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Abstract: The purpose of this study is to illustrate the necessity of considering the 
technology life cycle when creating a distinct R&D strategy planning, if the aim is to 
enhance patent quality. The study also suggests an effective R&D strategy for the solar- 
cell technology field. It uses count data models to introduce the concept of technology 
life cycle and analyses the determinants of patent quality that depend upon the 
technology life cycle. Empirical results show that three variables influence patent 
quality in contrary manners, depending on the stage of the technology life cycle. This 
means that an R&D strategy for each of the three variables should be established while 
considering the technology life cycle. As a result, this study clarifies that the technology 
life cycle needs to be considered when establishing an R&D strategy that will enhance 
patent quality, and it suggests that distinct R&D strategy planning should be done for 
the solar-cell technology field in particular while bearing in mind the technology life 
cycle. 
 
Keywords: technology life cycle, patent quality, count data model, solar-cell 
technology  

 
 
INTRODUCTION 
 

Today’s crises involving patent trolls, increased patent litigation and technology standards 
competition point to the importance of intellectual property rights, the possession of which can 
create economic value in a knowledge-based economy. There is a positive relationship between a 
patent’s economic value and its citation counts, and the latter is used as a proxy to determine the 
quality of the patent [1–3]. In other words, a patent with high economic value will be cited more 
frequently [4–5].  
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Hence, R&D policymakers need to pay attention to the determinants of patent citation 
counts to establish R&D strategies that give rise to stronger R&D economic performance. On the 
other hand, technology is created so it can be further developed and introduced into a variety of 
R&D environments, until it eventually reaches a stage of decline. Therefore, to achieve stronger 
R&D economic performance, any R&D strategy should be differentiated by virtue of the 
technology life cycle. However, R&D strategies have generally been established through some 
experts’ peer views, without due consideration for either the determinants of patent citation counts 
or the technology life cycle. 

The current study offers an R&D strategy that bears in mind these considerations. In 
particular, the concept of the technology life cycle is initially introduced to identify the stage of 
technology development. Empirical analyses are used to emphasise differences in R&D strategies 
while taking into consideration the determinants of patent citation counts in terms of the technology 
life cycle. Moreover, with regard to technology development undertaken to improve patent quality, 
this study suggests an R&D strategy for the solar-cell technology field. 

 
LITERATURE REVIEW 
 

Patent data have been considered useful in analysing various trends including technological 
change, technological development, and economic growth [6–9]. In particular, patent citation 
counts data have been used in applied research fields to study patent quality, knowledge spillover, 
economic value and so on. Trajtenberg [10], Narin et al. [11] and Carpenter et al. [12] each 
attempted to put forward patent counts that are weighted by citations as indicators of the value of 
innovations and hence overcome the limitations of simple counts—limitations that have hindered 
assessments of technology importance or value in economic research. Moreover, Harhoff et al. [3] 
and Sampat and Ziedonis [13] each suggested that there is a positive relationship between patent 
citation counts and economic value, and the studies of Fung and Chow [14], Hu and Jaffe [15], and 
Jaffe et al. [16] each showed that patent citation data are a good proxy for knowledge flow into an 
industry.  

The studies of Sampat [17] and Lee et al. [5] are representative pieces of work that discuss 
patent quality in relation to patent citation counts. Lee et al. [5] identified the factors that affect 
patent citation counts using US patents that belong to particular government-funded research 
institutes in South Korea. Sampat [17] meanwhile collected a large quantity of patent data issued 
between 2002 and 2003 and analysed patent quality and any patents (or published articles) related 
to an invention. 

As shown above, most studies to date verify the relationship between patent citation counts 
and patent quality (or the economic value of a patent). However, few studies discuss R&D 
strategies that can be used to improve patent quality while using determinants of patent citation 
counts. Moreover, prior studies did not apply the concept of the technology life cycle in spite of 
changes in the technology development environment. To fill this research gap and address the 
importance of R&D strategies, this study addresses the concept of technology life cycle and 
analyses the determinants of patent citation counts.  
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MODELS FOR COUNT DATA 
 

The most useful model for use with the count data is the Poisson distribution. It can be used 
to model the number of occurrences of a type of event such as the numbers of patent applications, 
patent citations or car accidents [18–19]. If the discrete random variable Y is Poisson distributed 
with an intensity or rate parameter  ( >0), then Y has the density [20–21]: 
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where   is a positive real number equal to the expected number of occurrences during the given 
interval; e is the base of the natural logarithm; and y is the number of occurrences of an event. The 
mean of the Poisson distribution is equal to its variance, i.e. E(Y) = Var(Y) =  , which is a unique 
feature of this distribution. 

