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Abstract: The aim of this paper is to generalise the class of non-Bazilevic functions by
using the concept of differential subordinations. The inclusion relations, the coefficient
bound, the covering theorem and the famous Fekete-Szego inequality related with this
subclass of analytic functions are studied.
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INTRODUCTION

Let A denote a class of analytic functions of the form
f(z)zz+2anzn, (1)
n=2

which is defined in the open unit disc £ ={z:/z|<1}. A function f in 4 is said to be a starlike
function of order p if and only if
#f'(2)
/(2)
This class of functions is denoted by S™(p). It is noted that S*(0)=S". Let f, and f, be two
functions which are analytic in £. We say that the function f, is subordinate to the function f, in
E (write f, < f, or f/(z)= f,(z)) if there exists a function w analytic in £ with w(0)=0 and
|w(z)|<1 in E such that f(z) :fz(w(z)). A function f in A4 is said to be a Janowski starlike
function denoted by S™[ 4, B] if and only if
f'(z) It dz
f (z) 1+ Bz

Re

>p, 0<p<l,zek.

. —1<B<A<l,zeE.
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Obradovic [1] introduced a class of functions f € 4 such that

Re f’(z)( z ] >0, 0<a<l,zeE.

/(2)

This class of functions was then called a non-Bazilevic type. Tuneski and Darus [2] obtained the
Fekete Szego inequality for the non-Bazilevic class of functions. Using the concept of non-Bazilevic
class of functions, Wang et al. [3] studied many subordination results for the class N ( /,t,l,A,B)

defined as:

Wunan)-|reatsn| ) -aref ) <)

where Ae( —1<B<l, 4#Band0<a<l.
Using the concept of subordination and Non-Bazilevicness, we generalize and define a
subclass of non-Bazilevic functions as follows.

Definition 1. A function f € N, , (4, B) ifit satisfies the condition:
f’(z)(L] +u{1+zf, (Z)—oczf(z)+a—l}<l+AZ,zeE, )
f(z) f (z) f(z) 1+ Bz
where >0, -1<B<A4<land O<a<l.

For 4=1-2p, B=-1, we have the class N, ., (p) defined as follows:

f(ZzJ “‘(” FAC RO ‘1] et

Throughout in this paper we assume that u>0, -1<B<A<1 and O0<a <1 unless

Re f’(z)(

otherwise specified.

PRELIMINARY RESULTS
We need the following lemmas, which will be used in our main results.
Lemma 1 [4]. If -1<B<A<LLB>0 and the complex number y satisfies Rey >
—B(1-4)/(1-B), then the differential equation,
zq'(z) 1+4z

= E
q(z)+ﬁq(z)+7/ 1+Bz’ e

has the univalent solution in £ given by
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+ ﬂ( - )/
Zzﬂ7(1+BZ) ABye _l’ B0,
Bl (14 B ar P
q(z)=4 °
P+y PAz
z e _r B=0.

ﬂjtﬂ+}/—]eﬂl4tdt ﬁ
0

If h(z)=1+c¢z+c,z" +... satisfies
n(z)e—E) L dz
ﬁh(z)+7/ 1+ Bz

then
1+ Az

1+ Bz’

h(z)%q(z) =<

and ¢(z) is the best dominant.

Lemma 2 [5]. Let & be a positive measure on [0,1] and let g be a complex-valued function defined

on Ex[0,1] such that g(.,¢) is analytic in £ for each 7 €[0,1] and that g(z,.)is ¢ -integrable on
[0,1] for all zeE . In addition, suppose that Re{g(z,?)}>0,g(-r,t) is real and
Re{l/g(z,t)} >1/(g(-r,t)for | z|<r<1 and 1 €[0,1].

If g(z) = j g(z,0)d (1), then Re{l/ g(z)} =1/ g(~r).

Lemma 3 [6]. Let a, b and ¢ #0,—-1,-2... be complex numbers. Then, for Rec > Reb >0
F(C) ] —b-1 —-a
) Fa,b,c:z) = ——~2 "' (1-1¢) 1-¢tz) " dt,
O Plabeess) = gyl 0= )
(i) ,F(a.b.cz) = ,Fbacz),

i) o (abiz) = (12 5 acba

Lemma 4 [7]. Let -1<B, <B,<A, <A, <1. Then
1+A22<1+A]z
1+B,z 1+Bz

Lemma 5 [8]. Let F be analytic and convexin E.If f, g€ 4 and f, g <F . Then
Af+(1-2)g<F, 0<a<l.

