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Abstract: Regular expressions with shuffle operators are widely used in diverse fields of 
computer science. The work presented here investigates the shuffling of regular 
expressions and their conversion into non-deterministic finite automata. The aim of the 
paper is to design a novel algorithm for constructing  -free non-deterministic finite 
automata from the shuffling of regular expressions. Non-deterministic finite automata 
generated using the proposed approach requires, in the worst case, 2m+s+1 states. This is a 
significant improvement over other existing approaches in the literature, where the number 
of states reaches 22(m+u+k+s)-C  in the worst case. 
  
Keywords: regular expression, parallel regular expression, non-deterministic finite 
automaton, shuffle operator 

________________________________________________________________________________ 
 
INTRODUCTION  
 
           Regular expressions (REs) are used in various applications such as compiler designs, XML 
schema languages, text processors, and as a programming tool for multifarious scripting languages 
such as PERL and PHP [1-4]. REs used in these applications require standard operators (union, 
concatenation and Kleene closure). Extended REs [5] consist of shuffle, intersection and counting 
operators, in addition to standard operators. Although the use of these additional operators do not 
increase the expressive power of REs, succinctness occurring due to the addition of these operators 
is difficult to handle with the standard operators [5]. Extended REs are used in diverse applications 
such as XML schema languages [6], text processors and programming languages [7]. A semi-
extended RE [5] consists of union, concatenation, Kleene closure and intersection operators. REs 
with union, concatenation, Kleene closure and counting operators are used in different areas such as 
egrep, PERL and XML schema [5].  
 A shuffle operator is used in the modelling of process algebra, concurrent systems and critical 
section problems [2, 8-9]. A parallel RE (PRE) consists of disjunction (+), concatenation (.), Kleene 
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closure (*) and shuffle (Ш) operators [2]. Shuffle operators appear in diverse forms of computer 
science such as process algebra, multipoint communications, XML schema Relax NG and 
concurrency of processes [6, 9-11].   
 
PRELIMINARY CONCEPTS 
 
           For the rest of the paper,  denotes an alphabet depicting a non-empty set of symbols [3]. A 
string s=a1a2…an is a finite sequence of symbols taken from the alphabet. The position of symbol ia  

is equal to i. The length of a string s (denoted by |s|) represents the number of occurrence of symbols 
presented in s. *  [3] depicts a set of all strings generated from  . An empty string (denoted by  ) 
is a string which has no symbols. The null language (denoted by  ) does not contain any string. A 

language L is a subset of *  [3]. A language can be classified into regular, context-free, context-
sensitive and recursive enumerable. A regular language can be represented by an RE or a finite 
automaton (FA). 
           RE a, where a , depicts a regular language {a}.  and   are the REs describing null 
string ( ) and null language ( ) respectively. If r1 and r2 are REs depicting the languages L1 and L2 
respectively, then union, concatenation and Kleene closure are described by the REs 1 2 ,r r 1 2r r  and 

*
1r respectively. Union, concatenation and Kleene closure rules can be finitely applied many times [3]. 

           FA is a quintuple [3] 0( , , , , ),M Q q F   where Q is the set of states,   is an alphabet,   
is a transition function { } ,Q Q      0q Q  is the starting state and F Q  is the set of final 
states. Deterministic finite automaton (DFA) can be represented by a partial function 
( : )Q Q  . Non-deterministic finite automaton (NFA) may or may not involve -transitions; 
 -free NFA does not contain any  -transitions and its transition function can be represented by 

Q Q   . 
            Shuffling [3] of two strings x and y comprises all strings z such that each position of z is     
assigned either to x or y for each string z. If we concatenate the symbols of the positions prescribed 
to x from left to right, we obtain the string x. Similarly, if we concatenate the symbols of the 
positions prescribed to y from left to right, we obtain the string y. Formally, shuffling can be defined 
by a Ш (b a  Ш ) (b b a  Ш )  for *( , ) ( , )a b     . For example, given 01  and 

ab  , then  Ш {01 ,0 1 ,0 1, 01, 0 1, 01 }ab a b ab ab a b a b  . Shuffling of two languages Li and Lj can 
be defined by iL Ш 1{ |jL w w w  Ш 2 1 2, ( ) ( )}i jw w L w L     . 

