

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

Maejo International
Journal of Science and Technology

ISSN 1905-7873

Available online at www.mijst.mju.ac.th
Full Paper

A novel algorithm for the conversion of shuffle regular
expressions into non-deterministic finite automata

Ajay Kumar* and Anil Kumar Verma

Department of Computer Science and Engineering, Thapar University, Patiala, Punjab-147004, India

* Corresponding author, e-mail: (ajayloura@gmail.com)

Received: 19 September 2012 / Accepted: 7 October 2013 / Published: 14 October 2013

Abstract: Regular expressions with shuffle operators are widely used in diverse fields of
computer science. The work presented here investigates the shuffling of regular
expressions and their conversion into non-deterministic finite automata. The aim of the
paper is to design a novel algorithm for constructing  -free non-deterministic finite
automata from the shuffling of regular expressions. Non-deterministic finite automata
generated using the proposed approach requires, in the worst case, 2m+s+1 states. This is a
significant improvement over other existing approaches in the literature, where the number
of states reaches 22(m+u+k+s)-C in the worst case.

Keywords: regular expression, parallel regular expression, non-deterministic finite
automaton, shuffle operator

__

INTRODUCTION

 Regular expressions (REs) are used in various applications such as compiler designs, XML
schema languages, text processors, and as a programming tool for multifarious scripting languages
such as PERL and PHP [1-4]. REs used in these applications require standard operators (union,
concatenation and Kleene closure). Extended REs [5] consist of shuffle, intersection and counting
operators, in addition to standard operators. Although the use of these additional operators do not
increase the expressive power of REs, succinctness occurring due to the addition of these operators
is difficult to handle with the standard operators [5]. Extended REs are used in diverse applications
such as XML schema languages [6], text processors and programming languages [7]. A semi-
extended RE [5] consists of union, concatenation, Kleene closure and intersection operators. REs
with union, concatenation, Kleene closure and counting operators are used in different areas such as
egrep, PERL and XML schema [5].
 A shuffle operator is used in the modelling of process algebra, concurrent systems and critical
section problems [2, 8-9]. A parallel RE (PRE) consists of disjunction (+), concatenation (.), Kleene

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

397

closure (*) and shuffle (Ш) operators [2]. Shuffle operators appear in diverse forms of computer
science such as process algebra, multipoint communications, XML schema Relax NG and
concurrency of processes [6, 9-11].

PRELIMINARY CONCEPTS

 For the rest of the paper,  denotes an alphabet depicting a non-empty set of symbols [3]. A
string s=a1a2…an is a finite sequence of symbols taken from the alphabet. The position of symbol ia

is equal to i. The length of a string s (denoted by |s|) represents the number of occurrence of symbols
presented in s. * [3] depicts a set of all strings generated from  . An empty string (denoted by )
is a string which has no symbols. The null language (denoted by ) does not contain any string. A

language L is a subset of * [3]. A language can be classified into regular, context-free, context-
sensitive and recursive enumerable. A regular language can be represented by an RE or a finite
automaton (FA).
 RE a, where a , depicts a regular language {a}.  and  are the REs describing null
string () and null language () respectively. If r1 and r2 are REs depicting the languages L1 and L2
respectively, then union, concatenation and Kleene closure are described by the REs 1 2 ,r r 1 2r r and

*
1r respectively. Union, concatenation and Kleene closure rules can be finitely applied many times [3].

 FA is a quintuple [3] 0(, , , ,),M Q q F  where Q is the set of states,  is an alphabet, 
is a transition function { } ,Q Q     0q Q is the starting state and F Q is the set of final
states. Deterministic finite automaton (DFA) can be represented by a partial function
(:)Q Q  . Non-deterministic finite automaton (NFA) may or may not involve -transitions;
 -free NFA does not contain any  -transitions and its transition function can be represented by

Q Q   .
 Shuffling [3] of two strings x and y comprises all strings z such that each position of z is
assigned either to x or y for each string z. If we concatenate the symbols of the positions prescribed
to x from left to right, we obtain the string x. Similarly, if we concatenate the symbols of the
positions prescribed to y from left to right, we obtain the string y. Formally, shuffling can be defined
by a Ш (b a  Ш) (b b a  Ш) for *(,) (,)a b     . For example, given 01  and

ab  , then  Ш {01 ,0 1 ,0 1, 01, 0 1, 01 }ab a b ab ab a b a b  . Shuffling of two languages Li and Lj can
be defined by iL Ш 1{ |jL w w w  Ш 2 1 2, () ()}i jw w L w L     .