A regression model specifies the parameter  as varying across individuals according to a 
specific function of regressor vector x  and parameter vector  . The typical Poisson specification 
is 'exp( )x  . The method of maximum likelihood is widely used to estimate the parameter. The 
log-likelihood function of the Poisson estimation models is as follows [20–21]: 
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The equidispersion property of Poisson distribution, E(Y) = Var(Y) =  ), is violated in 
many research studies because the overdispersion problem is common. Researchers have proposed 
many extensions for the count data model to improve the validity of the equidispersion assumption 
inherent in the Poisson model [22]. One of these is the negative binomial model—a model more 
general than the Poisson model because it accommodates overdispersion. The negative binomial 
distribution arises as a continuous mixture of the Poisson distribution, where the mixing distribution 
of the Poisson rate is a gamma distribution. In equation (1), by replacing   with  , where   

is a random variable, ~ ( )y Poisson y  . If   is specified, i.e. 2( ) 1,   ( )E v Var v   , v  

preserves the mean but increases the dispersion. In ~ (1, )v Gamma  ,   is the variance parameter 

of the gamma distribution. The gamma function, ( ) , is defined by 1
0( ) ,    0t ae t dt       . 

Thus, a negative binomial distribution is denoted by ( , )NB   , and its probability mass function is a 
mixture density [20–21]: 
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The moments of negative binomial distributions are ( ) ,  ( ) (1 )E y V ar y     . 

The log-likelihood function of the negative binomial estimation model is as follows [20–21]: 
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TECHNOLOGY LIFE CYCLE 
 

The technology life cycle comprises a pattern of dynamic characteristics pertaining to 
technology, in which its innovative and economic outcomes change over time. Ford and Ryan [23] 
developed the idea of technology life cycle and broke it into six distinct periods__technology 
development, application, application launch, application growth, technology maturity and 
degraded technology__from the viewpoint of technology selling, based on its position within the 
product life cycle [24].  

Haupt et al. [25] pointed out a good reason for using the patent approach to measure the 
technology life cycle: patents inform the public about technological developments since they 
contain technological expertise and inform the public about the commercial potential of certain 
technologies. In its patent portfolio, the Japan Intellectual Property Association (JIPA) breaks the 
technology life cycle into five distinct periods using the trends pertaining to patent applications and 
growth rates: technology seed, growth, development, maturity and technology declining period 
(Figure 1) [26]. 

 

 
 

     Figure 1.  Characteristics of patent application in terms of technology life cycle period  
 

A technology growth period is defined by an increase in its number of applications and in its 
growth rate. Similarly, an increase in the application number and in the static growth rate of 
applications are observed during the technology development period. In the technology maturity 
period the number of applications stagnates and the application growth rate decreases. A summary 
of the technology life cycle’s characteristics vis-à-vis the number of applications and the growth 
rate of applications is provided in Table 1. 
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Table 1.  Characteristics of the technology life cycle period 
  

Life cycle period Description 

Seed No. of applications (↓),   Growth rate of applications (↓) 

Growth  No. of applications (↑),   Growth rate of applications (↑) 

Development  No. of applications (↑),   Growth rate of applications (→) 

Maturity  No. of applications (→),  Growth rate of applications (↓) 

Declining  No. of applications (↓),   Growth rate of applications (↓) 
 

DATASET AND VARIABLES  
Dataset  

Solar-cell technology is a significant field that promises a new form of renewable energy. It 
has the characteristic of being widely distributed in other technology areas such as liquid-crystal 
displays, semiconductor and lighting. Its development is being promoted in various countries 
through government support, along with the commercialisation of the technology and rapid 
expansion into various markets. Therefore, a large quantity of patent applications in the last 20 
years is available for analysis. Furthermore, one should bear in mind that in terms of the technology 
life cycle, solar-cell technology has already passed its maturity period [27].  

