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Abstract: This paper proposes a novel and computationally efficient approach to deal with 
the reachability problem by using place invariants and strict minimal siphons for a class of 
Petri nets called pipe-line nets (PLNs). First, in a PLN with an appropriate initial marking, 
the set of invariant markings and the set of strict minimal siphons are enumerated. Then a 
sufficient and necessary condition is developed to decide whether a marking is spurious by 
analysing the number of tokens in operation places of any strict minimal siphon and their 
bounds. Furthermore, an algorithm that generates the reachable markings by removing all 
the spurious markings from the set of invariant markings is proposed. Finally, experimental 
results show the efficiency of the proposed method. 

       Keywords: Petri nets, strict minimal siphons, place invariants, reachability analysis,  
       flexible manufacturing system 
________________________________________________________________________________ 
 
INTRODUCTION 
  

A flexible manufacturing system (FMS) is an automatically running system that consists of 
resources such as machines, robots, buffers, and conveyors. In an FMS, part processing sequences 
are executed concurrently, which have to compete for the limited system resources. This competition 
can cause deadlocks when some processes keep waiting indefinitely for other processes to release 
resources [1]. Deadlocks must be considered in FMSs since they may offset the advantages of these 
systems and even lead to catastrophic results such as long downtime and low use of some critical and 
expensive resources. Therefore, it is necessary to ensure that deadlocks will never occur in such a 
system. 
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To deal with deadlock problems in FMSs, Petri nets [2-6], automata [7-8], and graph theory 
[1] are major mathematical tools. Many researchers use Petri nets as a formalism to deal with 
deadlock problems [9-14]. There are mainly three approaches: deadlock detection and recovery [15-
16], deadlock avoidance [17-19] and deadlock prevention [1, 9, 20, 21]. 

For Petri nets, there are two widely used analysis techniques for deadlock prevention in 
FMSs: structure analysis [4, 10, 11, 15, 22, 23] and reachability graph analysis [24-27]. The former 
always derives a deadlock prevention policy by structural objects of Petri nets, such as siphons and 
resource-transition circuits. The policy is often simple but always restricts the behaviour of a system 
in the sense that a part of permissive behaviour is excluded. Therefore, it is suboptimal in general. 
The latter, the reachability graph analysis, can obtain a liveness-enforcing supervisor with highly 
permissive or even maximally permissive behaviour. However, its computation is always expensive, 
which always suffers from a state explosion problem since it requires an enumeration of all or a part 
of reachable markings. Thus, to tackle this problem, it is necessary to explore more efficient 
approaches to compute reachable markings.  

This paper proposes a novel approach to compute the set of reachable markings using P-
invariants and strict minimal siphons in a class of Petri nets called PLNs. First, the set of invariant 
markings and the set of strict minimal siphons of a PLN are enumerated. As known, the set of 
invariant markings include spurious markings. Then a sufficient and necessary condition to identify 
the spurious markings is established. Finally the reachability set of the net is generated by removing 
all the spurious markings from the set of invariant markings. 
 
PRELIMINARIES 
 
Basics of Petri nets  

A Petri net [2] is a four-tuple ( , , , )N P T F W  where P  and T  are finite and non-empty 
sets. P  is a set of places and T  is a set of transitions with P T   . ( ) ( )F P T T P     is 
called the flow relation of the net, represented by arcs with arrows from places to transitions or from 
transitions to places. : ( ) ( ) INW P T T P     is a mapping that assigns a weight to an arc: 

( , ) 0W x y   if ( , )x y F , and ( , ) 0W x y   otherwise, where ,x y P T   and IN {0,1, 2,...}  is the 
set of non-negative integers. ( , , , )N P T F W  is said to be ordinary if ( , )x y F  , ( , ) 1W x y  . A 
net ( , , , )N P T F W is pure (self-loop free) if ,x y P T   , ( , ) 0W x y   implies ( , ) 0W y x  . A 
pure net ( , , , )N P T F W  can be represented by its incidence matrix [ ]N , where [ ]N  is a | | | |P T  
integer matrix with [ ]( , ) ( , ) ( , )N p t W t p W p t  . 