Lemma 6 [9]. Let f(z)=) " 2" be analytic in £ and F(z)=) " hz" be analytic and
convex in E.If f < F, then
la, | B| (ke

Lemma 7 [10]. If p(z) =1+ p,z+ p,z*>+... 1s a function with positive real part in £, then
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—4v+2, v<0,
| p, -vp; €42, 0<v<l,
4y -2, v2>1.

. . . 1 . .
When v< 0 or v>1, equality holds if and only if p(z) is 1+—Z or one of its rotations. If 0 <v <1,
—Zz

1+2z2
1-z2

then equality holds if and and only if p(z) = or one of its rotations. If v=0, equality holds if

1 1 1 1- ) ) .
and only if p(z)= —4 0 1+ __n —Z, (0<n <1) or one of its rotations. If v=1, equality
2 2)1-z \2 2)1+z

holds if and only if p is the reciprocal of one of the functions such that equality holds in the case of
v=0. Although the above upper bound is sharp, when 0 < v <1, it can be improved as follows:
| py-vpl [+ p 12 £2, (0<v<1/2),

and

| p, -vp; |+(1—v)|pl |2<2, (1/2<v<]).
Lemma 8 [11]. If p(z)=1+ p,z+ p,z*>+... 1s a function with positive real part in £, then for a
complex number v,

| p, —vp I<2max {1,|2v—1]}.

This result is sharp for the functions

1+ z2 1+z
P(Z)—l_zz, P(Z)—I_Z-
MAIN RESULTS
Theorem 1. If f €N,  (4,B), then
z ) | 1+ Az
! < = < , 3
f(Z)(f(z)] m0e 19 s ®)

where

4)

and ¢(z) is the best dominant. In addition if 4<-uB, -1<B<0, then N, ,(4,B)c N(a,p),

pZ{zF](Li(l—gj;iﬂ;%]} 5)

This result is best possible.

where
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Proof. Let

el

where /(z) is analytic in £ with A(0) =1. Differentiating logarithmically, we obtain:

P _SG) LG, e

Wz f(z) f(z) =

It follows easily that:

(=) ) :f’(z)(f(zz)]a +u{1+ Zj:,"((zz)) “a Z?((ZZ)) +a—1}

Since feN,, (4, B), therefore,
n(z)e—112)  Lrdz
(l/u)h(z) 1+ Bz

1
Using Lemma 1 for A =— and y =0, we obtain:
u

1 1+ Az
h(z) <= g(z) <42
A VT B RSN
where g(z) is the best dominant of (3) and is given by (4). Next we show that 1‘r‘1t]‘ {Req(z)} =q(-1).

1 1
Now if we set a:l(B—A)/B, b=— and ¢c=—+1, then it is clear that ¢ > 5 > 0. It follows from

H H H
(4) for B#0 that:

0(z)=01+ Bz)“jtb“ (1+Biz) " dt.

By using Lemma 3, we get:

_I'(b) Bz
Q(Z)—sz](La,c,BZH]- (6)

To prove that 1‘r‘1t]‘ {Req (z)} =g(~1), we need to show that:
Re{l/O(2)} >1/0(~1).

Since 4 <—uBwith —1< B <0, this implies that ¢ >a >0 and it follows that:

0() = [ g(z.0)d,1,

where
1+ Bz

g(z,t) = m,

dt = %ta—l (l_t)c—a—] ’
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which is a positive measure on [0,1]. For —-1< B <0 it is clear that Reg(z,7) >0 and g(—r,t) is

real for 0<|z|<r <1 and ¢ €[0,1]. Now using Lemma 2, we obtain:

Re{l/Q(z)} =1/0(-r).
Now letting » — 17, it follows:
Re{l/0(z)}=1/0(-1).
Further by taking 4 — —uB for the case 4=—uB and using (3), we get N, ,(4,B)c N(a,p).
Theorem 2. For p,>p >0 and -1<B, <B,<A, <A <1,
Ny, (Az’BZ)CNa,M (AI’BI)'
Proof. Let /€N, , (4,,B,). Then
f’(z)(L] +u2{1+2f, (Z)—azf (Z)+a—1}< 1+A22, zeE.
f(z) f (z) f(z) 1+ B,z
Since -1<B, <B,<A, <A, <1, therefore by Lemma 4, we have:
f’(z)( z ] + L, {1+Zf, (Z)—azf (Z)+a—1}<ﬂ, zeE.
f(z) f (z) f(z) 1+ B,z
Hence we have feN, (4,8 ) For u, = u, 20, we have the required result. When 1, >y, 20,

Theorem 1 implies that:

, z Y I+ A4z
f(z)(f(z)] -<1+B]z’
Now

m{ﬁ]a o {HZf”(z)_aZj:’(z)m_l}

- rtof g ) e g e e G|

Using Lemma 5, we get the required result.

