Maejo International Journal of Science and Technology

ISSN 1905-7873

Available online at www.mijst.mju.ac.th

Full Paper

Some properties of a subclass of non-Bazilevic functions

Mohsan Raza 1,*, Khalida Inayat Noor 2 and Kamran Yousaf 2

- ¹ Department of Mathematics, GC University Faisalabad, Pakistan
- ² Department of Mathematics, COMSATS Institute of Information Technology, Islamabad Pakistan
- * Corresponding author, e-mail: mohsan976@yahoo.com

Received: 21 May 2012 / Accepted: 18 June 2013 / Published: 20 June 2013

Abstract: The aim of this paper is to generalise the class of non-Bazilevic functions by using the concept of differential subordinations. The inclusion relations, the coefficient bound, the covering theorem and the famous Fekete-Szego inequality related with this subclass of analytic functions are studied.

Keywords: non-Bazilevic functions, differential subordination, Fekete-Szego inequality

INTRODUCTION

Let A denote a class of analytic functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1}$$

which is defined in the open unit disc $E = \{z : |z| < 1\}$. A function f in A is said to be a starlike function of order ρ if and only if

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > \rho, \ 0 \le \rho < 1, \ z \in E.$$

This class of functions is denoted by $S^*(\rho)$. It is noted that $S^*(0) = S^*$. Let f_1 and f_2 be two functions which are analytic in E. We say that the function f_1 is subordinate to the function f_2 in E (write $f_1 \prec f_2$ or $f_1(z) \prec f_2(z)$) if there exists a function w analytic in E with w(0) = 0 and |w(z)| < 1 in E such that $f_1(z) = f_2(w(z))$. A function f in E is said to be a Janowski starlike function denoted by $S^*[A, B]$ if and only if

$$\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz}, -1 \leq B < A \leq 1, z \in E.$$

Obradovic [1] introduced a class of functions $f \in A$ such that

$$\operatorname{Re}\left(f'(z)\left(\frac{z}{f(z)}\right)^{\alpha}\right) > 0, \ 0 < \alpha < 1, \ z \in E.$$

This class of functions was then called a non-Bazilevic type. Tuneski and Darus [2] obtained the Fekete Szego inequality for the non-Bazilevic class of functions. Using the concept of non-Bazilevic class of functions, Wang et al. [3] studied many subordination results for the class $N(\mu, \lambda, A, B)$ defined as:

$$N(\mu,\lambda,A,B) = \left\{ f \in A : (1+\lambda) \left(\frac{z}{f(z)} \right)^{\alpha} - \lambda f'(z) \left(\frac{z}{f(z)} \right)^{\alpha+1} \prec \frac{1+Az}{1+Bz} \right\},$$

where $\lambda \in \mathbb{C}$, $-1 \le B < 1$, $A \ne B$ and $0 < \alpha < 1$.

Using the concept of subordination and Non-Bazilevicness, we generalize and define a subclass of non-Bazilevic functions as follows.

Definition 1. A function $f \in N_{\alpha,\mu}(A,B)$ if it satisfies the condition:

$$f'(z)\left(\frac{z}{f(z)}\right)^{\alpha} + \mu \left\{1 + \frac{zf''(z)}{f'(z)} - \alpha \frac{zf'(z)}{f(z)} + \alpha - 1\right\} \prec \frac{1 + Az}{1 + Bz}, \ z \in E, \tag{2}$$

where $\mu > 0$, $-1 \le B < A \le 1$ and $0 < \alpha < 1$.

For $A = 1 - 2\rho$, B = -1, we have the class $N_{\alpha,\mu}(\rho)$ defined as follows:

$$\operatorname{Re}\left\{f'(z)\left(\frac{z}{f(z)}\right)^{\alpha} + \mu\left(1 + \frac{zf''(z)}{f'(z)} - \alpha \frac{zf'(z)}{f(z)} + \alpha - 1\right)\right\} > \rho, \ z \in E.$$

Throughout in this paper we assume that $\mu > 0$, $-1 \le B < A \le 1$ and $0 < \alpha < 1$ unless otherwise specified.