A marking M  of a Petri net N  is a mapping from P  to IN . ( )M p  denotes the number of 
tokens in place p . A place p  is marked at M  if ( ) 0M p  . A subset S P  is marked at M  if at 
least one place in S  is marked at M . The sum of tokens in all places in S  is denoted by ( )M S , i.e. 

( ) ( )
p S

M S M p


 . S  is said to be empty or unmarked at M  if ( ) 0M S  . 0M  is called an initial 

marking of N  and 0( , )N M  is called a net system or marked net. 

Let x P T   be a node of net N. The preset of node x  is defined as 
{ | ( , ) }x y P T y x F     , while the postset of x  is defined as { | ( , ) }x y P T x y F     . These 

notations can be extended to a set of nodes as follows: given X P T  , x XX x 
   and 

x XX x 
  . For t T , p t  is called an input place of t  and p t   is called an output place of 



 
Maejo Int. J. Sci. Technol. 2013, 7(02), 278-290  
 

 

280

t . For p P , t p  is called an input transition of p  and t p  is called an output transition of p . 
A state machine is an ordinary Petri net satisfying 1t t   , t T  . A marked graph is an 

ordinary Petri net satisfying 1p p   , p P  . A sequence of nodes 1 i nx x x   is called a 

path of N  if {1, 2, , 1}i n   , 1i ix x 
  , where ix P T  . An elementary path from 1x  to nx  is a 

path whose nodes are all different (perhaps, except for 1x  and nx ). It is called a circuit if 1 nx x . A 
Petri net N  is said to be strongly connected if there is a sequence of nodes , , , , ,x a b c y  in N  for 

,x y P T    such that ( , )x a , ( , )a b ,  , ( , )c y F , where  , , ,a b c P T  .  

A transition t T  is enabled at M  if p t  , ( ) ( , )M p W p t . This fact is denoted as 
[M t . Firing it yields a new marking 'M such that p P  , '( ) ( ) ( , ) ( , )M p M p W p t W t p   , 

denoted as [ 'M t M . 'M  is called an immediately reachable marking from M . The marking ''M  is 
said to be reachable from the marking M  if there exists a sequence of enabled transitions 

0 1 nt t t    and markings 1M , 2M , , and nM  such that 0 1 1 2[ [ [ ''n nM t M t M M t M    holds, 
which is denoted as [ ''M M  . The set of markings reachable from 0M  by firing any possible 
sequence of transitions in N  is called the reachability set of Petri net 0( , )N M  and is denoted by 

0( , )R N M . A reachability graph is a directed graph whose nodes are markings in 0( , )R N M  and arcs 
are labelled by the transitions of N . An arc from 1M  to 2M  is labelled by t  if 1 2[M t M . 'N  is the 

reverse net of N  obtained by reversing the direction of all arcs in N  with the initial marking 
unchanged.    

A P-vector is a column vector :I P  Z  indexed by P  and a T-vector is a column vector 
:J T  Z  indexed by T , where Z  is the set of integers. P-vector I  is called a P-invariant (place 

invariant) if I  0  and [ ]T TI N  0 . T-vector J  is called a T-invariant (transition invariant) if J  0  
and [ ]N J  0 . A P-invariant I  is said to be a P-semiflow if every element of I  is non-negative. 

{ | ( ) 0}I p I p   is called the support of I. I  is called a minimal P-invariant if I  is not a 

superset of the support of any other one and its components are mutually prime. Let I  be a P-
invariant of 0( , )N M  and M  be a reachable marking from 0M . Then 0

T TI M I M . 
Let X  be a matrix where each column is a P-semiflow of the net 0( , )N M  and  

0 0( , ) { IN | }P T T
XI N M M X M X M    denotes the set of invariant markings, where IN P  is a set 

of non-negative vectors, each of which has a length of P . It can be noted that 

0 0( , ) ( , )XR N M I N M . 
A non-empty set S P  is a siphon if S S  . S P  is a trap if S S  . A siphon is 

minimal if there is no siphon contained in it as a proper subset. A minimal siphon is said to be strict if 
S S  . 