 A PRE can be described using a parallel finite automaton (PFA) [12], which consists of 7-
tuple 0(, , , , , ,),Q q N F   where 2NQ  is a finite set of states, 0q is the starting state, N is a finite
non-empty set of nodes,  is an alphabet, F N is a set of final nodes,  is a state transition
function defined by () 2QQ    , and  is a node transition function defined by

22 () 2N N    . A  -transition represents the joining of two languages with a shuffle operator.
 A shuffle RE (SRE) is a confined form of PRE, in which the shuffle operators explicitly occur
between REs. Conversion of an SRE to an RE or a DFA has been studied widely with respect to the
concurrency aspects.

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

398

LITERATURE REVIEW
 Estrade et al. [2] investigated the explicitly PRE, proposed an algorithm for the conversion of
SREs to NFAs using PFA as an intermediate step and designed a tool kit FLAT in the PERL
language. Figure 1 delineates the PFA corresponding to SRE (10)r  Ш *0 using Estrade et al.’s
methodology. Biegler et al. [13] reasserted that shuffle decomposition is not unique over the finite
sets. Gelade [5] proved that a double exponential size is required for the conversion of PREs to REs.
Hovland [14] proposed a membership algorithm for an RE with unordered concatenation, which is a
limited form of shuffle operator, for example (&) { , }acb ge acbge geacb , where & represents the
unordered concatenation. Standard generalised markup language [14] allows the use of unordered
concatenation. Gelade et al. [15] worked on REs with numerical constraints and a shuffle operator.
They depicted the overview of complexity for the decision problems of XML schema languages,
namely DTDs, RELAX NG, and XSDs. Berstel et al. [16] studied different kinds of language
classified based on the shuffle operations and proved partial results for the star-free commutative
language.

Figure 1. PFA for (10)r  Ш *0 using Estrade et al.’s methodology

SREs can be used for depicting the number of processes competing for the critical section

[8]. Each critical section of a process can be described by a symbol. For example, critical sections of
three processes can be represented by a, (ab)* and b*. For a single CPU, the SRE describes the
probabilistic ways of scheduling. An equivalent RE commensurate with the SRE renders the way for
tasks to be completed. In the case of resource reduction in the modelling of concurrent systems,
partial serialisation can be useful [2]. In this paper, we propose a novel algorithm for the conversion
of SREs into  -free NFAs without using intermediate steps.

Methodologies exist in the literature for the conversion of REs into NFAs, namely
Thompson’s construction [17], partial derivatives [18] and follow automata [19]. Estrade et al. [2]
worked on the conversion of SRE into NFA using PFA as an intermediate state. SRE-to-PFA
conversion can be achieved by using modified Thompson’s construction. PFA with n states can be
converted into an NFA requiring 2n states in the worst case [2]. However, an RE can be converted
into DFA directly with fewer states than the trivial Thompson’s construction. The motivation for this
research stems from the scope for the conversion of an SRE into a DFA by extending the direct
conversion method.

0 λ λ
 8

1

5

4 3 2

7

0

1

6

0

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

399

PROPOSED APPROACH
 In the direct method of conversion of REs into DFAs [1, 20], a syntax tree is constructed for
the augmented RE. Firstpos, lastpos and nullable are determined using the rules given in Table 1.
Additional rules for the shuffle operator are described with those for the direct conversion of RE into
DFA [1, 20]. Followpos are determined using the rules given in Table 2. Firstpos, lastpos, followpos
and nullable are determined for the nodes of the syntax tree, and using these followpos, an
equivalent DFA can be generated.