The technology classes and technology ranges for patent searching in the solar-cell 
technology field are shown in Table 2, following the precedent set by the quasi-government 
institute__the Korea Institute for Advancement of Technology (KIAT) [28].  
 
   Table 2.  Solar cell technology classes and ranges 
 

Technology class Technology range 

Material Silicon cell, inorganic compound cell, organic compound cell, dye cell 

Manufacture Manufacturing process (wafer, ingot, module, array) 

Module Thin-film type (CIGS), wafer type, flat-bed type, array 

Electrode Electrode for solar-cell structure, electrode for solar-cell manufacturing process 

 

The patent search results show that the number of US patent applications has been in decline 
since 2001. However, there has been a rapid increase in the number of patent applications in South 
Korea and Europe, where patent applications were not very active in the 1990s. On the other hand, 
the number of patent applications in Japan did not change substantially, as shown in Table 3. 
Although patent application information related to the patent offices of South Korea (KIPO), Japan 
(JPO), and the European Union (EPO) would have various implications, this study was compelled 
to use US patent data because only the US Patent and Trademark Office (USPTO) provides patent 
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citation information. Thus, after removing data noise, the 4,447 granted US patents found to be 
related to the solar-cell technology field yielded 1,466 valid data records, and then this valid data 
should be grouped by technology life cycle for empirical analysis in this study. 

 

   Table 3.  Number of patent applications by year and patent office for solar-cell technology 
 

Year KIPO(KR) USPTO(US) JPO(JP) EPO(EU) 

1990 3 65 - 20 

1991 1 80 29 33 

1992 3 90 85 49 

1993 2 58 75 43 

1994 11 88 71 32 

1995 16 81 86 36 

1996 17 90 80 36 

1997 29 91 110 44 

1998 20 100 130 58 

1999 33 116 110 86 

2000 40 128 102 77 

2001 58 143 98 79 

2002 45 116 98 67 

2003 75 87 106 56 

2004 93 54 107 86 

2005 126 37 105 92 

2006 204 26 76 174 

2007 347 14 113 218 

2008 240 2 69 116 

2009 44 - 22 21 

 

However, when using patent data, it is not possible to classify all the life cycle periods 
therein in detail. Thus, the current study considers only the period of technology maturity and 
compares differences in patent quality determinants between the pre-technology and post-
technology maturity periods. To classify the technology maturity period, a patent portfolio along 
with its number of patent applications and growth rate was constructed following JIPA’s technology 
life cycle model (Figure 2). This patent portfolio data show that solar-cell technology matured in 
2001. For empirical analysis, patent data are separated into pre-technology maturity and post-
technology maturity periods, based on the year 2001. In its analysis this study uses 1,130 patents 
granted before 2001 and 336 patents granted after that year. 
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Figure 2.  Patent portfolio of solar-cell technology (The size of the symbols ▲ represents the 
accumulated number of patent applications.) 
 
Variables  

The dependent variable for this study is the number of patent citation counts; this figure is a 
proxy of the patent quality as discussed in previous research [2, 5, 10]. The independent variables 
used in this study are listed in Table 4. A variety of information from the front pages of the patent 
documents were used to consider the strategies for R&D planning; in this sense the current study 
follows the lead of Lee et al. [5] and Daines [29]. 

 
Table 4.  Description of independent variables 
 

Variable Measurement Description 

NA No. of assignees Size of research 
DC Domestic collaboration  Domestic joint research 

INTC International collaboration International joint research 

NINV No. of inventors Size of research team 

2INV Two or more nationalities of inventors Linguistic problem 

BCitation No. of backward citations Size of knowledge from outside 

NNONP No. of non-patent citations Scientific linkage 

NSELF No. of self citations Technological(knowledge) cumulativeness 

USIC No. of citations of US-invented patent Degree of dependence on US technology 

JPIC No. of citations of JP-invented patent Degree of dependence on JP technology 

EUIC No. of citations of EU-invented patent Degree of dependence on EU technology 

NCLAIM No. of claims Size of patent right 

NFAM No. of family patents Size of potential market 

NIPC No. of international patent classification Size of application range 
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To examine how the size of the research project and joint research (i.e. collaboration) affects 
patent citation counts, the number of assignees (NA) was used as an independent variable and 
dummy variables were set up for domestic collaboration (DC) and international collaboration 
(INTC). In addition, this study used the number of inventors (NINV) as an independent variable to 
observe the effect of the size of the research team. A dummy variable of two or more nationalities 
of inventors (2INV) was set up to investigate any language-related effects__a variable discussed by 
Maurseth and Verspagen [30]. In addition, the numbers of cases that cited other patents (BCitation) 
and non-patent documents (NNONP) as well as the number of self-citations (NSELF) were set up 
as independent variables to examine the influence of the degree of technology dependence type and 
the accumulation of knowledge.  