 
S3PR Nets  

Definition 1 [9]. A simple sequential process (S2P) is a Petri net 0( { }, , )AN P p T F   , where 
the following statements are true: (1) AP   is called a set of operation places; (2) 0

Ap P  is called 
the process idle place; (3) N  is a strongly connected state machine; and (4) every circuit of N  
contains place 0p . 
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Let ( , , )N P T F  be an S2P with idle process place 0p . Let C  be a circuit of N , and x  and 
y  be two nodes of C . Node x  is said to be previous to y  if there exists a path in C  from x  to y , 
the length of which is greater than one and does not pass over the idle place 0p . This fact is denoted 
by Cx y . Let x  and y  be two nodes in N . Node x  is said to be previous to y  in N  if there 
exists a circuit C  such that Cx y . This fact is denoted by Nx y . 

Definition 2 [9]. A system of simple sequential processes with resources (S3PR) 
0( , , )A RN P P P T F    is defined as the union of a set of nets 0({ } , , )

i ii i A R i iN p P P T F    
sharing common places, where the following statements are true: 

(1) 0
ip  is called the process idle places of iN . Elements in 

iAP  and 
iRP  are called operation places 

and resource places respectively; 
(2) 

iRP  ; 
iAP  ; 0

ii Ap P ; 0( { })
i iA i RP p P    ; 

(3) 
iAp P  , t p  , 't p  , 

ip Rr P  , ' { }
i iR R pt P t P r     ; 

(4) 
iRr P  , 

i iA Ar P r P       and r r    ; 
(5) 0 0( ) ( )

i ii R i Rp P p P      ; 
(6) 'iN  is a strongly connected state machine, where 0' ( { }, , )

ii A i i iN P p T F   is the resulting net 
after the places in 

iRP  and related arcs are removed from iN . Every circuit of 'iN  contains place 0
ip ; 

(7) any two ,siN  are composable when they share a set of common places. Every shared place 
must be a resource place; and 

(8) transitions in 0( )ip   and 0( )ip  are called source and sink transitions of an S3PR respectively. 
In an S3PR, 0P  is called the set of process idle places, AP  is called the set of operation places 

and RP  is called the set of resource places.  
 
LS3PR Nets  

Definition 3 [28].  An S3PR ( , , )N P T F  is called a linear S3PR (LS3PR) if 
(1) 0

A RP P P P    is a partition of places, where 
(1.a) 0 0 0 0

1 2{ , , , }kP p p p  , 0k  , 

(1.b) 
1 i

k
A Ai

P P


 , where
i jA AP P   , for all i j , 

(1.c) 1 2{ , , , }R nP r r r  , 0n  ; 

(2) 
1

k
ii

T T


 , where 
i jA AT T   , for all i j ; 

(3) {1, 2, , }i k   , the subnet iN  generated by 0{ }
ii A ip P T  , is a strongly connected state 

machine such that every cycle of iN  contains place 0{ }ip  and 
iAp P  , 1p  ; 

(4) {1, 2, , }i k   , 
iAp P  , R Rp P p P     and 1Rp P   ; and 

(5) N  is strongly connected. 
 

Definition 4 [28]. Let 0( , , )A RN P P P T F    be an LS3PR. Given Ap P , if { }R pp P r   , 

pr  is called the resource used by p. For Rr P , ( ) AH r r P   is called the set of holders of r . 
 
Definition 5 [28].  Let 0( , , )A RN P P P T F    be an LS3PR. An initial marking 0M  is called an 

admissible initial marking for N  if 
(1) 0 0 0

0 ( ) 1,M p p P   ; 
(2) 0 ( ) 0, AM p p P   ; and 
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(3) 0 ( ) 1, RM r r P   . 
 
REACHABILITY ANALYSIS FOR A PIPE-LINE NET (PLN) 
 
Definition of a PLN  

Definition 6. Let 0( , , )A RN P P P T F    be an LS3PR and iN  be the subnet generated by 
0{ }

ii A ip P T  . The two subnets iN  and jN  are said to be mutually reversed if 1, Rr r P   ( 1r r ) 
such that one of the two following statements holds: 1) 1 iNp p  and 1jNq q ; and 2) 1iNp p  and 

1 jNq q , where 1,
iAp p P , 1,

jAq q P , i j , , ( )p q H r , and 1 1 1, ( )p q H r .    