 Table 1. Rules for firstpos(r), lastpos(r) and nullable

 RE Firstpos(r) Lastpos(r) Nullable
r    false
r    True
r a ()position a ()position a false

i jr r r  () ()i jfirstpos r firstpos r () ()i jlastpos r lastpos r () ()i jnullable r nullable r

i jr r r If ()iL r 
() ()i jfirstpos r firstpos r

Else
()ifirstpos r

If ()jL r 
() ()i jlastpos r lastpos r

Else
()jlastpos r

() ()i jnullable r nullable r

*
ir r ()ifirstpos r ()ilastpos r true

ir r Ш jr () ()i jfirstpos r firstpos r () ()i jlastpos r lastpos r () ()i jnullable r nullable r

 Table 2. Computation of followpos

RE Followpos

i jrr r For ()ip lastpos r
 () () ()jfollowpos p followpos p firstpos r 

*
ir r For ()ip lastpos r

() () ()ifollowpos p followpos p firstpos r 

 SRE r with s shuffle operators can be dispensed to s+1 sub-regular expressions r1,r2,…,rs+1

such that:
1. r=r1 Ш r2 Ш… Шrs+1
2. r1, r2, …, rs+1 are the REs.

An augmented SRE can be obtained by adding # before each shuffle operator and at the end
of SRE r. A syntax tree (similar to that shown in Figure 2) is constructed for the augmented SRE
such that the symbols and #’s appear at leaf nodes and operators appear as the internal nodes. For all
leaf nodes, except a node labelled with #, followpos are calculated. Followpos(#) is taken as null set.

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

400

Figure 2. Syntax tree for augmented SRE

 Followpos for each sub-regular expression is calculated severally. Consider SRE ir r Ш jr

having a single shuffle operator. Firstpos, lastpos and followpos of ri and rj are calculated severally.
The starting state of the NFA is the union of firstpos(ri) and firstpos(rj). Lastpos of the root node is
determined by taking the union of all positions labelled with #. State qi is a final state if

() ilastpos root q . Using the definition of shuffle, the resulting NFA must include all strings
generated from the shuffling of ri and rj. The final state of the NFA accepts all strings generated from
ri Ш rj. At any instant of time during the processing of string w, consider qi is the current state. On
reading symbol a, from the sub-REs ri and rj, the following two cases can occur after reading symbol
a as shown in Figure 3.

 Reading of symbol a from ri:
((()j iq followpos position r labelled with)a in)iq (()jpositions r in)iq

 Reading of symbol a from rj:
((()k jq followpos position r labelled with)a in)iq (()ipositions r in)iq

 Figure 3. Reading symbol a from ri Ш rj

 Similarly, there is a possibility of reading symbol a on states qj and qk from sub-expressions rj
and ri respectively. Hence, if (() ()) (i j isymbols r symbols r r  Ш)jr r , then an NFA is

generated from r using the proposed approach. Repeating this procedure, all possible shuffled strings
can be generated. The final state of the NFA will accept all strings which are obtained by ri Ш rj. In
general, SRE r consists of (s+1) sub-REs (r1, r2, r3, …, rs+1), such that r = r1 Ш r2 Ш r3 Ш … Ш
rs+1. At any instant of time during the processing of a string w, consider qi is the current state. Symbol
a can be taken from sub-REs rx, ry and rz of the state qi. The following cases can occur after reading
symbol a:

a qi

qj

qk

a

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

401

 Reading symbol a from rx:
((()j xq followpos position r labelled with)a in)iq (())i xq positions r

 Reading symbol a from ry:
((()k yq followpos position r labelled with)a in)iq (())i yq positions r

 Reading symbol a from rz:
((()l zq followpos position r labeled with)a in)iq (())i zq positions r

 Further, reading of symbol a from the sub-expression ry and rz on state qj is possible.
Similarly, there is a possibility of reading symbol a on states qk and ql. Repeating this procedure, all
possible shuffled strings can be generated from the sub-regular expressions r1, r2, …, rs+1. The final
state will accept all strings of the SRE r. If a common symbol appears in different sub-REs of r
involved in shuffling, then DFA cannot be generated directly from SRE r. Algorithms for the
conversion of SRE into NFA are depicted in Schemes 1-3.