The variables USIC, JPIC and EUIC were set up to accurately analyse the degree of 
technology dependence on the US, JP and EU respectively, and the nationality of the referenced 
patent’s assignee was investigated rather than the nationality of the patent itself. Besides these 
variables, NCLAIM, NFAM and NIPC were considered independent variables and they were used 
to measure the size of the patent rights, the size of the potential market and the possibility of 
application to other fields of technology respectively. 

The basic statistics with respect to the independent variables are summarised in Tables 5 and 
6. In terms of the mean statistics of NA, DC, INTC, NINV, 2INV and NIPC, no statistically 
significant difference was found between the pre-technology and post-technology maturity periods. 
On the other hand, in the post-technology maturity period the mean statistics for BCitation, 
NNONP, NSELF, USIC, JPIC and EUIC related to technology dependence were about twice those 
in the pre-technology maturity period.  It is assumed  that  basic technologies related to  solar cells  

 

          Table 5.  Descriptive statistics of variables (pre-technology maturity period)  
                   for solar-cell technology 
 

Variable Mean Std. dev. Min. Max. 

NA 1.0 0.2 1 4 

DC 0.0 0.2 0 1 

INTC 0.0 0.1 0 1 

NINV 2.8 1.7 1 10 

2INV 0.0 0.1 0 1 

BCitation 10.3 9.3 0 109 

NNONP 2.6 4.4 0 43 

NSELF 1.0 2.9 0 71 

USIC 5.0 6.4 0 78 

JPIC 4.0 5.0 0 100 

EUIC 1.2 1.8 0 16 

NCLAIM 19.3 16.8 1 236 

NFAM 7.4 8.1 1 167 

NIPC 1.8 0.9 1 5 
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 Table 6.  Descriptive statistics of variables (post-technology maturity period) 
                  for solar-cell technology 
 

Variable Mean Std. dev. Min. Max. 

NA 1.1 0.3 1 5 

DC 0.1 0.2 0 1 

INTC 0.0 0.1 0 1 

NINV 2.7 1.8 1 10 

2INV 0.1 0.2 0 1 

BCitation 22.9 31.6 0 210 

NNONP 7.2 14.4 0 94 

NSELF 2.1 5.4 0 63 

USIC 11.5 17.9 0 125 

JPIC 7.2 9.4 0 59 

EUIC 3.2 7.7 0 77 

NCLAIM 20.4 15.6 1 119 

NFAM 10.3 13.0 1 78 

NIPC 1.6 1.0 1 6 

 

were validated on the basis of prior research during the pre-technology maturity period and that 
these technologies were put into practical use in the post-technology maturity period. Meanwhile, 
Tables 5 and 6 show that in the solar-cell technology field, more US-invented and JP-invented 
patents were used in technology development than were EU-invented patents, irrespective of the 
technology life cycle period. The mean statistics of NCLAIM and NFAM in the post-technology 
maturity period tended to be relatively higher than those in the pre-technology maturity period. It is 
reasonable to assume that these results stem from a consideration of technology commercialisation 
in the post-technology maturity period.      
 

EMPIRICAL RESULTS AND DISCUSSION 
 

The current study estimated parameters by using STATA statistical software version 10.0. 
According to the estimation results, the effect of the number of assignees (NA), which indicates the 
size of the research project, on the patent citation count differs by technology life cycle period. With 
a one-unit increase in NA comes a patent citation count decrease of 0.436 unit in the pre-technology 
maturity period, while with a one-unit increase in NA comes a patent citation count increase of 
0.485 unit in the post-technology maturity period. Similarly, if domestic joint research (DC) takes 
place in the pre-technology maturity period, the patent citation count increases by 0.614 unit, 
whereas in the post-technology maturity period, it decreases by 1.006 unit. Likewise, the effects of 
NA and DC on the patent quality are sensitive to the technology life cycle period. In other words, 
these results show that the technology life cycle period is a crucial factor in establishing an R&D 
strategy that enhances patent quality. On the other hand, Table 7 shows that undertaking 
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international joint research (INTC) enhances patent citation count, irrespective of the technology 
life cycle period involved.  