PRELIMINARY RESULTS

We need the following lemmas, which will be used in our main results.

Lemma 1 [4]. If $-1 \le B < A \le 1$, $\beta > 0$ and the complex number γ satisfies Re $\gamma \ge -\beta (1-A)/(1-B)$, then the differential equation,

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} = \frac{1 + Az}{1 + Bz}, z \in E,$$

has the univalent solution in E given by

Maejo Int. J. Sci. Technol. 2013, 7(02), 268-277

$$q(z) = \begin{cases} \frac{z^{\beta+\gamma} (1+Bz)^{\beta(A-B)/B}}{\beta \int_{0}^{z} t^{\beta+\gamma-1} (1+Bt)^{\beta(A/B-1)} dt} - \frac{\gamma}{\beta}, & B \neq 0, \\ \frac{z^{\beta+\gamma} e^{\beta Az}}{\beta \int_{0}^{z} t^{\beta+\gamma-1} e^{\beta At} dt} - \frac{\gamma}{\beta}, & B = 0. \end{cases}$$

If $h(z) = 1 + c_1 z + c_2 z^2 + ...$ satisfies

$$h(z) + \frac{zh'(z)}{\beta h(z) + \gamma} \prec \frac{1 + Az}{1 + Bz}, z \in E,$$

then

$$h(z) \prec q(z) \prec \frac{1+Az}{1+Bz}$$

and q(z) is the best dominant.

Lemma 2 [5]. Let ε be a positive measure on [0,1] and let g be a complex-valued function defined on $E \times [0,1]$ such that g(.,t) is analytic in E for each $t \in [0,1]$ and that g(z,.) is ε -integrable on [0,1] for all $z \in E$. In addition, suppose that $\text{Re}\{g(z,t)\} > 0, g(-r,t)$ is real and $\text{Re}\{1/g(z,t)\} \ge 1/(g(-r,t))$ for $|z| \le r < 1$ and $t \in [0,1]$.

If
$$g(z) = \int_{0}^{1} g(z,t)d_{\varepsilon}(t)$$
, then $\text{Re}\{1/g(z)\} \ge 1/g(-r)$.

Lemma 3 [6]. Let a, b and $c \ne 0, -1, -2...$ be complex numbers. Then, for $\operatorname{Re} c > \operatorname{Re} b > 0$

(i)
$$F(a,b,c;z) = \frac{\Gamma(c)}{\Gamma(c-b)\Gamma(b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-tz)^{-a} dt$$

(ii) $_{2}F_{1}(a,b,c;z) = _{2}F_{1}(b,a,c;z),$

(iii)
$$_{2}F_{1}(a,b,c;z) = (1-z)^{-a} _{2}F_{1}(a,c-b,c;\frac{z}{z-1}).$$

Lemma 4 [7]. Let $-1 \le B_1 \le B_2 \le A_2 \le A_1 \le 1$. Then

$$\frac{1 + A_2 z}{1 + B_2 z} \prec \frac{1 + A_1 z}{1 + B_1 z}.$$

Lemma 5 [8]. Let F be analytic and convex in E. If f, $g \in A$ and f, $g \prec F$. Then

$$\lambda f + (1 - \lambda)g \prec F$$
, $0 \le \lambda \le 1$.

Lemma 6 [9]. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be analytic in E and $F(z) = \sum_{k=0}^{\infty} b_k z^k$ be analytic and convex in E. If $f \prec F$, then

$$|a_k| \le |b_1| \quad (k \in \mathbb{N}).$$

Lemma 7 [10]. If $p(z) = 1 + p_1 z + p_2 z^2 + ...$ is a function with positive real part in E, then

Maejo Int. J. Sci. Technol. 2013, 7(02), 268-277

$$|p_2 - vp_1^2| \le \begin{cases} -4v + 2, & v \le 0, \\ 2, & 0 \le v \le 1, \\ 4v - 2, & v \ge 1. \end{cases}$$