The net shown in Figure 1 is an LS3PR with 0 1 7 11{ , , }P p p p , 

2 3 4 5 6 8 9 10 11 12 13{ , , , , , , , , , , }AP p p p p p p p p p p p  and 14 15 16 17 18{ , , , , }RP p p p p p . It consists of three 
subnets: 1N  generated by 1 2 3 4 5 6 1 2 3 4 5 6{ } { , , , , } { , , , , , }p p p p p p t t t t t t   2N  generated by 

7 8 9 10 7 8 9 10{ } { , , } { , , , }p p p p t t t t   and 3N  generated by 11 12 13 11 12 13{ } { , } { , , }p p p t t t  . In the net, 

12 3 4 5 6, , , , Ap p p p p P
28 9 10, , Ap p p P

312 13, Ap p P 2 8 14, ( )p p H p  3 9 15, ( )p p H p , 

4 10 16, ( )p p H p , 5 12 17, ( )p p H p  and 6 13 18, ( )p p H p . Since 
12 3Np p  and 

29 8Np p ; 
13 4Np p  

and 
210 9Np p ; and 

12 4Np p  and 
210 8Np p , the two subnets 1N  and 2N  are mutually reversed. 

Since 
15 6Np p  and 

312 13Np p , the two subnets 1N  and 3N  are not mutually reversed.  
 

 
Figure 1.  A Petri net model [28] 

 
Definition 7.  An LS3PR 0( , , )A RN P P P T F    is called a PLN if 

(1) Rr P  , {1, 2, , }i k   , ( ) 2H r   and ( ) 1
iAH r P  ; and 

(2) 1 jAq q P   holds if the two subnets iN  and jN  are mutually reversed with 1,
iAp p P , 

1,
jAq q P , 1 iAp p P   , ( )p q H r , 1 1 1, ( )p q H r , 1, Rr r P  and 1r r . 

Let 0( , , )A RN P P P T F    be a PLN with t T . ( )p t  and ( )pt  denote the sets of input and 

output operation places of t  respectively, and ( )r t  and ( )rt  denote the sets of input and output 
resources of t  respectively. Hence ( ) ( )p rt t t    and ( ) ( )p rt t t   . 

As shown in Figure 1, 14( ) 2H p  , 15( ) 2H p  , 16( ) 2H p  , 17( ) 2H p   and 

18( ) 2H p  . Also we have 
114( ) 1AH p P  , 

214( ) 1AH p P  , 
314( ) 0AH p P  , 

115( ) 1AH p P  , 
215( ) 1AH p P  , 

315( ) 0AH p P  , 
116( ) 1AH p P  , 

216( ) 1AH p P  , 

316( ) 0AH p P  , 
117( ) 1AH p P  , 

217( ) 0AH p P  , 
317( ) 1AH p P  , 

118( ) 1AH p P  , 

218( ) 0AH p P   and 
318( ) 1AH p P  . Moreover, in the two subnets 1N  and 2N , 

, 

, , , , 
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2 8 14, ( )p p H p , 3 9 15, ( )p p H p , 
12 3 Ap p P  , 

28 9 Ap p P  , 3 9 15, ( )p p H p , 

4 10 16, ( )p p H p , 
13 4 Ap p P   and 

29 10 Ap p P  . Therefore, the net in Figure 1 is a PLN. 
 
A Sufficient and Necessary Condition for Reachability in a PLN    
    Definition 8.  Let 0( , , )A RN P P P T F    be a PLN with an admissible initial marking 0M . The 
maximum number of tokens in place p  is called the bound of place p , denoted by pb . That is to 
say, 0max{ ( ) | ( , )}pb M p M R N M  .     

Lemma 1 [28]. Let 0( , , )A RN P P P T F    be an LS3PR. The set of minimal P-semiflows of N  
is R SMI I I  , where ( ) { }

RR r PI H r r   and 0
{1, , } { }

iSM i k A iI P p  . 

Lemma 2.  Let 0( , , )A RN P P P T F    be a PLN with an admissible initial marking 0M . Then 
0 0p P  , 0

0
0 ( )

p
b M p ; Rr P   , 0 ( )rb M r ; and Ap P  , 0 ( )p pb M r . 

