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Abstract: A class of minimax fractional programming problem and its two types of second-
order dual models are considered with an establishment of weak, strong and strict converse 
duality theorems from a view point of generalised convexity. Some previously known 
results in the framework of generalised convexity are naturally unified and extended. 
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_______________________________________________________________________________________ 
 
INTRODUCTION 
 

Optimisation is a mathematical technique for obtaining the greatest or least possible value of 
a function with one or several variables. This becomes more difficult in the presence of certain 
constraints imposed on the variables. Optimisation techniques are needed in various disciplines of 
science and engineering. In fact they are being applied to every sphere of human activity which can 
be modelled in a mathematical form.  

Optimisation problems in which both a minimisation and maximisation process of fractional 
objectives are performed are usually referred to in the optimisation literature as generalised minimax 
fractional programming problems. These problems have arisen in multi-objective programming [1], 
game theory [2], goal programming [3], minimum risk problems [4] and economics [5, 6].   Stancu-
Minasian [7] gave a survey on fractional programming which covers applications as well as major 
theoretical and algorithmic developments. 

In this paper, we consider the following minimax fractional programming problem:  

   (P)    
 yxh

yxf
Yy  ,

 ,sup x Minimise                 


     

                     subject to     nRxxg  0,  ,     
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where Y is a compact subset of lR , RRRhf ln :  ,  are 2C  functions on ln RR  , 

and mn RRg :  is a 2C  function on nR . It is assumed that for each   ln RRyx , ,   0   , yxf  
and   0 , yxh . 

In the study of optimality conditions and duality results for minimax programming problems, 
Yadav and Mukherjee [8] established the optimality conditions to construct two dual problems and 
derived duality theorems for differentiable fractional minimax programming. Chandra and Kumar [9] 
pointed out that the formulation of Yadav and Mukherjee [8] has some omissions and inconsistencies 
and constructed two modified dual problems and proved duality theorems for (convex) differentiable 
fractional minimax programming. To relax convexity assumptions involved in sufficient optimality 
conditions and duality theorems, various generalised convexity notions have been proposed. 
Focusing on the minimax fractional programming problem, Yang and Hou [10] established the 
sufficient optimality conditions and derived a number of duality results. Many other authors were 
involved in developing the optimality conditions and deriving the duality results for minimax 
programming problems [11-23]. 

Mangasarian [24] first formulated the second-order dual for a non-linear programming 
problem and established the duality results under somewhat involved assumptions. Mond [25] 
reproved second-order duality results involving simpler assumptions and showed that the second-
order dual has computational advantages over the first-order dual. In order to generalise the notion 
of convexity to the second and higher orders and extend the validity of results to larger classes of 
optimisation problems, Ahmad and Husain [26] introduced a class of second-order  , , ,F d  -

convex functions and established duality theorems for a second-order Mond-Weir type multi-
objective dual problem. Husain et al. [27] considered two types of second-order dual model for a 
minimax fractional programming problem and adopted the concept of  -bonvexity/generalised  -
bonvexity to discuss appropriate duality theorems.  

In this paper after some preliminaries and definitions are given, the weak, strong and strict 
converse duality theorems for two types of dual models to the minimax fractional programming 
problem (P) under the second-order Type-I assumptions are discussed. 
 
NOTATIONS AND PRELIMINARIES 
 

Let   0:  xgRxS n  denote a set of all feasible solutions of problem (P). For 

each   ,  , ln RRyx   we define: 
 

                    0:  xgMjxJ j    where  mM  ..., ,2 ,1 , 

                  , ,sup ,: 2/12/1







 


BxxzxfBxxyxfYyxY T

Yz

T   and  

             s
s

lss RttttnsRRNytsxK   ,...,,,11:,, 21          

                      with 



s

i
it

1
1and  syyyy ,...,, 21  and   sixYyi ,...,2,1,  . 

 
In the sequel the following result [9] is needed: 
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Theorem 1 (Necessary conditions). If *x  is a solution (local or global) of problem (P) and 
   **  , xJjxg j   are linearly independent, then there exist      RxKyts *****   , , ,  , 

and mR  such that 

                   



m

j
jj

s

i
iii xgyxhyxft

1

**

1

******
*

 , ,  ,                                         

                  ,,...,2,1,0 , , ****** siyxhyxf ii                                         

                0
1

** 


m

j
jj xg ,                         

                .,...,2,1,1    ,0 ***

1

* sixYy,   tt i

s

i

*
ii

*

 


                           

 
In order to consider the second-order duality for problem (P), we define the following second 

order Type I and related functions: 
 

Definition 1.  The pair  gf ,  is said to be second order Type I at Xx  with respect to   if there 

exists a vector function nRXX : such that for all  xYyRpXx i
n  ,, , 

,,...,2,1,,...,2,1 mjsi    

                         pyxfyxfxxpyxfpyxfyxf ii
T

i
T

ii ,,,,
2
1,, 22    

                                           pxgxgxxpxgpxg jj
T

j
T

j
22 ,

2
1

  . 
 

In the above definition, if the inequalities appear as strict inequalities, then we say that  gf ,  
is strictly second order Type I at Xx  .  
 