When v < 0 or v > 1, equality holds if and only if p(z) is $\frac{1+z}{1-z}$ or one of its rotations. If 0 < v < 1,

then equality holds if and and only if $p(z) = \frac{1+z^2}{1-z^2}$ or one of its rotations. If v = 0, equality holds if

and only if $p(z) = \left(\frac{1}{2} + \frac{\eta}{2}\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{\eta}{2}\right)\frac{1-z}{1+z}$, $(0 \le \eta \le 1)$ or one of its rotations. If v = 1, equality

holds if and only if p is the reciprocal of one of the functions such that equality holds in the case of v = 0. Although the above upper bound is sharp, when 0 < v < 1, it can be improved as follows:

$$|p_2 - vp_1^2| + v|p_1|^2 \le 2$$
, $(0 < v \le 1/2)$,

and

$$|p_2 - vp_1^2| + (1-v)|p_1|^2 \le 2$$
, $(1/2 < v \le 1)$.

Lemma 8 [11]. If $p(z) = 1 + p_1 z + p_2 z^2 + ...$ is a function with positive real part in E, then for a complex number v,

$$|p_2 - vp_1^2| \le 2 \max\{1, |2v - 1|\}.$$

This result is sharp for the functions

$$p(z) = \frac{1+z^2}{1-z^2}, \ p(z) = \frac{1+z}{1-z}.$$

MAIN RESULTS

Theorem 1. If $f \in N_{\alpha,\mu}(A,B)$, then

$$f'(z)\left(\frac{z}{f(z)}\right)^{\alpha} \prec \frac{1}{1/\mu Q(z)} = q(z) \prec \frac{1+Az}{1+Bz},\tag{3}$$

where

$$Q(z) = \begin{cases} \int_{0}^{1} t^{\frac{1}{\mu} - 1} \left(\frac{1 + Btz}{1 + Bz} \right)^{\frac{1}{\mu} (A - B)/B} dt &, B \neq 0, \\ \int_{0}^{1} t^{\frac{1}{\mu} - 1} e^{\frac{1}{\mu} Az(t - 1)} dt &, B = 0. \end{cases}$$

$$(4)$$

and q(z) is the best dominant. In addition if $A < -\mu B$, $-1 \le B < 0$, then $N_{\alpha,\mu}(A,B) \subset N(\alpha,\rho)$, where

$$\rho = \left\{ {}_{2}F_{1} \left(1, \frac{1}{\mu} \left(1 - \frac{A}{B} \right); \frac{1}{\mu} + 1; \frac{B}{B - 1} \right) \right\}^{-1}$$
 (5)

This result is best possible.

Proof. Let

$$h(z) = f'(z) \left(\frac{z}{f(z)}\right)^{\alpha}$$

where h(z) is analytic in E with h(0) = 1. Differentiating logarithmically, we obtain:

$$\frac{h'(z)}{h(z)} = \frac{f''(z)}{f'(z)} - \alpha \frac{f'(z)}{f(z)} + \frac{\alpha}{z}.$$

It follows easily that:

$$h(z) + \mu \frac{h'(z)}{h(z)} = f'(z) \left(\frac{z}{f(z)}\right)^{\alpha} + \mu \left\{1 + \frac{zf''(z)}{f'(z)} - \alpha \frac{zf'(z)}{f(z)} + \alpha - 1\right\}.$$

Since $f \in N_{\alpha,\mu}(A,B)$, therefore

$$h(z) + \frac{h'(z)}{(1/\mu)h(z)} \prec \frac{1+Az}{1+Bz}.$$

Using Lemma 1 for $\lambda = \frac{1}{\mu}$ and $\gamma = 0$, we obtain:

$$h(z) \prec \frac{1}{(1/\mu)Q(z)} = q(z) \prec \frac{1+Az}{1+Bz},$$

where q(z) is the best dominant of (3) and is given by (4). Next we show that $\inf_{|z|<1} \{\operatorname{Re} q(z)\} = q(-1)$.