Proof.  From Lemma 1, the set of minimal P-semiflows of a PLN consists of two subsets. The 
first corresponds to the token conservation law associated with resources. Rr P  , the P-semiflow 

( ) { }rI H r r  , states that for each reachable marking M , the token conservation law 

0( )
( ) ( ) ( )

p H r
M p M r M r


   is true. The second subset is associated with the token conservation 

law for each state machine (in the sense of processes). {1, , }i k   , 0 0
ip P , the P-semiflow 

0{ }
i iSM A iI P p  , establishes the invariant relation 0 0

0( ) ( ) ( )
Ai

i ip P
M p M p M p


   for each 

reachable marking M . Taking into account of M  0 , it is easy to see that 0 0p P  , 
0

0
0 ( )

p
b M p ; Rr P   , 0 ( )rb M r ; and Ap P  , 0 ( )p pb M r .  

Definition 9. Let 0( , , )A RN P P P T F    be a PLN. A circuit C  that contains resources and 
transitions only is called a resource-transition circuit if ( ) ( )r r

T T RC C C  , where RC  and TC  denote 

the sets of all resources and transitions of C  respectively.  
Definition 10. Let 1 1 2 2( , , , , , , )m mC r t r t r t  be a resource-transition circuit in a PLN, where          

1) 2m  ; 2) {1, 2, , }i m   , i ir t ; 3) {2, , }i m   , 1i ir t 
 ; and 4) 1 mr t  . ir  is called a 

connected resource if there exists i jr r  in 1 1 2 2( , , , , , , )m mC r t r t r t , where , {1, 2, , }i j m   and 
i j .  

As shown in Figure 1, there are three resource-transition circuits in the net: 1 14 8 15 2( , , , )C C p t p t , 

2 15 9 16 3( , , , )C C p t p t  and 3 14 8 15 9 16 3 15 2( , , , , , , , )C C p t p t p t p t  with ( ) ( )
1 1 14 15 1{ , }

T T R

r rC C p p C   , 
( ) ( )

2 2 15 16 2{ , }
T T R

r rC C p p C    and ( ) ( )
3 3 14 15 16 3{ , , }

T T R

r rC C p p p C   . 15p  appears twice in 3C . 
Hence, 15p  is a connected resource. 

 
Theorem 1 [11].  Let 0( , , )A RN P P P T F    be a PLN with an admissible initial marking 0M . 

A RS S S   is a strict minimal siphon of N  if 
1) AS  , RS  ; 
2) R RS C , where RC  is the set of all resources of a resource-transition circuit C  in N ;  and 
3) 0{ | ( ) ( ( )) ( )}

R RA r C A r CS p p H r p P P H r
      Ø . 
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Corollary 1.  Let 0( , , )A RN P P P T F    be a PLN and A RS S S   be a strict minimal siphon 
of N . Then 2AS  . 

Proof. From Theorem 1, we have R RS C  and 
0{ | ( ) ( ( )) ( )}

R RA r C A r CS p p H r p P P H r
      Ø . We accordingly have the following two 

cases: 
(1) 2RS  . By the definition of resource-transition circuits, there necessarily exist two transitions 

in TC  that is the set of all the transitions of resource-transition circuit C  associated with S . By the 
definition of a PLN, the two transitions in TC  necessarily belong to two subnets that are mutually 
reversed. Since 0{ | ( ) ( ( )) ( )}

R RA r C A r CS p p H r p P P H r
      Ø , Ap S  , Tp C   holds. 

Therefore, 2AS   is true. 

(2) 2RS  . By the definition of resource-transition circuits, there necessarily exist more than two 
transitions in TC . By the definition of a PLN, the transitions in TC  necessarily belong to two subnets 
that are mutually reversed. Since 0{ | ( ) ( ( )) ( )}

R RA r C A r CS p p H r p P P H r
      Ø , 

Ap S  , Tp C   and ( )cp H r  hold, where cr  is a connected resource in RS . Therefore, 2AS   

is true.  
Definition 11. Let 0( , , )A RN P P P T F    be a PLN. An initial marking 0M  is called an 

appropriate initial marking of N  if  
(1) 0 0 0

0 ( ) 1,M p p P   ; 
(2) 0 ( ) 0, AM p p P   ; and 
(3) Rr P  ; if r  is a connected resource, 0 ( ) 1M r  , otherwise 0 ( ) 1M r  . 
 