Regarding the effect of the number of inventors (NINV)__a variable that indicates the size of 
the research team__on the patent citation count, it was found that a one-unit increase in NINV leads 
to an increase of 0.018 unit in patent citation count in the pre-technology maturity period. 
Especially, this study considers the effect of a multinational research team (2INV) and uses it as a 
variable. As a result, irrespective of the technology life cycle period involved, and all else being 
equal, if a research team comprises researchers from a number of different countries, the patent 
citation count decreases by 0.165 unit. This result is similar to that of the study of Maurseth and 
Verspagen [30], who suggested that patent citation count is higher if the citing region belongs to the 
same linguistic group. Therefore, an R&D planner needs to consider the size of the research team as 
well as linguistic issues therein as the R&D strategy is formulated.  

Typically, there are two paths of technology knowledge inflow. One involves knowledge 
inflow from a patent (BCitation); the other involves knowledge inflow from a nonpatent (NNONP) 
such as a journal article or technology magazine. As described in Table 7, the effects of the two 
paths on patent citation count differ. With a one-unit increase in BCitation comes a patent citation 
count decrease of 0.196 units, while with such an increase in NNONP, the patent citation count 
increases by 0.013 unit. The citation of one’s prior own patent (NSELF), a special path of 
technology knowledge inflow, affects patent citation count differently. Among studies that use a 
substantial amount of NSELF in the pre-technology maturity period, patent citation count increases 
while it decreases in the post-technology maturity period. Technology knowledge accumulation and 
the referencing of non-patent documents can serve as significant components of an R&D strategy in 
the early stages of technology development. These results point to the importance of the technology 
knowledge inflow path in enhancing patent quality. 

Results pertaining to each of the models indicate that the use of US-invented patents (USIC), 
JP-invented patents (JPIC) and EU-invented patent (EUIC) as references is important to the patent 
quality in the pre-technology maturity period. In the post-technology maturity period, only the 
Poisson model shows any significant positive impact on patent quality. This result indicates that the 
US, JP and the EU are the leading countries in solar-cell technology, and we need to be mindful of 
their prior patents and research trends.   

Table 7 shows that high numbers of claims (NCLAIM), family patents (NFAM) and 
international patent classifications (NIPC) can increase patent citation count, which is consistent 
with the viewpoint of Lee et al. [5]. Moreover, the coefficient values for NCLAIM, NFAM and 
NIPC are much higher in the post-technology maturity period than in the pre-technology one. This 
could be a natural result because each of these variables represents the size of the patent rights, the 
potential market and the application field, all of which are related to economic performance (e.g. 
technology licensing and commercialisation) in the post-technology maturity period.  

Thus far, we have investigated the effects of the aforementioned variables on patent quality. 
In terms of the technology life cycle, three variables__NA, DC and NSELF__are especially 
noteworthy. Unlike other variables, these variables have differential effects on patent quality as per 
the technology life cycle period (Table 8). This means that small-sized research projects or those 
featuring low technology cumulativeness or domestic joint research values need to be encouraged to 
acquire a high patent quality in the pre-technology maturity period.  While a  large research project 
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Table 7.  Estimation results by technology life cycle period and model for solar-cell technology 

Variable 

Pre-technology maturity period Post-technology maturity period 

   Poisson model 
    Negative  
 Binomial model 
      

  Poisson model Negative 
binomial model 

NA -0.436*** 
(0.167) 

-0.389 
(0.398) 

 0.485* 
 (0.257) 

       0.574 
       (0.664) 

DC 0.614*** 
(0.194) 

0.551 
(0.493) 

 -1.006** 
 (0.471) 

       -1.291 
       (0.978) 

INTC 0.721*** 
(0.218) 

0.705 
(0.588) 

 0.871* 
 (0.457) 

       1.132 
       (1.367) 

NINV 0.018*** 
(0.006) 

0.017 
(0.018) 

 0.048 
 (0.031) 

       0.055 
       (0.067) 

2INV -0.165** 
(0.077) 