Algorithm 1: SRE_ NFA (,p NFA)
Input: SRE p
Output:  -free NFA equivalent to SRE p

1. Generate augmented SRE p.
2. Construct a syntax tree for augmented SRE p. // Syntax tree construction
3. Calculate_Follow(p). // Call to Procedure Calculate_follow
4. Create_NFA(firstpos,lastpos, followpos). // Call to Procedure Create_NFA

 Scheme 1. Algorithm for the conversion of SRE into  -free NFA

 Notations used in the algorithm Calculate_Follow(p) are as follows. Consider c1 and c2 are
the left and right child during traversal of a node delineated by union, concatenation and shuffle
operators. Consider c1 is the only child of a node delineated by Kleene closure. Let a indicate symbol
from  . Position(n) depicts the position of the symbol embarked at RE n. Using Brueggemann-
Klein’s methodology [20], firstpos, lastpos and followpos are determined for all nodes except for
shuffle operator. The rules for determination of firstpos, lastpos, nullable and followpos are depicted
in Tables 1-2. The same are represented by the procedure Calculate_Follow(p) as shown in the
Scheme 2.
 The reading of a symbol of a state is processed by two steps. In the first step we find the
followpos of the current symbol from a sub-RE. In the second step we add the positions of other
sub-REs involved in a shuffling of the current state to the result of the first step. This process is
repeated for each q Q and each a . The initial and final states are determined using the firstpos
and lastpos of the root node respectively. The complete procedure is specified in Scheme 3.

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

402

Algorithm 2: Calculate_Follow(p)
Input: Syntax tree for the SRE r
Output: Firstpos, lastpos and followpos

1. Repeat steps 2 to 6 for each node n during the post-order traversal of the syntax tree do
2. If (' ' '#')n a n   then // Leaf node

 () ()firstpos n position n
 () ()lastpos n position n
 End If

3. If ' 'n   then // Union node
 1 2() () ()firstpos n firstpos c firstpos c 
 1 2() () ()lastpos n lastpos c lastpos c 

 End If
4. If '.'n  then // Concatenation node

 1() ()firstpos n firstpos c
 2() ()lastpos n lastpos c
 If 1 '* 'c  then // nullable at left child is true
 2() () ()firstpos n firstpos n firstpos c 

 End If
 If 2 '* 'c  then // nullable at right child is true
 1() () ()lastpos n lastpos n lastpos c 

 End If
 For each 1()i lastpos c do
 2() () ()followpos i followpos i firstpos c 

 End For
 End If

5. If '* 'n  then // Kleene closure
 1() ()firstpos n firstpos c
 1() ()lastpos n lastpos c
 For each ()i lastpos n do
 () () ()followpos i followpos i firstpos n 
 End For
 End If

6. If 'n  Ш ' then // Shuffle operator
 1 2() () ()firstpos n firstpos c firstpos c 
 1 2() () ()lastpos n lastpos c lastpos c 

 End If

Scheme 2. Procedure for computing firstpos, lastpos and followpos of the SRE p

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

403

Algorithm 3: Create_NFA (firstpos, followpos, lastpos)
Input: Firstpos, lastpos and followpos of SRE p
Output: NFA equivalent to SRE p

1. 0 ()q firstpos root

 s number of shuffle operator in p
2. 0Q q and make 0q as unmarked.
3. Repeat steps 4-9, while there is an unmarked state q Q do
4. Choose an unmarked state q and mark it.
5. Pr 0evlast  //indicates the last position of the sub-expression recently

processed
 1i 

6. Repeat steps 7-9 while (1)i s  // Reading of a on the current sub-expression
7. thcurrentlast i value of ()lastpos root

 T 
 For ()pos q  do
 If (Pr evlast pos)currentlast
 T T pos 
 End If
 End For
 N q T  // Remaining positions of the other sub-expressions

8. For a  do
 Newstate 
 For t T  do
 If (())symbol t a then

 ()Newstate Newstate followpos t 
 End If
End For

 If Newstate 
 Newstate Newstate N 
 [,]Tran q a Newstate

If Newstate Q then
Q Q Newstate 
Make Newstate as unmarked state.

End If
 End If

9. prevlast currentlast
1i i 

10. 0 { | ()}q q q firstpos root  //Starting state
 { | () }f f fF q q Q lastpos root q    //Final state

 Scheme 3. Algorithm for generating equivalent NFA from SRE p

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

404

 The complete procedure for the conversion of SRE to NFA is expounded by the following
numerical example.
Example. Given *(())r a a b  Ш * *()a b

 Augmented *
1 2 3 4(()) #r a a b  Ш * *

5 6 7() #a b
 Figure 4 delineates the syntax tree for the augmented SRE. The firstpos of a node is depicted
on the left side of the node in blue colour and the lastpos of a node is depicted on the right side of
the node in green colour.

