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Abstract: In this paper it is shown that (3,0,3) is the only non-negative integer solution of 
the Diophantine equation  2112 zyx  .   
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INTRODUCTION  
 

Solving Diophantine equations of the form ,2 2zp yx   where p is prime, has been widely 
studied by many mathematicians. For example, Acu [1] proved in 2007 that 

),3,0,3(),,( zyx )3,1,2(  are the only two non-negative solutions for the case 5p . On the other 
hand, it was shown in 2010 by Suvarnamani et al. [2] that there are no non-negative solution 

),,,( zyx  with x even, for the case 11,7p . The complete sets of non-negative solutions to some 
Diophantine equations of similar forms were also studied by Sándor in 2002 [3].  

Later in 2011, Suvarnamani [4] published a paper on finding non-negative solutions to the 
Diophantine equations of the form 22 zp yx   for every prime p . Having this result, it might 
seem at first glance that the problem of solving the Diophantine equations of such form did come to 
an end. Nevertheless, for the case where x  is even (i.e. mx 2  for some integer m ), these 
equations can be rewritten as ,4 2zp ym   whose complete set of non-negative solutions for each 
prime p was readily found by the author [5]. In addition, for the case where x is odd, Suvarnamani’s 
proof [4] unfortunately contains a misleading argument which significantly affects its correctness: it 
was stated (p.1417, line 14-15) that 
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for some integer 0u . This is clearly absurd since 2
1

2



k

z  is irrational while uyu pp ,  are 
integers. Since no extra information can be obtained from Suvarnamani’s proof, solving the 
Diophantine equation of the form 22 zp yx  , where p is prime, now remains an open problem. 

Inspired by all the aforementioned results, this paper therefore aims to study the Diophantine 
equation 22 zp yx  , particularly where ,11p  in detail. To be precise, the objective is to show 
that )3,0,3(),,( zyx , which clearly satisfies such equation, is its only non-negative solution.   
 
MAIN RESULTS 
 

In this study, Catalan’s conjecture [6], which states that the only solution in integers ,1a   
1,1,1  yxb  of the equation 1 yx ba  is )3,2,2,3(),,,( yxba , is used. 

In the main theorem, the Diophantine equation 2112 zyx   is considered. 
Theorem.  The Diophantine equation  2112 zyx   has only one solution in non-negative 

integer, namely )3,0,3(),,( zyx . 
Proof.  Consider the following cases: 

Case 1:  0x .  It can be easily checked that if the Diophantine equation 2111 zy    has a 
solution, then 2y   and z  is an even integer greater than3 .  Thus, 

)1)(1(111 2  zzzy . 

Then there are non-negative integers  ,  such that ,111  z  ,111  z     and .y     
Therefore,    

,2)1()1(1111)111(11  zz  
 
which implies that 0   and .2111   This contradicts the fact that   is a non-negative 
integer. Therefore, the Diophantine equation 2111 zy  has no solution.  

Case 2:  .1x  If the Diophantine equation  2112 zy   has a solution, then this implies 
that  )11(mod22 z  has a solution. However, it is easy to check that )11(mod22 z does not 
have a solution, a contradiction. Thus, the Diophantine equation 2112 zy   also has no solution.   

Case 3: .2x  Therefore )4(mod02 x  and ),4(mod1,02 z  which implies that 
).4(mod1,011 y It can be observed that if y  is an odd non-negative integer, then  

).4(mod311 y  Therefore, y is an even non-negative integer. Let y = 2k  for some non-negative 
integer k. Thus,   

).11)(11(112 22 kkkx zzz   
 
Then there are non-negative integers  ,  such that ,112 kz   kz 112  with    and 

.x    Therefore,    
).11(2)11()11(22)12(2 kkk zz    

 
This implies that 1  and 

                                                              .1112 1 k                                                                   (*) 
 
So 211  kz  and  .1   By Catalan’s conjecture, k1112 1    has no solution only when  

11  and .1k  Thus, it suffices to consider only the case when 11   or ,1k   i.e. 2   
or .10  k  From (*), it is easy to see that 2  if and only if .0k  This implies that 
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)3,0,3(),,( zyx . Finally, one can easily check that  k1112 1   dose not have a solution when 
.1k  

  It is easy to check that )3,0,3(),,( zyx  is the only non-negative integer solution of 
2112 zyx  . This finishes the proof.  □ 

 
OPEN PROBLEM  
 

It is to be noted that all finding of the solutions of Diophantine equation in the case of 
22 zp yx    where p is prime in general is still an open problem. For example, it is not known 

how to find all non-negative integer solutions of 22 zp yx   where p = 7, 13, 29, 37 or 257. 
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