Now if we set $a = \frac{1}{\mu} (B - A)/B$, $b = \frac{1}{\mu}$ and $c = \frac{1}{\mu} + 1$, then it is clear that c > b > 0. It follows from (4) for $B \neq 0$ that:

$$Q(z) = (1 + Bz)^{a} \int_{0}^{1} t^{b-1} (1 + Btz)^{-a} dt.$$

By using Lemma 3, we get:

$$Q(z) = \frac{\Gamma(b)}{\Gamma(c)} {}_{2}F_{1}\left(1, a, c; \frac{Bz}{Bz+1}\right). \tag{6}$$

To prove that $\inf_{|z|<1} \{ \operatorname{Re} q(z) \} = q(-1)$, we need to show that:

$$\text{Re}\{1/Q(z)\} \ge 1/Q(-1)$$
.

Since $A < -\mu B$ with $-1 \le B < 0$, this implies that c > a > 0 and it follows that:

$$Q(z) = \int_{0}^{1} g(z,t) d_{\varepsilon}t,$$

where

$$g(z,t) = \frac{1+Bz}{1+(1-t)Bz},$$

$$d_{\varepsilon}t = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)}t^{a-1}(1-t)^{c-a-1},$$

which is a positive measure on [0,1]. For $-1 \le B < 0$ it is clear that Re g(z,t) > 0 and g(-r,t) is real for $0 \le |z| \le r < 1$ and $t \in [0,1]$. Now using Lemma 2, we obtain:

$$\operatorname{Re}\left\{1/Q(z)\right\} \geq 1/Q(-r).$$

Now letting $r \rightarrow 1^-$, it follows:

$$\text{Re}\{1/Q(z)\}\geq 1/Q(-1).$$

Further by taking $A \to -\mu B$ for the case $A = -\mu B$ and using (3), we get $N_{\alpha,\mu}(A,B) \subset N(\alpha,\rho)$.

Theorem 2. For $\mu_2 \ge \mu_1 \ge 0$ and $-1 \le B_1 \le B_2 \le A_2 \le A_1 \le 1$

$$N_{\alpha,\mu_1}(A_2,B_2) \subset N_{\alpha,\mu_1}(A_1,B_1)$$
.

Proof. Let $f \in N_{\alpha,\mu_2}(A_2,B_2)$. Then

$$f'(z)\left(\frac{z}{f(z)}\right)^{\alpha} + \mu_2\left\{1 + \frac{zf''(z)}{f'(z)} - \alpha \frac{zf'(z)}{f(z)} + \alpha - 1\right\} \prec \frac{1 + A_2z}{1 + B_2z}, z \in E.$$

Since $-1 \le B_1 \le B_2 \le A_2 \le A_1 \le 1$, therefore by Lemma 4, we have:

$$f'(z)\left(\frac{z}{f(z)}\right)^{\alpha} + \mu_2 \left\{1 + \frac{zf''(z)}{f'(z)} - \alpha \frac{zf'(z)}{f(z)} + \alpha - 1\right\} \prec \frac{1 + A_1 z}{1 + B_1 z}, z \in E.$$

Hence we have $f \in N_{\alpha,\mu_2}\left(A_1,B_1\right)$. For $\mu_2=\mu_1\geq 0$, we have the required result. When $\mu_2>\mu_1\geq 0$, Theorem 1 implies that:

$$f'(z)\left(\frac{z}{f(z)}\right)^{\alpha} \prec \frac{1+A_1z}{1+B_1z},$$

Now

$$f'(z) \left(\frac{z}{f(z)}\right)^{\alpha} + \mu_{1} \left\{ 1 + \frac{zf''(z)}{f'(z)} - \alpha \frac{zf'(z)}{f(z)} + \alpha - 1 \right\}$$

$$= \left(1 - \frac{\mu_{1}}{\mu_{2}}\right) f'(z) \left(\frac{z}{f(z)}\right)^{\alpha} + \frac{\mu_{1}}{\mu_{2}} \left[f'(z) \left(\frac{z}{f(z)}\right)^{\alpha} + \mu_{1} \left\{ 1 + \frac{zf''(z)}{f'(z)} - \alpha \frac{zf'(z)}{f(z)} + \alpha - 1 \right\} \right].$$

Using Lemma 5, we get the required result.

