdzudyudxdtds 2)1()1( 22222                                           (4) 
where u  and v  are functions of t  and x  only. 
            In the case of the line element (4), the non-zero components of the curvature tensor and the 
Ricci tensor are given as follows: 
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where  and   take the values t  and x  only, and ...,, kiikii xx
uu

x
uu








  etc., and 

   xzytxxxx ,,,,,, 4321   and )1( 22 vuP  . 
 
The Perfect Fluid Distribution 
 
            We examine the compatibility of the perfect fluid distribution of matter defined by the field 
equations:   

                                ,1)],(
2
1)[(8  ki

ik
ikkiik vvgpgvvpR                                        (6) 

where p  and  are the proper pressure and proper density respectively and iv  is the flow vector. In 
view of (5) and (6), we have the following four relations: 
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Two of the relations, contained in the first set of the above equations, give: 
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A perfect fluid distribution of matter is possible if vu  . 
            Thus these relations are compatible with the perfect fluid distribution of matter if vu   and 
the resulting single equation is as follows: 
 
                                                       ,0)(2))(21( 222  xtxxtt uuuuuu                                   (9) 
 
Lie Symmetry Analysis 
 
            Lie point symmetry of a differential equation is an invertible transformation of the dependent 
and independent variables that leaves the equation unchanged. The technique has earlier been used to 
obtain exact solutions of various non-linear partial differential equations [4-6, 10, 11]; hence there is 
no need to discuss the method in detail. In this section, we obtain the symmetry groups of equation 
(9) using the Lie classical method. The symmetry group of equation (9) is generated by a vector field 
of the form: 
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where ξ, τ and η are functions of x , t  andu . Assuming that the system of equation (9) is invariant, 
we find that the coefficient functions ξ, τ and η must satisfy the symmetry condition: 
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where xxtx  ,,  and tt  are extended (prolonged) infinitesimals acting on an enlarged space that 
includes derivatives of the dependent variables xxtx uuu ,,  and ttu  respectively. After some 
straightforward albeit tedious and lengthy calculations, we derive the following forms of the 
infinitesimal elements ξ, τ and η: 
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where )(1 xtF   and )(2 xtF   are arbitrary functions. Thus, equation (9) admits a set of Lie algebra 
of infinite dimensions. 
            For the symmetries described in (12), the similarity variable ),( tx   and the 
corresponding form of u  as a function of the new independent variable  are as follows: 
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            In the above set of equations (13), the function F  is a function of   and is determined by 
substituting (13) in (9) and solving the resulting non-linear ODE, which is: 
 
                                      ,0)('')(2)('')()('2 22   FFFFF                                          (14) 
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where prime (') denotes the differentiation with respect to variable . Solving equation (14) and 
reverting back to the original variables, we obtain the following group-invariant solutions of equation 
(9): 
 
Solutions in terms of cos () function  
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where 1c  and 2c  are arbitrary constants. 
 
Solutions in terms of sin () function 
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where 1c  and 2c  are arbitrary constants. 
 
EINSTEIN FIELD EQUATIONS FOR PURE RADIATION FIELDS 
 
              From the beginning of the theory of general relativity, there has been a sustained search for 
the new exact solutions of Einstein equations for various fields. The exact solutions of Einstein field 
equations play very important roles in the discussion of physical problems. The Riemann curvature 
tensor plays the most fundamental role in Einstein theory of gravitation. The algebraic and 
differential properties of this tensor have characterised wave fields in general relativity in great detail. 
The problem of pure radiation fields has been discussed by several authors [16-22]. 
            The field equations corresponding to the pure radiation fields are: 
 
                                                                 ,j

i
j

iR                                                               (17)   
 
where   is a scalar. When ,0  one gets pure gravitational radiation. The more general waves 
given by (17) ( 0 ) are distinct from pure gravitational waves. We will derive some of the exact 
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solutions of the Einstein-Rosen [23] cylindrically symmetric space-time corresponding to pure 
radiation fields.     
 