Definition 2.  The pair  gf ,  is said to be second order pseudoquasi Type I at Xx  with respect 

to  if there exists a vector function nRXX : such that for all  xYyRpXx i
n  ,, , 

,,...,2,1,,...,2,1 mjsi   

                          0,
2
1,, 2  pyxfpyxfyxf i

T
ii  

                                               0,,, 2  pyxfyxfxx ii
T , 

                          0
2
1 2  pxgpxg j

T
j  

                                               0, 2  pxgxgxx jj
T . 

 
If the second inequality is strict, then  gf , is said to be second-order strictly pseudoquasi 

Type I at Xx  . 
 
FIRST DUALITY MODEL 
 
     In relation to (P), we consider the following dual problem: 
 

       (MD)     
       

,supmax
,,,,,,,

1


 ytsHpzzKyts 
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where  ytsH ,,1 denotes the set of all   nmn RRRRpz  ,,,   satisfying       

               pyzhyzftyzhyzft
s

i
iii

s

i
iii   

 1

2

1
,,,,     

                                                                   0
1

2

1




m

j
jj

m

j
jj pzgzg  ,                                (1)  

                 ,0,,
2
1,,

1

2

1
  


pyzhyzftpyzhyzft

s

i
iii

Ts

i
iii                                             (2) 

           0
2
1

1

2

1




m

j
jj

Tm

j
jj pzgpzg  .                                                                                    (3) 

 
If, for a triplet    zKyts ,, , the set   ytsH ,,1 , then we define the supremum over it to be -∞. 
 
Remark 1.  If 0p , then (MD) becomes the dual given in Liu and Wu [28]. 
  
Theorem 2 (Weak duality). Let x and  pytsz ,,,,,,  be the feasible solutions of (P) and (MD) 

respectively. Assume that       







 



m

j
jj

s

i
iii gyhyft

11
,,,   is second order Type I at z  with 

  0, zx .  Then      
  

 yxh
yxf

Yy ,
,sup . 

Proof.  Suppose it is contrary to the result that    
  

 yxh
yxf

Yy ,
,sup . 

Thus, we have       0,,  ii yxhyxf     for all   .,...,2,1, sixYyi   
It follows from siti ,...,2,1,0    that       0,,  iii yxhyxft  , with at least one strict inequality 

since   .0,...,, 21  stttt Taking summation over i and using 1
1




s

i
it , we have by (2):                             

                 



s

i
iii

s

i
iii yzhyzftyxhyxft

11
,,0,,      pyzhyzftp

s

i
iii

T 



1

2 ,,
2
1

 .   

The above inequality, together with (3), implies: 
 

                   



m

j
jj

s

i
iii

s

i
iii zgyzhyzftyxhyxft

111

,,,,             

                              .0
2
1,,

2
1

1

2

1

2  


pzgppyzhyzftp
m

j
jj

T
s

i
iii

T                           (4) 

 

Now the second-order Type-I assumption on       







 



m

j
jj

s

i
iii gyhyft

11
,,,   at z  gives: 

                     pyzhyzftpyzhyzftyxhyxft
s

i
iii

T
s

i
iii

s

i
iii 




1

2

11
,,

2
1,,,,    

                                      







 



s

i
iii

s

i
iii

T pyzhyzftyzhyzftzx
1

2

1
,,,,,  ,           

        pzgpzg
m

j
jj

T
m

j
jj 




1

2

1 2
1        








 



pzgzgzx
m

j
jj

m

j
jj

T

1

2

1
,  . 
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Combining the above two inequalities, we get: 
 

                 



m

j
jj

s

i
iii

s

i
iii zgyzhyzftyxhyxft

111

,,,,   

                  pzgppyzhyzftp
m

j
jj

T
s

i
iii

T 



1

2

1

2

2
1,,

2
1   

                                



 



s

i
iii

s

i
iii

T pyzhyzftyzhyzftzx
1

2

1
,,,,,   

                                                                                    



 



pzgzg
m

j
jj

m

j
jj

1

2

1
 , 

which, along with (4) and   0, zx , implies: 
 

                      



s

i
iii

s

i
iii pyzhyzftyzhyzft

1

2

1
,,,,         

                                                                     0
1

2

1

 


pzgzg
m

j
jj

m

j
jj  , 

 
which contradicts (1). This completes the proof.                                                                                    
 
Theorem 3 (Strong duality). Assume that *x  is an optimal solution of (P)  and    **  , xJjxg j   

are linearly independent. Then there exist    ****  , , xKyts   and 

   ***
1

****  , ,0 ,, , ytsHpx   such that  0, , ,,,  , ******* pytsx   is a feasible solution of 
(MD) and the two objectives have the same values. Further, if the hypothesis of Theorem 2 (weak 
duality) holds for all feasible solutions  pytsz , , ,, , ,   of (MD), then 

 0, , ,,,  , ******* pytsx   is an optimal solution of (MD). 