Theorem 3. Let SN, (4,B),with f(z)=z+)  a,z". Then
A-B

(2-a)(1+u)

Proof. Since €N, ,(4,B), therefore,

f’(z)(f(zz)]a +u{1+ Zj::’((zz)) —a Zj:’((zz)) to —1} < %, zeE.

Now using the fact that f(z)=z+)  a,z" we obtain:

f’(z)(ﬁ]u +u{1+ Z}[:'((ZZ)) —a Z}[’((ZZ)) +a—1}=1+{a2(2—a)(1+/~l)}2+....

|“2|S

(7
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By a well-known result due to Janowski and Lemma 6, we get:
la,(2—a)(1+p)|< 4-B.
A-B
gy s —45
(2—a)(1+ p)
Therefore, we have the required result.

Theorem 4. Let feN,, (A,B). Then E is mapped by f on a domain that contains the disc

|wl< R

ap?

where

 C-a)-n
=3 (2-a)(1-p)+(A-B) ®

Proof. Let w, be any complex number such that f(z)# w,. Then

L(Z):z+(az+ijzz+...,
w, —f(z) w,
1s univalent in £, so that
az+L <2
Wo
Therefore,
— —|a2|£2
0
Hence,
(2-a)(1-4)
> =R .
) 2(2-a)(1-u)+(A-B)

Theorem 5. Let f e N, ,(4,B) and of the form (1). Then

B
5_2(2_25B]+7/l;2+2tﬁ 2]’ (<o,
B
|a, —ta; |< FZ’ o, <t<o,,
B 20B,+yB,+2tpB
where
__20B +yB,
- 28B,
46 -26B, -y B,
o, = ,
2pB,
_26-26B,-yB,

2

O
’ 2B,
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B =1+B,
B,=A-B,
B= (1+2u)(3-a),
y=a(a-3)+2u(a-4),
o= (2—05)2(1+y)2.
Further, if o, <t <o;, then

PRTEIN 1 (2531+7/Bz+2tﬁ32]|a22|£i.

BB, 2

If o,<t<0,,then
1
|a, -ta; |+ (
BB,

These results are sharp.

|a; < =2
2 2

45 -25B,—yB, - 2tBB, ] B
B

Proof. Since f €N, ,(4,B), therefore, we have:

f’(z)(ﬁ]“ +u{1+ Z;:'((ZZ)) u ijﬂ((zz)) +a—1} ez

Now we can get after simple calculations:

Pl e e )
=1+(2-a)(1+u)az+ ©)

{a(a—3)+2u(a—4)%22+(3—05)(1+2/J)a3}22+...

1+ A4z
1+ Bz

. Then

(1-4)+(1+4) p,(2)
PO a) )

where P is the well-known class of functions with positive real part. This implies that:

p(z):1+(A_ij]z+(A_B]{p2—ﬂpf}zz+..., (10)

Let p(z) <

2 2 2

where
Do (z) =1+ z:o:] p,z".
From (9) and (10) after comparing the coefficients of z and z*, we obtain:

(A-B)p,
2(2-a)(1+ u)’

a, =
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This implies that:
A-B
2(1 + 2y)(3 -

| a, _mzz |:

) | P, =vp3

where

2(2-a) (1+u) (1+B)+(A4+B){a(a-3)+2u(a—4)} +2t(1+2u)(3-a)(4- B)
4(2-a) (1+u)

Now using Lemma 7, we obtain the required result. Equality can be attained by the functions F (z),

V=

defined as follows:

F'(z)( z ]+u{1+ZF (Z)—aZF(Z)+a—1}:ﬂ, ift<o,, ort>o0,,

F(z) F'(z) F(z) 1+ Bz
, z ¢ ZF”(Z) ZF’(Z) _1+A22 )
F (Z)(F(z)] +/,t{1+ () —-a 7(2) +a—1}—m, if o,<t<o,,
, z a+ +ZF"(Z)_aZF’(Z)+a_ _1+A¢(Z) P
Fl ) RGeS e e
and
, z a+ +ZF"(Z)_aZF’(Z)+a_ _1—A¢(z) o
Fl ) RGeS e e e
where ¢(z) = Z(:Z) with 0<n <1,

Theorem 6. Let feN, (A,B) and of the form (1). Then for a complex number ¢,

B
| a, - ta} |< —%max {1,
B

_20B,+yB, +2tpB, 1
26 '

By using Lemma 8, we have the required result. Equality can be attained by the function:

ol o

cols] o
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