Figure 4. Syntax tree for *(())r a a b  Ш * *()a b

 The following values are determined using algorithm 2:
 (1) {2,3, 4}followpos 
 (2) {2,3, 4}followpos 
 (3) {2,3, 4}followpos 
 (5) {5,6,7}followpos 
 (6) {6,7}followpos 
 (4) (7)followpos followpos  
 Figure 5 delineates the NFA 0 1 0 1 0 0 1({ , , , },{ , }, , ,{ , })M q q F F a b q F F corresponding to SRE

r.

 Figure 5. NFA for *(())r a a b  Ш * *()a b

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

405

DESCRIPTIONAL COMPLEXITY OF THE OBTAINED NFA

In this section, analysis is carried out on state complexity of the NFA obtained using Estrade
et al. methodology [2] and the proposed approach. It is well known that a PFA with n states can be
converted into an NFA with 2n states. This leads to the following theorems:

Theorem 1. If C is the number of occurrence of the concatenation operator in SRE r, then
the NFA obtained using Estrade et al.’s methodology [2] requires 22|r|-3C states in the worst case.
 Proof: Estrade et al.’s methodology converts r to a PFA using the modified Thompson’s
construction [8]. The number of states of the PFA using the modified Thompson’s construction is
equal to 2|r|-3C. A PFA with n states can be converted to an NFA using the subset construction that
requires 2n states in the worst case [2]. Hence, a PFA with 2|r|-3C states can be converted to an
NFA using a subset construction requiring 22|r|-3C states in the worst case. □
 Theorem 2. If m denotes the number of instances of symbols and s denotes the number of
shuffle operators in the SRE r, then a  -free NFA can be constructed using the proposed algorithm
requiring 2m+s+1 states in the worst case.
 Proof. In the proposed algorithm, the syntax tree is constructed such that all symbols and
#’s appear as leaf nodes. Each state can be constructed using the positions assigned to the leaf nodes.
The total number of leaf nodes in the syntax tree is (m+s+1). The maximum 2m+s+1 states can be
constructed using the positions of the syntax tree. Hence, using the proposed algorithm, the worst
case state complexity of the NFA is 2m+s+1. □
 Theorem 3. The state complexity of the proposed algorithm is less than the state complexity
of Estrade et al.’s methodology [2] for the conversion of an SRE to an NFA.
 Proof. SRE r with m, u, k, s and c represent instances of symbols, union, Kleene closure,
shuffle and concatenations respectively. The worst-case state complexity of the proposed algorithm
and of Estrade et al.’s methodology are 2m+s+1 and 22(m+u+k+s)-C respectively. That the proposed
algorithm will generate an NFA with fewer states can be proved by the relation:

1 2() 1 2 2m s m u k s C m u k s C            
 Each concatenation operation is performed between two symbols. Similarly, n concatenation
can be performed with at least (n+1) symbols, which means 1m C  .

Hence, the relation 1 2 2m u k s C     always holds and the worst-case state complexity
of the proposed algorithm is always less than that of Estrade et al.’s methodology. □
 The worst-case state complexity of the  -NFA is 2| | 32 r C using Estrade et al.’s methodology
[2]. The pattern matching will decelerate if the NFA consists of  -transitions. Using the proposed
algorithm, a  -free NFA is generated.
 The worst case-state complexity of the NFA is 12m s  . Table 3 describes the differences
between the proposed approach and Estrade et al.’s methodology [2].

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

406

Table 3. Comparison between the proposed algorithm and Estrade et al.’s methodology

 Criterion Proposed algorithm Estrade et al.’s methodology
Worst-case state complexity 12m s  2| | 32 r C
Output  -free NFA  -NFA
Conversion chain SRE  NFA  DFA SRE PFA NFA  DFA

CONCLUSIONS AND FUTURE SCOPE
 An algorithm has been designed for the conversion of SREs into  -free NFAs without using
any intermediate steps. Using the proposed approach, a svelte NFA is generated. The number of
states of the NFA generated using the proposed approach is equal to 2m+s+1 states in the worst case,
which is a significant improvement over the existing approaches in the literature. Another advantage
of this approach is that the  -free NFAs is produced. Pattern matching is delayed if the NFA
consists of  -transitions. Further, if (ir Ш) ((() ())),j i jr r symbols r symbols r    then it is

implausible to generate a DFA directly from the SRE. This approach will be useful in the field of
process algebra and concurrent aspects. In the future, this work can be extended to the conversion of
PREs into REs. The reduction of time and state complexity for the conversion of SREs into NFAs
can also be carried out.