Theorem 3. Let $f \in N_{\alpha,\mu}(A,B)$, with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then $\left| a_2 \right| \le \frac{A - B}{(2 - \alpha)(1 + \mu)}. \tag{7}$

Proof. Since $f \in N_{\alpha,\mu}(A,B)$, therefore,

$$f'(z)\left(\frac{z}{f(z)}\right)^{\alpha} + \mu \left\{1 + \frac{zf''(z)}{f'(z)} - \alpha \frac{zf'(z)}{f(z)} + \alpha - 1\right\} \prec \frac{1 + Az}{1 + Bz}, \ z \in E.$$

Now using the fact that $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ we obtain:

$$f'(z)\left(\frac{z}{f(z)}\right)^{\alpha} + \mu \left\{1 + \frac{zf''(z)}{f'(z)} - \alpha \frac{zf'(z)}{f(z)} + \alpha - 1\right\} = 1 + \left\{a_2(2 - \alpha)(1 + \mu)\right\}z + \dots$$

By a well-known result due to Janowski and Lemma 6, we get:

$$|a_2(2-\alpha)(1+\mu)| \le A - B.$$

$$|a_2| \le \frac{A - B}{(2-\alpha)(1+\mu)}.$$

Therefore, we have the required result.

Theorem 4. Let $f \in N_{\alpha,\mu}(A,B)$. Then E is mapped by f on a domain that contains the disc $|w| < R_{\alpha,\mu}$, where

$$R_{\alpha,\mu} = \frac{(2-\alpha)(1-\mu)}{2(2-\alpha)(1-\mu) + (A-B)}.$$
 (8)

Proof. Let w_0 be any complex number such that $f(z) \neq w_0$. Then

$$\frac{w_0 f(z)}{w_0 - f(z)} = z + \left(a_2 + \frac{1}{w_0}\right) z^2 + \dots,$$

is univalent in E, so that

$$\left| a_2 + \frac{1}{w_0} \right| \le 2$$

Therefore,

$$\left|\frac{1}{w_0}\right| - \left|a_2\right| \le 2$$

Hence,

$$|w_0| \ge \frac{(2-\alpha)(1-\mu)}{2(2-\alpha)(1-\mu)+(A-B)} = R_{\alpha,\mu}.$$

Theorem 5. Let $f \in N_{\alpha,\mu}(A,B)$ and of the form (1). Then

$$\begin{vmatrix} \frac{B_2}{2\beta} \left(2 - \frac{2\delta B_1 + \gamma B_2 + 2t\beta B_2}{\delta} \right), & t \leq \sigma_1, \\ |a_3 - ta_2| \leq \begin{cases} \frac{B_2}{\beta}, & \sigma_1 \leq t \leq \sigma_2, \\ \frac{B_2}{2\beta} \left(-2 + \frac{2\delta B_1 + \gamma B_2 + 2t\beta B_2}{\delta} \right), & \sigma_2 \leq t, \end{cases}$$

where

$$\sigma_1 = -\frac{2\delta B_1 + \gamma B_2}{2\beta B_2},$$

$$\sigma_2 = \frac{4\delta - 2\delta B_1 - \gamma B_2}{2\beta B_2},$$

$$\sigma_3 = \frac{2\delta - 2\delta B_1 - \gamma B_2}{2\beta B_2},$$

Maejo Int. J. Sci. Technol. 2013, 7(02), 268-277

$$B_1 = 1 + B,$$

$$B_2 = A - B,$$

$$\beta = (1 + 2\mu)(3 - \alpha),$$

$$\gamma = \alpha(\alpha - 3) + 2\mu(\alpha - 4),$$

$$\delta = (2 - \alpha)^2 (1 + \mu)^2.$$

Further, if $\sigma_1 \le t \le \sigma_3$, then

$$|a_3 - ta_2| + \frac{1}{\beta B_2} \left(\frac{2\delta B_1 + \gamma B_2 + 2t\beta B_2}{2} \right) |a_2| \le \frac{B_2}{\beta}.$$

If $\sigma_3 \le t \le \sigma_2$, then

$$|a_3 - ta_2^2| + \frac{1}{\beta B_2} \left(\frac{4\delta - 2\delta B_1 - \gamma B_2 - 2t\beta B_2}{2} \right) |a_2^2| \le \frac{B_2}{\beta}.$$

These results are sharp.