Definition 12. The markings in the set of invariant markings 0( , )XI N M  that are not in the 

reachability set 0( , )R N M  are called spurious markings. 

A backward firing in N  is equivalent to a forward firing in the reverse net 'N [30]. This 
implies that the directed path in the reachability graph of 'N  from 'M  to M  is just the reverse path 
in the reachability graph of N  from M  to 'M . Similarly, a spurious marking in N  does not have 
directed paths from reachable markings and the corresponding marking in 'N  does not have directed 
paths to reachable markings.  

Theorem 2.  Let 0( , , )A RN P P P T F    be a PLN with an appropriate initial marking 0M ,   

be the set of strict minimal siphons, and S  be a strict minimal siphon in N . A marking M  is 
spurious in the set of invariant markings of N  if S  , ( )

AA p S pM S b  , where AS  is the set of 
operation places of S  and pb  is the bound of place p .  

Proof. 1. We first prove the sufficiency. By Definition 8, Ap S  , 

0max{ ( ) | ( , )}pb M p M R N M   holds. S  , ( )
AA p S pM S b   means that the number of 

tokens in each operation place of any strict minimal siphon S  reaches its bound at marking M . We 
have to prove that M  is a spurious marking. That is to say, we need to show that there exist no 
directed paths from initial marking 0M  to M  in N . By Corollary 1, 2AS  . Without loss of 
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generality, let 1 2{ , }AS p p . From Theorem 1, 2RS   holds. We accordingly have the following two 

cases. 
(1) 2RS  . From Theorem 1, 

1 2
{ , }R p pS r r  holds. From the proof of Corollary 1, there 

necessarily exist two transitions in TC  that is the set of all transitions of resource-transition circuit C  
associated with S , and Ap S  , Tp C   holds. Without loss of generality, let 1 2{ , }TC t t , 1 1t p , 
and 2 2t p .   

By contradiction, suppose that M  is reachable from 0M  in N  with 
11 0( ) ( )pM p M r  and 

22 0( ) ( )pM p M r . By Definition 11, 0 1( ) 0M p   and 0 2( ) 0M p   hold. According to the token 
conservation law, 

1
( ) 0pM r   and 

2
( ) 0pM r   hold. Since M  is reachable from 0M  in N , there 

necessarily exists a reachable marking 'M  in the reachability graph of N  such that 1'[M t M or 

2'[M t M  holds. This implies that 1t  or 2t  must be enabled at M  in the reverse net 'N  such that 

1[ 'M t M  or 2[ 'M t M . By the definition of a PLN and Definition 10, 
1 2pr t   and 

2 1pr t   hold in 

N . This implies that 
1 2pr t  and 

2 1pr t  hold in the reverse net 'N . Therefore, both 1t  and  2t  are 
disabled at M  in the reverse net 'N , which contradicts that 1t  or 2t  is enabled at M  in the reverse 

net 'N . Thus, M  is a spurious marking in N . 
    (2) 2RS  . From Theorem 1, there necessarily exist connected resources in RS . We denote CR  
as the set of connected resources in RS . From the proof of Corollary 1, there necessarily exist more 
than two transitions in TC , and Ap S  , Tp C  and ( )cp H r  hold, where c Cr R . Let 1 1t p  
and 2 2t p . From Theorem 1, 

1p Cr R  and 
2p Cr R  hold. Since 0M  is an appropriate initial 

marking, c Cr R  , 0 ( ) 1cM r   holds.  
By contradiction, suppose that M  is reachable from 0M  in N  with 

11 0( ) ( )pM p M r  and 

22 0( ) ( )pM p M r . From the proof of case (1), since there exist connected resources in RS , 

c Cr R  , ( ) 1cM r   may hold according to the token conservation law. Therefore, 1t  or  2t  may be 
enabled at M  in the reverse net 'N . Similarly, there exist a sequence of transitions   in CR , which 
may be enabled from M  in 'N  such that [ ''M M   with 

2
''( ) 0pM r  . Therefore, the transition 

2pt r   must be disabled at ''M . That is to say, M  does not have directed path to 0M   in 'N . This 
implies 0M  does not have directed path to M   in N , which contradicts that M  is reachable in N . 