            A PRE can be described using a parallel finite automaton (PFA) [12], which consists of 7-
tuple 0( , , , , , , ),Q q N F    where 2NQ  is a finite set of states, 0q  is the starting state, N  is a finite 
non-empty set of nodes,   is an alphabet, F N is a set of final nodes,  is a state transition 
function defined by ( ) 2QQ    , and   is a node transition function defined by 

22 ( ) 2N N    . A  -transition represents the joining of two languages with a shuffle operator.   
 A shuffle RE (SRE) is a confined form of PRE, in which the shuffle operators explicitly occur 
between REs. Conversion of an SRE to an RE or a DFA has been studied widely with respect to the 
concurrency aspects. 
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LITERATURE REVIEW   
 Estrade et al. [2] investigated the explicitly PRE, proposed an algorithm for the conversion of 
SREs to NFAs using PFA as an intermediate step and designed a tool kit FLAT in the PERL 
language. Figure 1 delineates the PFA corresponding to SRE (10)r  Ш *0  using Estrade et al.’s 
methodology. Biegler et al. [13] reasserted  that shuffle decomposition is not unique over the finite 
sets. Gelade [5] proved that a double exponential size is required for the conversion of PREs to REs. 
Hovland [14] proposed a membership algorithm for an RE with unordered concatenation, which is a 
limited form of shuffle operator, for example ( & ) { , }acb ge acbge geacb , where & represents the 
unordered concatenation. Standard generalised markup language [14] allows the use of unordered 
concatenation. Gelade et al. [15] worked on REs with numerical constraints and a shuffle operator. 
They depicted the overview of complexity for the decision problems of XML schema languages, 
namely DTDs, RELAX NG, and XSDs. Berstel et al. [16] studied different kinds of language 
classified based on the shuffle operations and proved partial results for the star-free commutative 
language. 
 
 
 
 
 

 
 
 
 
 
 

Figure 1.  PFA for (10)r  Ш *0 using Estrade et al.’s methodology  
 
SREs can be used for depicting the number of processes competing for the critical section 

[8]. Each critical section of a process can be described by a symbol. For example, critical sections of  
three processes can be represented by a, (ab)* and b*. For a single CPU, the SRE describes the 
probabilistic ways of scheduling. An equivalent RE commensurate with the SRE renders the way for 
tasks to be completed. In the case of resource reduction in the modelling of concurrent systems, 
partial serialisation can be useful [2]. In this paper, we propose a novel algorithm for the conversion 
of SREs into  -free NFAs without using intermediate steps.  

Methodologies exist in the literature for the conversion of REs into NFAs, namely 
Thompson’s construction [17], partial derivatives [18] and follow automata [19]. Estrade et al. [2] 
worked on the conversion of SRE into NFA using PFA as an intermediate state. SRE-to-PFA 
conversion can be achieved by using modified Thompson’s construction. PFA with n states can be 
converted into an NFA requiring 2n states in the worst case [2]. However, an RE can be converted 
into DFA directly with fewer states than the trivial Thompson’s construction. The motivation for this 
research stems from the scope for the conversion of an SRE into a DFA by extending the direct 
conversion method. 
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PROPOSED APPROACH  
            In the direct method of conversion of REs into DFAs [1, 20], a syntax tree is constructed for 
the augmented RE. Firstpos, lastpos and nullable are determined using the rules given in Table 1. 
Additional rules for the shuffle operator are described with those for the direct conversion of RE into 
DFA [1, 20].  Followpos are determined using the rules given in Table 2. Firstpos, lastpos, followpos 
and nullable are determined for the nodes of the syntax tree, and using these followpos, an 
equivalent DFA can be generated. 
 
 Table 1.  Rules for firstpos(r), lastpos(r) and nullable 

 
    RE          Firstpos(r)             Lastpos(r)                Nullable 
r       false  
r       True 
r a  ( )position a  ( )position a  false  

i jr r r   ( ) ( )i jfirstpos r firstpos r  ( ) ( )i jlastpos r lastpos r  ( ) ( )i jnullable r nullable r  

i jr r r  If ( )iL r   
( ) ( )i jfirstpos r firstpos r  

Else 
( )ifirstpos r  

If ( )jL r   
( ) ( )i jlastpos r lastpos r  

Else 
( )jlastpos r  

( ) ( )i jnullable r nullable r  

*
ir r  ( )ifirstpos r  ( )ilastpos r  true  

ir r Ш jr  ( ) ( )i jfirstpos r firstpos r  ( ) ( )i jlastpos r lastpos r  ( ) ( )i jnullable r nullable r  
 
                     Table 2.  Computation of followpos 

 
RE                             Followpos 

i jrr r  For ( )ip lastpos r  
 ( ) ( ) ( )jfollowpos p followpos p firstpos r   

*
ir r  For ( )ip lastpos r  

( ) ( ) ( )ifollowpos p followpos p firstpos r   
 

 SRE r with s shuffle operators can be dispensed to s+1 sub-regular expressions r1,r2,…,rs+1 

such that: 
1.  r=r1 Ш r2 Ш… Шrs+1 
2.  r1, r2, …, rs+1 are the REs. 