Proof. Since $f \in N_{\alpha,\mu}(A,B)$, therefore, we have:

$$f'(z)\left(\frac{z}{f(z)}\right)^{\alpha} + \mu\left\{1 + \frac{zf''(z)}{f'(z)} - \alpha\frac{zf'(z)}{f(z)} + \alpha - 1\right\} \prec \frac{1 + Az}{1 + Bz}.$$

Now we can get after simple calculations:

$$f'(z)\left(\frac{z}{f(z)}\right)^{\alpha} + \mu \left\{1 + \frac{zf''(z)}{f'(z)} - \alpha \frac{zf'(z)}{f(z)} + \alpha - 1\right\}$$

$$= 1 + (2 - \alpha)(1 + \mu)a_{2}z +$$

$$\left\{\alpha(\alpha - 3) + 2\mu(\alpha - 4)\frac{a_{2}^{2}}{2} + (3 - \alpha)(1 + 2\mu)a_{3}\right\}z^{2} + \dots$$
(9)

Let $p(z) \prec \frac{1+Az}{1+Bz}$. Then

$$p(z) = \frac{(1-A)+(1+A)p_0(z)}{(1-B)+(1+B)p_0(z)}, p_0 \in P,$$

where P is the well-known class of functions with positive real part. This implies that:

$$p(z) = 1 + \left(\frac{A - B}{2}\right) p_1 z + \left(\frac{A - B}{2}\right) \left\{p_2 - \frac{1 + B}{2} p_1^2\right\} z^2 + \dots, \tag{10}$$

where

$$p_0(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$$
.

From (9) and (10) after comparing the coefficients of z and z^2 , we obtain:

$$a_{2} = \frac{(A-B) p_{1}}{2(2-\alpha)(1+\mu)},$$

$$a_{3} = \frac{1}{(1+2\mu)(3-\alpha)} \left[\left(\frac{A-B}{2} \right) \left\{ p_{2} - \frac{1+B}{2} p_{1}^{2} \right\} - \left\{ \alpha (\alpha - 3) + 2\mu(\alpha - 4) \right\} \frac{a_{2}^{2}}{2} \right].$$

This implies that:

$$|a_3-ta_2^2| = \frac{A-B}{2(1+2\mu)(3-\alpha)}|p_2-vp_2^2|,$$

where

$$v = \frac{2(2-\alpha)^{2}(1+\mu)^{2}(1+B) + (A+B)\{\alpha(\alpha-3) + 2\mu(\alpha-4)\} + 2t(1+2\mu)(3-\alpha)(A-B)}{4(2-\alpha)^{2}(1+\mu)^{2}}$$

Now using Lemma 7, we obtain the required result. Equality can be attained by the functions F(z), defined as follows:

$$F'(z) \left(\frac{z}{F(z)}\right)^{\alpha} + \mu \left\{1 + \frac{zF''(z)}{F'(z)} - \alpha \frac{zF'(z)}{F(z)} + \alpha - 1\right\} = \frac{1 + Az}{1 + Bz}, \text{ if } t < \sigma_1, \text{ or } t > \sigma_2,$$

$$F'(z) \left(\frac{z}{F(z)}\right)^{\alpha} + \mu \left\{1 + \frac{zF''(z)}{F'(z)} - \alpha \frac{zF'(z)}{F(z)} + \alpha - 1\right\} = \frac{1 + Az^2}{1 + Bz^2}, \text{ if } \sigma_1 < t < \sigma_2,$$

