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Abstract: A voltage controlled resistor (VCR) using quasi-floating-gate MOSFETs (QFGMOS) 
suitable for low voltage applications is presented. The performance of the VCR implemented with 
QFGMOS is compared with its floating-gate MOSFET (FGMOS) version. It was found that QFGMOS 
offers better performance than FGMOS in terms of frequency response, offsets and chip area. The VCR 
using QFGMOS offers high bandwidth and low power dissipation and yields high value of resistance as 
compared to its FGMOS counterpart. The workability of the presented circuits was tested by PSpice 
simulations using level 3 parameters of 0.5μm CMOS technology with supply voltage of     ± 0.75V. 
The simulations results were found to be in accordance with the theoretical predictions. 
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INTRODUCTION  
 

Implementation of active resistors in integrated circuits is desired for minimal chip area and high 
accuracy. An MOS transistor operating below saturation region can implement a voltage controlled 
resistor (VCR) but with a limited range. These VCRs are useful in the design of tunable analog circuits 
such as voltage controlled oscillators, automatic gain controllers, voltage controlled filters, current-
mode dividers and trans-resistance amplifiers [1-4]. The design of analog circuits operating with low 
voltage and dissipating low power is significant for mixed-mode implementation of systems on chip 
which comprises both digital and analog components. For scaled-down analog circuits, the threshold 
voltage of the MOS transistor poses a limitation for low voltage design and it is not expected to be too 
low in sub-micron technologies [5, 6]. A floating-gate MOSFET (FGMOS) is a possible solution to this 
problem, which offers tunability of threshold voltage with a bias voltage without the need of actually 
lowering the threshold voltage. However, FGMOS has certain limitations like isolated floating-gate, 
which may accumulate static charge, give low frequency response and need large chip area [7, 8]. These 
limitations can be further overcome by quasi-floating-gate MOSFET (QFGMOS). In QFGMOS, the 
gate is not floating like in FGMOS but is weakly connected to one of the supply rails through a high 



 
Maejo Int. J. Sci. Technol.  2013, 7(01), 16-25 
 

 

17

value resistor. Besides, lowering the supply voltage requirements, QFGMOS offers better frequency 
response and needs less chip area [9]. It is therefore expected that the QFGMOS based VCR would 
exhibit better characteristics as compared to its FGMOS version.  

In this paper, we have implemented a QFGMOS-based VCR and compared its performance with 
its FGMOS version. It is observed through both the mathematical equations and PSpice simulations that 
for a given value of control voltage (VC = 0.3V) QFGMOS-based VCR exhibits a higher value of 
resistance (Req =1.48 kΩ) and larger bandwidth (3.61 GHz), whereas FGMOS-based VCR simulates a 
resistance value of 1.30 kΩ with a bandwidth of 490 MHz. 

 
METHODS 
 
Quasi-Floating-Gate Transistor 
 

The equivalent circuit of the n-input N-type QFGMOS is shown in Figure 1. The input terminals 
are capacitively coupled to the quasi-floating gate (QFG) and its gate voltage (VQFG) is set to VDD 
through a pull-up resistor which can be implemented by using the large leakage resistance of the reverse 
biased p-n junction of a PMOS transistor operating in cut-off region. 
 
 
 

 

 

 

 

 

Figure 1.  Equivalent circuit of QFGMOS 
 

The quasi-floating gate voltage (VQFG) in Figure 1 can be expressed as  
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On substituting Equation (3) in Equation (1), VQFG  becomes 
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We observe from Equation (4) that input signals encounter a high-pass filter with a cut-off 
frequency of   12 

Totalleak CR , which is very low due to large value of Rleak. Therefore, even for very low 

frequencies, Equation (4) becomes a weighted average of the AC input voltages determined by 
capacitance ratios plus some parasitic terms. The pull-up resistor Rleak sets a DC voltage equal to VDD on 
the quasi-floating gate upon which an AC voltage given in Equation (4) is superimposed. Hence, the 
gate voltage can become larger than VDD.  Similarly for P-type QFGMOS, a pull-down resistor sets the 
DC gate voltage to VSS, which is implemented by a reverse biased p-n junction of an NMOS transistor in 
the cut-off region [10-18].  
 
Voltage Controlled Resistor  
 

The circuit of a simple MOS-based VCR is shown in Figure 2 where MOSFETs M1 and M2 are 
biased in the triode region and M2 acts as resistor whose resistance can be controlled by its gate voltage 
(VC). The N-type current mirror formed by M3-M4 and P-type current mirror formed by M5-M6 ensure 
the same drain current in both M1 and M2. The transistors M1 and M2 are assumed to be perfectly 
matched transistors with the same drain currents I1 and I2 in the absence of input current (Iin) and M1 is 
biased in the ohmic region. This arrangement makes M2 operate in the ohmic region whose conductivity 
can be further varied by Iin. Thus, M2 acts as a variable resistor whose resistance value is controlled by 
VC [19]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                     Figure 2. MOS-based VCR 
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The equivalent resistance of the MOS-based VCR [3] is given by: 
 

Cnin

DS
eq VKI

VR 12                         (5) 

 
To ascertain the workability of the circuit shown in Figure 2, PSpice simulation was used by 

selecting W/L as 10μm/1μm for M1 and M2, 50μm/1μm for M3 and M4, 20μm/0.5μm for M5 and 
40μm/1μm for M6 with a supply voltage of ± 0.75V. The simulated resistance (Req) varied with control 
voltage (VC) in accordance with Equation (5) as shown in Figure 3 where the resistance varies from     2 
kΩ to 1.11 kΩ as control voltage varies from 0.3 V to 0.75 V.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Resistance simulation using MOS-based VCR 
 
QFGMOS-based Voltage Controlled Resistor 
 

The QFGMOS-based VCR is shown in Figure 4. It differs from the FGMOS-based VCR 
presented [2] in that the gates of FGMOS are connected to a biased voltage through a large value 
capacitor (C2 >> C1) whereas the gates of QFGMOS are connected to the supply rails through reverse 
biased MOSFETs M8-M11. 