An augmented SRE can be obtained by adding # before each shuffle operator and at the end 
of SRE r. A syntax tree (similar to that shown in Figure 2) is constructed for the augmented SRE 
such that the symbols and #’s appear at leaf nodes and operators appear as the internal nodes. For all 
leaf nodes, except a node labelled with #, followpos are calculated. Followpos(#) is taken as null set. 
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Figure 2.  Syntax tree for augmented SRE 

 
           Followpos for each sub-regular expression is calculated severally. Consider SRE ir r Ш jr  

having a single shuffle operator. Firstpos, lastpos and followpos of ri and rj are calculated severally. 
The starting state of the NFA is the union of firstpos(ri) and firstpos(rj). Lastpos of the root node is 
determined by taking the union of all positions labelled with #. State qi is a final state if 

( ) ilastpos root q . Using the definition of shuffle, the resulting NFA must include all strings 
generated from the shuffling of ri and rj. The final state of the NFA accepts all strings generated from 
ri Ш rj. At any instant of time during the processing of string w, consider qi is the current state. On 
reading symbol a, from the sub-REs ri and rj, the following two cases can occur after reading symbol 
a as shown in Figure 3. 

 Reading of symbol a from ri: 
(( ( )j iq followpos position r labelled with )a in )iq ( ( )jpositions r in )iq  

 Reading of symbol a from rj: 
(( ( )k jq followpos position r labelled with )a in )iq ( ( )ipositions r in )iq  

 
 

 
 
 
 

 
 

          Figure 3.  Reading symbol a from ri Ш rj  
 

           Similarly, there is a possibility of reading symbol a on states qj and qk from sub-expressions rj 
and ri respectively. Hence, if ( ( ) ( ) ) (i j isymbols r symbols r r   Ш )jr r , then an NFA is 

generated from r using the proposed approach. Repeating this procedure, all possible shuffled strings 
can be generated. The final state of the NFA will accept all strings which are obtained by ri Ш rj. In 
general, SRE r consists of (s+1) sub-REs (r1, r2, r3, …, rs+1), such that r = r1 Ш r2 Ш r3 Ш … Ш 
rs+1. At any instant of time during the processing of a string w, consider qi is the current state. Symbol 
a can be taken from sub-REs rx, ry and rz of the state qi. The following cases can occur after reading 
symbol a: 
 

a qi 

qj 

qk 
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 Reading symbol a from rx: 
(( ( )j xq followpos position r labelled with )a in )iq ( ( ))i xq positions r   

 Reading symbol a from ry: 
(( ( )k yq followpos position r labelled with )a in )iq ( ( ))i yq positions r   

 Reading symbol a from rz: 
(( ( )l zq followpos position r labeled with )a in )iq ( ( ))i zq positions r   

           Further, reading of symbol a from the sub-expression ry and rz on state qj is possible. 
Similarly, there is a possibility of reading symbol a on states qk and ql. Repeating this procedure, all 
possible shuffled strings can be generated from the sub-regular expressions r1, r2, …, rs+1. The final 
state will accept all strings of the SRE r. If a common symbol appears in different sub-REs of r 
involved in shuffling, then DFA cannot be generated directly from SRE r. Algorithms for the 
conversion of SRE into NFA are depicted in Schemes 1-3.  
 
 
Algorithm 1:  SRE_ NFA ( ,p NFA) 
Input:   SRE p 
Output:  -free NFA equivalent to SRE p 

1. Generate augmented SRE p.                               
2. Construct a syntax tree for augmented SRE p.   // Syntax tree construction 
3. Calculate_Follow(p).    // Call to Procedure Calculate_follow 
4. Create_NFA(firstpos,lastpos, followpos).   // Call to Procedure Create_NFA 

 
                        Scheme 1.  Algorithm for the conversion of SRE into  -free NFA 
 
 Notations used in the algorithm Calculate_Follow(p) are as follows. Consider c1 and c2 are 
the left and right child during traversal of a node delineated by union, concatenation and shuffle 
operators. Consider c1 is the only child of a node delineated by Kleene closure. Let a indicate symbol 
from  . Position(n) depicts the position of the symbol embarked at RE n. Using Brueggemann-
Klein’s methodology [20], firstpos, lastpos and followpos are determined for all nodes except for 
shuffle operator. The rules for determination of firstpos, lastpos, nullable and followpos are depicted 
in Tables 1-2. The same are represented by the procedure Calculate_Follow(p) as shown in the 
Scheme 2.  
 The reading of a symbol of a state is processed by two steps. In the first step we find the 
followpos of the current symbol from a sub-RE. In the second step we add the positions of other 
sub-REs involved in a shuffling of the current state to the result of the first step. This process is 
repeated for each q Q  and each a . The initial and final states are determined using the firstpos 
and lastpos of the root node respectively. The complete procedure is specified in Scheme 3.  
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Algorithm 2:  Calculate_Follow(p) 
Input: Syntax tree for the SRE r 
Output: Firstpos, lastpos and followpos 