$$F'(z) \left(\frac{z}{F(z)}\right)^{\alpha} + \mu \left\{1 + \frac{zF''(z)}{F'(z)} - \alpha \frac{zF'(z)}{F(z)} + \alpha - 1\right\} = \frac{1 + A\phi(z)}{1 + B\phi(z)}, \text{ if } t = \sigma_1,$$

and

$$F'(z)\left(\frac{z}{F(z)}\right)^{\alpha} + \mu\left\{1 + \frac{zF''(z)}{F'(z)} - \alpha\frac{zF'(z)}{F(z)} + \alpha - 1\right\} = \frac{1 - A\phi(z)}{1 - B\phi(z)}, \text{ if } t = \sigma_2,$$

where
$$\phi(z) = \frac{z(z+\eta)}{1+nz}$$
 with $0 \le \eta \le 1$.

Theorem 6. Let $f \in N_{\alpha,\mu}(A,B)$ and of the form (1). Then for a complex number t,

$$|a_3 - ta_2| \le \frac{B_2}{\beta} \max \left\{ 1, \left| -\frac{2\delta B_1 + \gamma B_2 + 2t\beta B_2}{2\delta} + 1 \right| \right\}.$$

By using Lemma 8, we have the required result. Equality can be attained by the function:

$$F'(z)\left(\frac{z}{F(z)}\right)^{\alpha} + \mu \left\{1 + \frac{zF''(z)}{F'(z)} - \alpha \frac{zF'(z)}{F(z)} + \alpha - 1\right\} = \frac{1 + Az}{1 + Bz}$$

or

$$F'(z)\left(\frac{z}{F(z)}\right)^{\alpha} + \mu\left\{1 + \frac{zF''(z)}{F'(z)} - \alpha\frac{zF'(z)}{F(z)} + \alpha - 1\right\} = \frac{1 + Az^2}{1 + Bz^2}.$$

ACKNOWLEDGEMENTS

The authors are thankful to the referees whose comments improve the quality of the paper.

REFERENCES

1. M. Obradovic, "A class of univalent functions", Hokkaido Math. J., 1998, 27, 329-335.

- 2. N. Tuneski and M. Darus, "Feketo-szego functional for non-Bazilevic functions", *Acta Math. Acad. Paedagog. Nyiregyhaz.*, **2002**, *18*, 63-65.
- 3. Z. Wang, C. Gao and M. Liao, "On certain generalized class of non-Bazilevic functions", *Acta Math. Acad Paedagog. Nyiregyhaz.*, **2005**, 21, 147-154.
- 4. S. S. Miller and P. T. Mocanu, "Univalent solutions of Briot-Bouquet differential equations", *J. Diff. Eqns.*, **1985**, *56*, 297-309.
- 5. D. R. Wilken and J. Feng, "A remark on convex and starlike functions", *J. London. Math. Soc.*, **1980**, *21*, 287-290.
- 6. E. T. Whittaker and G. N. Watson, "A Course of Modern Analysis", 4th Edn. Cambridge University Press, 1927, pp.281-301.
- 7. M.-S. Liu, "On a subclass of p-valent close-to-convex functions of order β and type α ", *J. Math. Study*, **1997**, *30*, 102-104 (in Chinese).
- 8. M.-S. Liu, "On certain subclass of analytic functions", *J. South China Normal Univ.*, **2002**, *4*, 15-20 (in Chinese).
- 9. W. Rogosinski, "On the coefficients of subordinate functions", *Proc. London. Math. Soc.*, **1945**, 48, 48-82.
- 10. W. Ma and D. Minda, "A unified treatment of some special classes of univalent functions", Proceedings of the Conference on Complex Analysis, **1992**, Tianjin, China, pp.157-169.
- 11. V. Ravichandran, A. Gangadharan and M. Darus, "Fekete Szego inequality for certain class of Bazilevic functions", *Far East J. Math. Sci.*, **2004**, *15*, 171-180.
- © 2013 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for noncommercial purposes.