Proof. Since *x  is an optimal solution of (P) and    **  , xJjxg j   are linearly independent, then 

by Theorem 1, there exist    ****  , , xKyts   and    ***
1

****  , ,0 ,, , ytsHpx   such that 

 0, , ,,, , ******* pytsx   is a feasible solution of (MD) and the two objectives have the same 

values. The optimality of  0, , ,,, , ******* pytsx   for (MD) thus follows from weak duality 
Theorem 2.                                                                                                                                                            
 
Theorem 4 (Strict converse duality). Let *x and  0, , ,,, , ******* pytsz   be the optimal of (P) 

and (MD) respectively. Suppose that       







 



m

j
jj

s

i
iii gyhyft

1

*

1

**** ,,,
*

  is strictly second order 

Type I at *z , and    **  , xJjxg j   are linearly independent. Then ** xz  , i.e. *z  is an optimal 

solution of  (P). 
 
Proof.  Suppose it is contrary to the result that ** xz  . Since *x and  ******* , , ,,, , pytsz   are 

the optimal of (P) and (MD) respectively, and    **  , xJjxg j   are linearly independent, from the  

Strong Duality Theorem 3, therefore, we reach:    
 

*

* **

**

,
,sup 

 yxh
yxf

Yy
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Thus, we have        0,, *****  ii yxhyxf     for all   .,...,2,1, *** sixYyi   
Now proceeding as in Theorem 2, we get: 
   

                



m

j
jj

s

i
iii

s

i
iii zgyzhyzftyxhyxft

1

**

1

******

1

******
**

,,,,             

                      .0
2
1,,

2
1 *

1

**2**

1

******2*
*

 


pzgppyzhyzftp
m

j
jj

T
s

i
iii

T                   (5) 

 

The strictly second-order Type-I assumption on       







 



m

j
jj

s

i
iii gyhyft

1

*

1

**** ,,,
*

  at z  gives: 

              



**

1

******

1

****** ,,,,
s

i
iii

s

i
iii yzhyzftyxhyxft   

             *

1

******2*
*

,,
2
1 pyzhyzftp

s

i
iii

T 


   

                         







 



**

1

*******2

1

******** ,,,,,
s

i
iii

s

i
iii

T pyzhyzftyzhyzftzx  ,  

      *

1

**2*

1

**

2
1 pzgpzg

m

j
jj

T
m

j
jj 



        







 



*

1

**2

1

**** , pzgzgzx
m

j
jj

m

j
jj

T  . 

 
Combining the above two inequalities, we get: 
 

                



m

j
jj

s

i
iii

s

i
iii zgyzhyzftyxhyxft

1

**

1

******

1

******
**

,,,,   

                *

1

**2**

1

******2*

2
1,,

2
1 *

pzgppyzhyzftp
m

j
jj

T
s

i
iii

T 


   
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which along with (1), implies: 
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which contradicts (5). Hence ** xz  .    
                                                                                                
SECOND DUALITY MODEL 
 
 Now, we consider the following dual for (P) and establish weak, strong and strict converse 
duality theorems: 
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  (GMD)             
       
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where  ytsH ,,2 denotes the set of all   nmn RRRRpz  ,,,   satisfying: 
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  If, for a triplet 

   zKyts ,, , the set   ytsH ,,2 , then we define the supremum over it to be  -∞. 
 
Theorem 5 (Weak duality).  Let x and  pytsz ,,,,,,  be the feasible solutions of (P) and (GMD) 

respectively. Assume that       
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 is second 

order pseudoquasi Type I at z , with   0, zx . Then  
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Proof.  Suppose it is contrary to the result that   
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The above inequality, together with the feasibility of x  for (P), 0 and (7), implies: 
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Also from (8), we have: 
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The inequalities (9), (10) and the second order pseudoquasi Type I assumption on 
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Combining these inequalities with   0, zx , we get: 
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which contradicts (6). This completes the proof.                                                                                   
 
Theorem 6 (Strong duality).  Assume that *x  is an optimal solution of (P) and    **  , xJjxg j   

are linearly independent. Then there exist    ****  , , xKyts   and 

   ***
2

****  , ,0 ,, , ytsHpx   such that  0, , , ,,  , ******* pytsx   is a feasible solution of 
(GMD) and the two objectives have the same values. Further, if the hypothesis of Theorem 5 (weak 
duality) holds for all feasible solutions  pytsz , , , ,, ,   of (GMD), then 

 0, , , ,,  , ******* pytsx   is an optimal solution of (GMD). 
 
Proof:  The proof of the above theorem is similar to that of Theorem 3 and hence omitted. 
 
Theorem 7 (Strict converse duality).  Let *x and  ******* , , ,,, , pytsz   be the optimal of (P) and 

(GMD) respectively. Suppose that          
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is second order strictly pseudoquasi Type I at *z , and    **  , xJjxg j   are linearly independent. 

Then ** xz  , i.e. *z  is an optimal solution of (P). 
 
Proof: It can be proved by a contradiction, applying Theorem 6.   
                                                           
CONCLUSIONS  
 

We have established weak, strong and strict converse duality theorems for a class of 
generalised fractional minimax programming problems possessing some second-order Type-I 
invexity property. This paper extends earlier work in which duality results were obtained for a 
generalised fractional optimisation problem by applying a convexity assumption.  
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