1. Repeat steps 2 to 6 for each node n during the post-order traversal of the syntax tree do 
2. If ( ' ' '#')n a n    then                             // Leaf node 

  ( ) ( )firstpos n position n  
   ( ) ( )lastpos n position n  
            End If 

3. If ' 'n    then                                        // Union node 
  1 2( ) ( ) ( )firstpos n firstpos c firstpos c   
  1 2( ) ( ) ( )lastpos n lastpos c lastpos c   

 End If 
4. If '.'n  then                                      // Concatenation node 

  1( ) ( )firstpos n firstpos c  
  2( ) ( )lastpos n lastpos c                          
  If 1 '* 'c   then                     // nullable at left child is true      
   2( ) ( ) ( )firstpos n firstpos n firstpos c                               

  End If 
  If 2 '* 'c   then                        // nullable at right child is true 
   1( ) ( ) ( )lastpos n lastpos n lastpos c                               

  End If 
  For each 1( )i lastpos c do 
   2( ) ( ) ( )followpos i followpos i firstpos c    

                      End For  
 End If 

5. If '* 'n   then                                    // Kleene closure 
             1( ) ( )firstpos n firstpos c  
  1( ) ( )lastpos n lastpos c  
                        For each ( )i lastpos n do 
   ( ) ( ) ( )followpos i followpos i firstpos n                                 
                        End For 
 End If 

6. If 'n   Ш '  then                                        // Shuffle operator 
  1 2( ) ( ) ( )firstpos n firstpos c firstpos c   
                       1 2( ) ( ) ( )lastpos n lastpos c lastpos c        

  
 End If 
             

 
Scheme 2.  Procedure for computing firstpos, lastpos and followpos of the SRE p 
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Algorithm 3:  Create_NFA (firstpos, followpos, lastpos) 
Input: Firstpos, lastpos and followpos of SRE p 
Output: NFA equivalent to SRE p 

1. 0 ( )q firstpos root  

 s number of shuffle operator in p 
2. 0Q q  and make 0q  as unmarked. 
3. Repeat steps 4-9, while there is an unmarked state q Q do 
4. Choose an unmarked state q and mark it. 
5. Pr 0evlast                      //indicates the last position of the sub-expression recently 

processed 
            1i   

6. Repeat steps 7-9 while ( 1)i s      // Reading of a on the current sub-expression 
7. thcurrentlast i value of ( )lastpos root    

            T   
            For ( )pos q  do 
             If (Pr evlast pos )currentlast  
   T T pos                        
  End If 
 End For 
            N q T                  // Remaining positions of the other sub-expressions 

8. For a   do 
             Newstate    
  For t T  do 
   If ( ( ) )symbol t a then 

     ( )Newstate Newstate followpos t   
 End If 
End For 

 If Newstate   
             Newstate Newstate N   
  [ , ]Tran q a Newstate  

If Newstate Q then  
Q Q Newstate   
Make Newstate as unmarked state.      

End If 
            End If 

9. prevlast currentlast  
1i i   

10. 0 { | ( )}q q q firstpos root                                                //Starting state  
            { | ( ) }f f fF q q Q lastpos root q                                //Final state       
 
   Scheme 3.  Algorithm for generating equivalent NFA from SRE p 
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 The complete procedure for the conversion of SRE to NFA is expounded by the following 
numerical example. 
Example.  Given *( ( ) )r a a b  Ш * *( )a b  

 Augmented *
1 2 3 4( ( ) ) #r a a b  Ш * *

5 6 7( ) #a b  
 Figure 4 delineates the syntax tree for the augmented SRE. The firstpos of a node is depicted 
on the left side of the node in blue colour and the lastpos of a node is depicted on the right side of 
the node in green colour.     

  
Figure 4.  Syntax tree for *( ( ) )r a a b  Ш * *( )a b  

 
 The following values are determined using algorithm 2:  
 (1) {2,3, 4}followpos   
 (2) {2,3, 4}followpos   
 (3) {2,3, 4}followpos        
 (5) {5,6,7}followpos        
 (6) {6,7}followpos   
 (4) (7)followpos followpos    
 Figure 5 delineates the NFA 0 1 0 1 0 0 1({ , , , },{ , }, , ,{ , })M q q F F a b q F F corresponding to SRE 

r. 