Therefore, we can conclude that M  is a spurious marking.   
2. We prove the necessity. By contradiction, suppose that S  , ( )

AA p S pM S b  . Since 

M  is a marking in the set of invariant markings of N , the token conservation law 
0( )

( ) ( ) ( )
p H r

M p M r M r


   is true. From Lemma 2, Ap S  , 0 ( )p pb M r  holds. Note that 

M  0 . We can conclude that Ap S  , ( ) pM p b . Therefore, ( )
AA p S pM S b   holds.                                                 

( )
AA p S pM S b   means that at marking M  the number of tokens in each operation place of 

S  does not reach its bound at the same time. From the proof of the sufficiency, we can similarly 
prove that M  is reachable from 0M , which contradicts that M  is a spurious marking. Therefore, if 
M  is a spurious marking in the set of invariant markings of N , S  , ( )

AA p S pM S b   holds.  
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An Algorithm Computing the Set of Reachable Markings  
    From Theorem 2, given a PLN with an appropriate initial marking 0M , all the spurious 
markings can be identified from the set of invariant markings. Then the set of reachable markings can 
be calculated by removing all the spurious markings from the set of invariant markings. An algorithm 
to compute the set of markings reachable from 0M  is presented as follows: 

Algorithm 1.  Computation of reachable markings 
Input: a PLN model 0( , )N M . 
Output: The reachability set 0( , )R N M . 
1) Check if N  is a PLN and 0M  is an appropriate initial marking. If not, exit. 
2) Compute the set of minimal P-semiflows by Lemma 1. 
3) Compute the bounds of all the places by Lemma 2. According to the token conservation law, 

enumerate the set of invariant markings 0 0( , ) { IN | }P T T
XI N M M X M X M    , where X  is a 

matrix whose column each is a P-semiflow of the net 0( , )N M , and IN P   is a set of non-negative 
vectors with a length of P . 

4) Compute the set C  of resource-transition circuits by Definition 9. 
5) Compute the set of strict minimal siphons   due to Theorem 1. 
6) if {   } then 0 0( , ) ( , )XR N M I N M . 

            else 0 0( , ) ( , ) \{ | , ( ) }
AX A p S pR N M I N M M S M S b      . 

7) Output 0( , )R N M . 
8) End. 

 
AN EXAMPLE  
 

To practically test the efficiency of the proposed method, a C program has been developed, 
which implements the algorithm and runs on a Windows XP operating system with Intel CPU Core 
2.60 GHz and 3 GB memory. 

Take the net in Figure 1 as an example. There are 18 places and 13 transitions. It is a PLN 
and 0M  is an appropriate initial marking. By Lemma 1, the net has eight minimal P-semiflows as 

follows: 
1 1 2 3 4 5 6{ , , , , , }SMI p p p p p p , 

2 7 8 9 10{ , , , }SMI p p p p , 
3 11 12 13{ , , }SMI p p p , 

1 2 8 14{ , , }rI p p p , 
2 3 9 15{ , , }rI p p p , 

3 4 10 16{ , , }rI p p p , 
4 5 12 17{ , , }rI p p p  and 

5 6 13 18{ , , }rI p p p .  

By Lemma 2, the bounds of all the places are as follows: 
1

8pb  , 
2

2pb  , 
3

1pb  , 
4

2pb  , 

5
1pb  , 

6
2pb  , 

7
5pb  , 

8
2pb  , 

9
1pb  ,  

10
2pb  , 

11
3pb  , 

12
1pb  , 

13
2pb  , 

14
2pb  , 

15
1pb  , 

16
2pb  , 

17
1pb   and 

18
2pb  . By the definition of the set invariant markings 0( , )XI N M , we can 

obtain 0( , )XI N M that has 1944 markings. 
By Definition 8, the net has three resource-transition circuits: 1 14 8 15 2( , , , )C C p t p t , 