-0.126 
(0.237) 

 -0.077 
 (0.267) 

       0.218 
       (0.544) 

BCitation -0.196*** 
(0.022) 

-0.167*** 
(0.055) 

 -0.077** 
 (0.035) 

       -0.037 
       (0.066) 

NNONP 0.013*** 
(0.002) 

0.010 
(0.007) 

 0.009** 
 (0.004) 

       -0.012 
       (0.013) 

NSELF  0.011** 
(0.005) 

0.008 
(0.014) 

 -0.052*** 
 (0.019) 

       -0.007 
       (0.032) 

USIC 0.202*** 
(0.022) 

0.177*** 
(0.056) 

 0.067* 
 (0.038) 

       0.031 
       (0.072) 

JPIC 0.170*** 
(0.023) 

0.141** 
(0.056) 

 0.077** 
 (0.036) 

       0.040 
       (0.070) 

EUIC 0.211*** 
(0.023) 

0.181*** 
(0.058) 

 0.074** 
 (0.037) 

       0.015 
       (0.073) 

NCLAIM 0.006*** 
(0.000) 

0.008*** 
(0.002) 

 0.021*** 
 (0.002) 

       0.026*** 
       (0.010) 

NFAM 0.008*** 
(0.001) 

0.013*** 
(0.004) 

 0.034*** 
 (0.004) 

       0.038** 
       (0.015) 

NIPC 0.122*** 
(0.010) 

0.117*** 
(0.033) 

 0.175*** 
 (0.052) 

       0.241* 
       (0.144) 

constant 
2.231*** 
(0.170) 

2.126*** 
(0.407) 

 -1.498*** 
 (0.291) 

       -1.862** 
       (0.760) 

Log-likelihood -6884.6 -3673.9  -633.9        -431.3 

lnalpha  -0.153*** 
(0.047) 

        1.149*** 
       (0.149) 

     
 
Notes: 1) *** p<0.01, ** p<0.05, * p<0.1                    

2) Standard errors are in parentheses. 
3) lnalpha is the log-transformed overdispersion parameter. 

 

and the use of others’ knowledge are both essential characteristics, domestic joint research needs to 
be avoided in the post-technology maturity period if patent quality is to be enhanced. In other words, 
this result highlights the importance of considering technology life cycle when developing an R&D 
strategy: an R&D planner within the solar-cell technology field needs to consider the size of a 
research project, the nature of its collaboration and accumulated knowledge in relation to the 
technology life cycle.  
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Table 8.  Noteworthy effects of variables on patent quality by technology life cycle period 
 

Variable  Pre-technology maturity period Post-technology maturity period 

  NA   Increased NA → Decreased patent quality Increased NA → Increased patent quality 

  DC    Adopted DC → Increased patent quality Adopted DC → Decreased patent quality 

  NSELF  Increased NSELF → Increased patent quality   Increased NSELF → Decreased patent quality 

 
CONCLUSIONS 
 

It is important to establish an appropriate plan for an R&D strategy in order to obtain strong 
R&D performance in relation to a technology’s position within the technology life cycle. This is 
because the R&D environment is rapidly changing in terms of the technology life cycle. Such a 
change is caused by rapid fluctuations in market needs and the fact that technology is advancing at 
an ever-growing pace.  

The primary aim of this study was to investigate differences in the determinants of patent 
citation counts. It also asserts that R&D strategies for solar-cell technology should be prepared 
while bearing in mind the technology life cycle. The empirical results of this study are in agreement 
with our intuitive expectations. When a technology develops in some R&D field, the accumulation 
of the technological knowledge generally reaches a certain level through development from 
independent basic studies; thereafter, the outcomes are grafted into various fields and disperse 
outwards.  

This empirical analysis has confirmed the veracity of intuitive knowledge that is related to 
the technology life cycle. Thus, to enhance the R&D performance, every R&D programme should 
adopt a distinct R&D strategy based on the technology period within the technology life cycle.  

Since this study focused solely on the solar-cell technology field, it does have some 
limitations. Thus, to improve the generalisability of the results, it is necessary to undertake similar 
analyses in other fields and compare and analyse the results obtained with those presented here. In 
addition, for  a more specific R&D planning, the dynamic determinants of patent citation counts 
should be distinguished in greater detail by further refining the technology life cycle. 
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