 
 

                                     Figure 5.  NFA for *( ( ) )r a a b  Ш * *( )a b  



 
Maejo Int. J. Sci. Technol.  2013, 7(03), 396-407  
 

 

405

DESCRIPTIONAL COMPLEXITY OF THE OBTAINED NFA  
 

In this section, analysis is carried out on state complexity of the NFA obtained using Estrade 
et al. methodology [2] and the proposed approach.  It is well known that a PFA with n states can be 
converted into an NFA with 2n states. This leads to the following theorems:  

Theorem 1.  If C is the number of occurrence of the concatenation operator in SRE r, then 
the NFA obtained using Estrade et al.’s methodology [2] requires 22|r|-3C states in the worst case. 
           Proof: Estrade et al.’s methodology converts r to a PFA using the modified Thompson’s 
construction [8]. The number of states of the PFA using the modified Thompson’s construction is 
equal to 2|r|-3C. A PFA with n states can be converted to an NFA using the subset construction that 
requires 2n states in the worst case [2]. Hence, a PFA with 2|r|-3C states can be converted to an 
NFA using a subset construction requiring 22|r|-3C states in the worst case.                                        □                        
 Theorem 2.  If m denotes the number of instances of symbols and s denotes the number of 
shuffle operators in the SRE r, then a  -free NFA can be constructed using the proposed algorithm 
requiring 2m+s+1 states in the worst case. 
            Proof.  In the proposed algorithm, the syntax tree is constructed such that all symbols and 
#’s appear as leaf nodes. Each state can be constructed using the positions assigned to the leaf nodes. 
The total number of leaf nodes in the syntax tree is (m+s+1). The maximum 2m+s+1 states can be 
constructed using the positions of the syntax tree. Hence, using the proposed algorithm, the worst 
case state complexity of the NFA is 2m+s+1.                                                                                      □                     
           Theorem 3.  The state complexity of the proposed algorithm is less than the state complexity 
of Estrade et al.’s methodology [2] for the conversion of an SRE to an NFA. 
            Proof.  SRE r with m, u, k, s and c represent instances of symbols, union, Kleene closure, 
shuffle and concatenations respectively. The worst-case state complexity of the proposed algorithm 
and of Estrade et al.’s methodology are 2m+s+1 and 22(m+u+k+s)-C respectively. That the proposed 
algorithm will generate an NFA with fewer states can be proved by the relation: 

1 2( ) 1 2 2m s m u k s C m u k s C              
 Each concatenation operation is performed between two symbols. Similarly, n  concatenation 
can be performed with at least (n+1) symbols, which means 1m C  .   

Hence, the relation 1 2 2m u k s C      always holds and the worst-case state complexity 
of the proposed algorithm is always less than that of Estrade et al.’s methodology.                          □               
 The worst-case state complexity of the  -NFA is 2| | 32 r C  using Estrade et al.’s methodology 
[2]. The pattern matching will decelerate if the NFA consists of  -transitions. Using the proposed 
algorithm, a  -free NFA is generated.       
 The worst case-state complexity of the NFA is 12m s  . Table 3 describes the differences 
between the proposed approach and Estrade et al.’s methodology [2]. 
  
      
 
 
 
 
 



 
Maejo Int. J. Sci. Technol.  2013, 7(03), 396-407  
 

 

406

Table 3.  Comparison between the proposed algorithm and Estrade et al.’s methodology 
 

             Criterion      Proposed algorithm    Estrade et al.’s methodology 
Worst-case state complexity 12m s   2| | 32 r C  
Output  -free NFA  -NFA 
Conversion chain SRE   NFA   DFA SRE PFA  NFA   DFA 

 
CONCLUSIONS AND FUTURE SCOPE  
           An algorithm has been designed for the conversion of SREs into  -free NFAs without using 
any intermediate steps. Using the proposed approach, a svelte NFA is generated. The number of 
states of the NFA generated using the proposed approach is equal to 2m+s+1 states in the worst case, 
which is a significant improvement over the existing approaches in the literature. Another advantage 
of this approach is that the  -free NFAs is produced. Pattern matching is delayed if the NFA 
consists of  -transitions. Further, if ( ir Ш ) (( ( ) ( )) ),j i jr r symbols r symbols r    then it is 

implausible to generate a DFA directly from the SRE. This approach will be useful in the field of 
process algebra and concurrent aspects. In the future, this work can be extended to the conversion of 
PREs into REs. The reduction of time and state complexity for the conversion of SREs into NFAs 
can also be carried out. 
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