2 15 9 16 3( , , , )C C p t p t  and 3 14 8 15 9 16 3 15 2( , , , , , , , )C C p t p t p t p t . By Theorem 1 we can find that the net 
correspondingly has three strict minimal siphons: 1 3 8 14 15{ , , , }S p p p p , 2 4 9 15 16{ , , , }S p p p p  and 

3 4 8 14 15 16{ , , , , }S p p p p p . 
By Theorem 2, a marking M  with 3( ) 2M p   and 8( ) 1M p   is spurious in 0( , )XI N M , a 

marking 'M  with 4'( ) 2M p   and 9'( ) 1M p   is spurious, and a marking ''M  with 4''( ) 2M p   
and 8''( ) 2M p   is also spurious. We impose the constraints on 0( , )XI N M  as follows: 
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4 9( ) ( ) 3M p M p  , 4 9( ) ( ) 3M p M p   and 4 8( ) ( ) 4M p M p  , where 0( , )XM I N M . Then 
the reachability set 0( , )R N M  that has 1710 markings is generated by removing 234 spurious ones 
from 0( , )XI N M . 

The software package INA2003 [30] can also compute the reachability set. For comparison, 
reachability analysis of the Petri net in Figure 1 is conducted by the use of INA. The tool generates 
the reachability set consisting of 1710 markings, which are in agreement with the markings in the 
reachability set 0( , )R N M  generated by the proposed method, validating the correctness of the 

proposed algorithm. 
TINA [31] is a toolbox for editing and analyzing Petri nets, which can also compute the 

reachability set. For comparison, reachability analysis of the Petri net in Figure 1 is conducted by the 
use of TINA. The toolbox generates a reachability set consisting of 1710 markings, which are also in 
agreement with the markings in the reachability set 0( , )R N M  generated by the proposed method. 
 
EXPERIMENTAL RESULTS  
 

The net structure in Figure 1 is selected for experimental studies. We vary the initial markings 
of resource places 14p , 15p , 16p , 17p  and 18p , and idle places 1p , 7p  and 12p . Table 1 shows 

various parameters in the net, where the first column represents the initial tokens in places 1p , 7p , 

12p , 14p , 15p , 16p , 17p  and 18p . IN , SN  and RN indicate the numbers of invariant markings, 
spurious markings and reachable markings respectively. The fifth column shows the total CPU time 
for computing 0( , )R N M  by using the proposed method. The sixth and the last columns show the 

total CPU time for computing 0( , )R N M  by using INA and the total CPU time for computing 

0( , )R N M  by using TINA for comparison purpose respectively. 
 

Table 1.  Parameters in the model depicted in Figure 1 with varying markings 
 

1p , 7p , 12p , 14p , 15p , 

16p , 17p , 18p  IN  SN  RN  CPU 
time (s) 

INA 
time (s) 

TINA 
time (s) 

8, 5, 3, 2, 1, 2, 1,2 1,944 234 1,710 <1 <1 <1 

15, 9, 6, 4, 1, 4, 2, 4 60,750 2,790 57,960 <1 216 3 

29, 17, 12, 8, 1, 8, 4, 8 4,100,625 61,425 4,039,200 22 >7200 — 

36, 21, 15, 10, 1, 10, 5, 10 18,112,248 184,338 17,927,910 398 — — 

43, 25, 18, 12, 1, 12, 6, 12 63,299,964 466,284 62,833,680 1432 — — 

50, 29, 21, 14, 1, 14, 7, 14 186,624,000 1,041,120 185,582,880 5365 — — 
 

As shown in Table 1, we can see that the proposed method becomes more efficient with the 
increase of the initial markings. Note that “—” in Table 1 means that the computation cannot be 
finished with a reasonable time or memory is overflowed. 
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CONCLUSIONS  
  

The set of reachable markings play an important role in the deadlock control in Petri nets. 
This paper presents a novel approach in computing the set of reachable markings using P-invariants 
and strict minimal siphons without the construction of reachability graph that often makes the 
analysis intractable. The method is applied to a small class of Petri nets called PLNs that are a 
subclass of LS3PR. Experimental results show its efficiency via studying a number of examples. 
Future work should extend the method in this paper to more general classes of Petri nets. 
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