Metric Form and Field Equations 
 
            Consider Einstein-Rosen metric [23] in cylindrical polar coordinates zr ,,  and time t  as:  
  
                                   2)2(2)2(222)22(2 )( dzederdrdteds uuuv     ,                                    (18) 
 
where u  and v  are functions of r  and t  only. The non-zero components of curvature tensor 
obtained from (18) are:  
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Pure radiation fields with null vector i  such that ,10,0,1  tzr    for 

the metric (18) by using (17), obey the field equations: 
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Making use of expressions for i

iR  given in (19), the relations (20) give the system of partial 
differential equations:       
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So we have three equations for the determination of two unknowns, u  and v , and one can 

easily verify that these three equations are all consistent. Therefore, we drop the third equation in 
system (21) and solve the remaining two equations for u  and v . Hence we get a system of partial 
differential equations: 
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Lie symmetry method is utilised to obtain the group invariant solutions of the non-linear 

system (22). A number of cases arise depending on the nature of the Lie symmetry generator. We 
derive various symmetries of system (22) by using Lie group method and then an optimal system 

and 
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comprising basic vector fields is identified. Further, the reduced systems of ODEs and some of the 
exact solutions of equation (22) are presented. The Lie algebra associated with system (22) consists 
of the following six vector fields:  
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In general, there is an infinite number of sub-algebras of this Lie algebra formed from any 
linear combination of generators .6,5,4,3,2,1, iX i  However, two algebras are similar if they are 
connected to each other by a transformation from the symmetry group; then their corresponding 
invariant solutions are connected to each other by the same transformation. Therefore, it is sufficient 
to put all similar sub-algebras into one class; the set of all these representatives is called an optimal 
system [1, 2], which consists of the following six basic vector fields: 
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Symmetry Reductions and Exact Solutions 
 
            Now the primary focus is on the reductions associated with the vector fields in the optimal 
system and the attempt to furnish exact solutions. 
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The solution of the reduced system of ODEs (25) is: 
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Hence, the solution of system (22) is: 
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where 1c  and 2c  are arbitrary constants and hypergeom stands for hypergeometric function.   
    

)(ii 52 XX   
For this vector field, the form of the similarity variable and similarity solution is: 
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On using these in system (22), the following system of reduced ODEs is obtained: 
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The solution of system (28) is given by: 
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where c1, c2  and 3c  are arbitrary constants. Thus, we get the following solution of system (22) by 
using (29): 
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)(iii 53 XX   

For this vector field, the form of the similarity variable and similarity solution is: 
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Using these substitutions, system (22) reduces to: 
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The solution of the reduced system of ODEs (31) is obtained and the solution of system (22) is: 
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where 21, cc  and 3c  are arbitrary constants. 
 

)(iv 54 XX   
In this case the form of the similarity variable and similarity solution is: 
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Using these substitutions in system (22), we get the following reduced system of ODEs: 
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The solution of reduced ODEs (33) is obtained and hence the solution of system (22) is: 
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where 21, cc  and 3c  are arbitrary constants. 
 

)(v 5X  
For this vector field, the form of the similarity variable and similarity solution is:  
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Using these substitutions, system (22) reduces to: 
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The solution of reduced ODEs (35) is furnished and the solution of system (22) is: 
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where 21, cc  and 3c  are arbitrary constants. 
 

)(vi 6X  

Corresponding to this vector field, the form of the similarity variable and similarity solution 
is:  
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On using these in system (22), the system of reduced ODEs is given by:  
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The solution of reduced ODEs (37) is obtained and the solution of system (22) is deduced as: 
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where 21, cc  and 3c  are arbitrary constants. 
             
            Since, after reduction to ODEs, further attempt to apply Lie group analysis to ODEs has 
been made, but no further physically important non-trivial symmetries come out, hence the solutions 
of ODEs are obtained directly. After attaining the reductions and exact solutions corresponding to 
essential vector fields of the optimal system, we observe that in each of physically relevant case, the 
similarity variable is of the form tr  . Since reductions can be obtained from any linear combination 
of basic vector fields (23), we can consider other linear combinations for physically significant 
reductions and exact solutions. 
            For example, we consider linear combination 621 XXX    of vector fields. For this 
vector field, the form of the similarity variable and similarity solution is:  
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On using these in system (22), the reduced system of ODEs is: 
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The solution of reduced ODEs is obtained and the solution of system (22) is deduced as: 
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where )(xJ   and )(xY  are the modified Bessel functions of the first and second kinds respectively. 
They satisfy the modified Bessel equation:  
                                                        ,0)(''' 222  YxxYYx   
where 21, cc  and 3c  are arbitrary constants. 
 
CONCLUSIONS 
 
            In this work, we have studied Einstein field equations for perfect fluid distribution and the 
system of partial differential equations corresponding to Einstein-Rosen cylindrically symmetric 
space-time for pure radiation fields by using Lie symmetry analysis method. Especially, all similarity 
reductions and exact solutions based on the Lie group method are obtained by generating the group 
infinitesimals. The partial differential equations are reduced to ordinary differential equations, which 
are further studied with the aim of deriving certain exact solutions. It is worth mentioning here that 
the authenticity of all the solutions has been checked with the aid of software Maple. Thus, we have 
found new exact solutions that might prove to be interesting for further applications. 
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