REFERENCES
1. A. V. Aho, R. Sethi and J. D. Ullman, “Compilers: Principles, Techniques and Tools”, 19th

Edn., Pearson Education, Singapore, 2005.
2. B. D. Estrade, A. L. Perkins and J. M. Harris, “Explicitly parallel regular expressions”,

Proceedings of 1st International Multi-symposiums on Computer and Computational Sciences,
2006, Hangzhou, China, pp.402-409.

3. J. E. Hopcroft, R. Motwani and J. D. Ullman, “Introduction to Automata Theory, Languages,
and Computation”, 12th Edn., Pearson Education, Singapore, 2005.

4. P. D. Stotts and W. Pugh, “Parallel finite automata for modeling concurrent software systems”,
J. Syst. Softw., 1994, 27, 27-43.

5. W. Gelade, “Succinctness of regular expressions with interleaving, intersection and counting”,
Theor. Comput. Sci., 2010, 411, 2987-2998.

6. J. Clark and M. Murata, “RELAX NG Specifications”, 2001, http://www.oasis-open.org/
committes/relax-ng/spec-20011203.html (Date of access: Dec. 2001).

7. L. Wall, T. Christiansen and J. Orwant , “Programming Perl”,3rd Edn., O’Reilly Media,
Sebastopol (CA), 2000.

8. B. D. Estrade, “An investigation of equivalent serialized forms of parallel finite automata”, MS
Thesis, 2005, University of Southern Mississippi, USA.

9. M. Nivat, “Behaviours of synchronized systems of processes”, L.I.T.P. Report No. 81-64,
University of Paris 7, France, 1981.

Maejo Int. J. Sci. Technol. 2013, 7(03), 396-407

407

10. K. Iwama, “Unique decomposability of shuffled strings: A formal treatment of asynchronous
time-multiplexed communication”, Proceedings of 15th Annual ACM Symposium on Theory of
Computing, 1983, Boston, USA, pp.374-381.

11. J. C. M. Baeten and W. P. Weijland, “Process Algebra (Cambridge Tracts in Theoretical
Computer Science)”, Cambridge University Press, Cambridge, 1990.

12. V. K. Garg, “Modeling of distributed systems by concurrent regular expressions”, Proceedings
of 2nd International Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, 1989, Vancouver, Canada, pp.313-327.

13. F. Biegler, M. Daley, M. Holzer and I. McQuillan, “On the uniqueness of shuffle on words and
finite languages”, Theor. Comput. Sci., 2009, 410, 3711-3724.

14. D. Hovland, “The membership problem for regular expressions with unordered concatenation
and numerical constraints”, Proceedings of 6th International Conference on Language and
Automata Theory and Applications, 2012, Coruna, Spain, pp.313-324.

15. W. Gelade, W. Martens and F. Neven, “Optimizing schema languages for XML: Numerical
constraints and interleaving”, SIAM J. Comput., 2009, 38, 2021-2043.

16. J. Berstel, L. Boasson, O. Carton, J.-E. Pin and A. Restivo, “The expressive power of the
shuffle product”, Inform. Comput., 2010, 208, 1258-1272.

17. K. Thompson, “Regular expression search algorithm”, Commun. ACM, 1968, 11, 419-422.
18. V. Antimirov, “Partial derivatives of regular expressions and finite automaton constructions”,

Theor. Comput. Sci., 1996, 155, 291-319.
19. L. Ilie and S. Yu, “Follow automata”, Inform. Comput., 2003, 186, 140-162.
20. A. Brueggemann-Klein, “Regular expressions into finite automata”, Theor. Comput. Sci., 1993,

120, 197-213.

© 2013 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for

noncommercial purposes.