The drain currents of M1 and M2, biased in the ohmic region are given by:  
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Figure 4.  QFGMOS-based VCR 
 

The current mirror arrangement of transistors M5 and M6 generates a current I3 such 
that 143 III  . Since transistors M3 and M4 are assumed to be perfectly matched and are biased in 
saturation region, their drain currents are given by: 
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From Equation (10), the equivalent resistance (Req) is given by: 
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where 
Total
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Equation (11) reveals that the circuit in Figure 4 implements a VCR whose resistance value 
depends on the control voltage (VC). The corresponding equation for Req using FGMOS [2] is given by:  
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where K2 is the same as in Equation (11) for VCR using QFGMOS and 
TotalC
CK 2

1  . Since C2 >> 

GDC ' , the resistance value for QFGMOS-based VCR will be larger than FGMOS-based VCR at a 
given value of control voltage. It also results in a better frequency response of QFGMOS- based VCR 
than its FGMOS counterpart [8, 9]. 
 
RESULTS AND DISCUSSION 
 

The circuit of Figure 4 was simulated using PSpice level 3 parameters with supply voltage of ± 
0.75V and by selecting W/L of 10μm/1μm for M1 and M2, 50μm/1μm for M3 and M4, 20μm/0.5μm for 
M5, 40μm/1μm for M6 and 50μm/0.5μm for M8-M11. The variation of resistance with different control 
voltages is shown in Figure 5. It is observed that the value of the simulated resistance varies inversely 
with the control voltage as shown by Equation (11). 
 

 

 

 

 

 

 

 
 
 
Figure 5.  Resistance simulation with QFGMOS VCR 

 
The circuit of VCR was also implemented using FGMOS and its performance compared with its 

QFGMOS counterpart. The performance of QFGMOS-based VCR was found to be better than that of 
its FGMOS version due to the inherent advantages of QFGMOS over FGMOS. The values of the 
equivalent resistance realised using QFGMOS vis-a-vis FGMOS for different values of VC are given in 
Table 1.  

It can be seen that Req decreases from 1.48 kΩ to 1.11 kΩ for QFGMOS-based VCR and from 
1.3 kΩ to 1.11 kΩ for FGMOS-based VCR with the increase in VC from 0.3 V to 0.75 V. A large value 
of the resistance of the order of kΩs or more can be obtained for smaller dimensions of transistors, 
which may lead to non-linearity.  
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                                         Table 1.  Variation of Req with VC 
 
 
 
 
 
 
 
 

 
It was also found that for control voltage (VC) of the order of supply voltage, both QFGMOS 

and FGMOS topology of VCR yield the same value of resistance. This can be attributed to the fact that 
Equations (11) and (13) approximately become identical and resemble Equation (5). when VC 

approaches positive supply voltage. The frequency response of QFGMOS-based VCR at different 
control voltages is shown in Figure 6. It can be observed that as control voltage increases from 0.3V to 
0.75V, the bandwidth of QFGMOS-based VCR increases from 3.61 GHz to 4.9 GHz with the 
corresponding decrease in the value of simulated resistance. The same trend has also been observed in 
FGMOS-based VCR [2]. When control voltage in FGMOS-based VCR increases from 0.3V to 0.75V, 
the bandwidth increases from 490 MHz to 576 MHz and the corresponding value of simulated 
resistance decreases from 1.30 kΩ to 1.11 kΩ. This is due to the fact that with an increase in control 
voltage, the drain current of the transistors increases, which results in higher bandwidth and lower 
resistance. 

 
 

 

 

 

 

 

 

 

 

 

Figure 6.  Frequency response of QFGMOS-based VCR 
 

The comparative resistance simulation characteristics of VCR based on FGMOS and QFGMOS 
are shown in Figure 7. For the same value of control voltage (VC = 0.3 V), Req for FGMOS is 1.30 kΩ 
whereas it is 1.48 kΩ for QFGMOS-based VCR. The power dissipation of QFGMOS-based VCR (0.04 
μW) is less than that of its FGMOS version (0.7 μW). 
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Figure 7.  Comparative resistance simulation characteristics 
 

The comparative frequency response of QFGMOS- and FGMOS-based VCRs is shown in 
Figure 8. The bandwidth of QFGMOS-based VCR is found to be 3.61 GHz, which is greater than that 
of FGMOS based VCR (490 MHz) due to the absence of large capacitance (C2). 
 
 
 
 

 

 

 

 

 
Figure 8.  Comparative frequency response of QFGMOS- and FGMOS-based VCRs 

 

CONCLUSIONS  
 

In this paper, we have briefly described QFGMOS and used it to implement a voltage controlled 
resistor (VCR). The characteristics of QFGMOS-based VCR were compared with those of its FGMOS 
counterpart. It was found that for a given value of controlling voltage, the QFGMOS-based VCR 
simulates a higher value of resistance and offers a larger bandwidth as compared to its FGMOS version 
due to its inherent advantages and consumption of less power. The PSpice simulation results were 
found to be in conformity with the theory. 
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