Maejo International Journal of Science and Technology

ISSN 1905-7873 Available online at www.mijst.mju.ac.th

Full Paper

On r-duals of some difference sequence spaces

Mikail Et¹, Mahmut Isik² and Yavuz Altin^{1,*}

¹ Department of Mathematics, Firat University, 23119, Elazığ, Turkey

² Department of Statistics, Firat University, 23119, Elazığ, Turkey

* Corresponding author, e-mail: yaltin23@yahoo.com

Received: 8 January 2013 / Accepted: 12 November 2013 / Published: 28 November 2013

Abstract: In this paper we introduce and examine some properties of the sequence spaces $C(\Delta_v^m, \lambda, p)$, $C[\Delta_v^m, \lambda, p]$, $C_{\infty}(\Delta_v^m, \lambda, p)$, $C_{\infty}[\Delta_v^m, \lambda, p]$ and $V(\Delta_v^m, \lambda, p)$, and compute the $r\alpha$ -, $r\beta$ - and $r\gamma$ -duals of the sequence spaces $\ell_{\infty}(v)$, c(v) and $c_0(v)$, and the $r\alpha$ - and rN-duals of the sequence spaces $\mathcal{L}_{\infty}(\Delta_v^m)$ and $C_{\infty}[\Delta_v^m]$.

Keywords: Cesàro sequence spaces, difference sequence, dual space

INTRODUCTION

Let *w* be the set of all sequences of real or complex numbers and ℓ_{∞} , *c* and c_0 be respectively the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with the usual norm $||x|| = \sup |x_k|$, where $k \in \mathbb{N} = \{1, 2, ...\}$, the set of positive integers. Also, by *bs*, *cs*, ℓ_1 and ℓ_p , we denote the spaces of all bounded, convergent, absolutely and *p*-absolutely convergent series respectively.

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$. The generalised de la Vallée-Poussin mean is defined by $t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k$, where $I_n = [n - \lambda_n + 1, n]$ for n = 1, 2, ... A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number L if $t_n(x) \rightarrow L$ as $n \rightarrow \infty$ [1]. If $\lambda_n = n$, then (V, λ) -summability and strongly (V, λ) -summability are reduced to (C, 1)-summability and [C, 1]-summability respectively.

The notion of difference sequence spaces was introduced by Kızmaz [2] and it was generalised by Et and Çolak [3]. Recently, the difference spaces bv_p consisting of the sequences $x = (x_k)$ such that $(x_k - x_{k-1}) \in \ell_p$ have been studied in the case of $0 by Altay and Başar [4], and in the case of <math>1 \le p < \infty$ by Başar and Altay [5], Çolak *et al.* [6] and Başar [7]. Since then

Et and Esi [8] generalised these sequence spaces to the following sequence spaces. Let $v = (v_k)$ be any fixed sequence of non-zero complex numbers and *m* be a non-negative integer. Then,

$$\Delta_{\nu}^{m}(X) = \left\{ x = (x_{k}) : (\Delta_{\nu}^{m} x_{k}) \in X \right\}$$

for $X = \ell_{\infty}$, c or c_0 , where $m \in \mathbb{N}$, $\Delta_v^0 x = (v_k x_k)$ and $\Delta_v^m x = (\Delta_v^{m-1} x_k - \Delta_v^{m-1} x_{k+1})$, and so $\Delta_v^m x_k = \sum_{i=0}^m (-1)^i {m \choose i} v_{k+i} x_{k+i}$.

The sequence spaces $\Delta_{\nu}^{m}(X)$ are Banach spaces normed by

$$\left\|x\right\|_{\Delta} = \sum_{i=1}^{m} \left|v_{i}x_{i}\right| + \left\|\Delta_{v}^{m}x_{k}\right\|_{\alpha}$$

for $X = \ell_{\infty}$, *c* or c_0 . Recently the difference sequence spaces have been studied by different research workers [9-29]. The Cesàro sequence spaces Ces_p and Ces_{∞} were introduced by Shiue [30], and Jagers [31] determined the Köthe duals of the sequence space Ces_p ($1). It can be shown that the inclusion <math>\ell_p \subset Ces_p$ is strict for $1 . Later on the Cesàro sequence spaces <math>X_p$ and X_{∞} of non-absolute type were defined by Ng and Lee [32, 33].

Let X be a sequence space. Then X is called:

i) Solid (or normal) if $(\alpha_k x_k) \in X$ for all sequences (α_k) of scalars with $|\alpha_k| \le 1$ for all $k \in \mathbb{N}$, whenever $(x_k) \in X$;

ii) Symmetric if $(x_k) \in X$ implies $(x_{\pi(k)}) \in X$, where π is a permutation of N;

iii) Sequence algebra if $x.y \in X$, whenever $x, y \in X$.

The determination of the dual spaces is important in the theory of sequence spaces. The concepts of α -, β - and γ -duality are well known and the topology of the sequence spaces can be defined by duality. The idea of α -, β - and γ - duality was generalised by Et [34] to $r\alpha$ -, $r\beta$ - and $r\gamma$ - duality $(r \ge 1)$. The main purpose of this paper is to introduce the $r\alpha$ -, $r\beta$ -, $r\gamma$ - and rN-duals of some sequence spaces.

MAIN RESULTS

In this section we prove some results involving the sequence spaces $C(\Delta_v^m, \lambda, p)$, $C[\Delta_v^m, \lambda, p]$, $C_{\infty}(\Delta_v^m, \lambda, p)$, $C_{\infty}[\Delta_v^m, \lambda, p]$ and $V[\Delta_v^m, \lambda, p]$

Definition 1. Let $m \ge 1$ and $1 \le p < \infty$. We define the following sequence spaces:

$$C(\Delta_{\nu}^{m},\lambda,p) = \left\{ x = (x_{k}) : \sum_{n=1}^{\infty} \left| \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \Delta_{\nu}^{m} x_{k} \right|^{p} < \infty \right\},$$

$$C[\Delta_{\nu}^{m},\lambda,p] = \left\{ x = (x_{k}) : \sum_{n=1}^{\infty} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left| \Delta_{\nu}^{m} x_{k} \right| \right)^{p} < \infty \right\},$$

$$C_{\infty}(\Delta_{\nu}^{m},\lambda,p) = \left\{ x = (x_{k}) : \sup_{n} \left| \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \Delta_{\nu}^{m} x_{k} \right|^{p} < \infty \right\},$$

$$C_{\infty}[\Delta_{\nu}^{m},\lambda,p] = \left\{ x = (x_{k}) : \sup_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left| \Delta_{\nu}^{m} x_{k} \right|^{p} < \infty \right\},$$

$$V[\Delta_{\nu}^{m},\lambda,p] = \left\{ x = (x_{k}) : \lim_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left| \Delta_{\nu}^{m} x_{k} - \ell \right|^{p} = 0 \right\}$$

We get the following sequence spaces from the above sequence spaces, giving particular values to λ , p, v, ℓ and m.

i) For p = 1, we write $C(\Delta_{\nu}^{m}, \lambda)$, $C[\Delta_{\nu}^{m}, \lambda]$, $C_{\infty}(\Delta_{\nu}^{m}, \lambda)$, $C_{\infty}[\Delta_{\nu}^{m}, \lambda]$ and $V[\Delta_{\nu}^{m}, \lambda]$ instead of $C(\Delta_{\nu}^{m}, \lambda, p)$, $C[\Delta_{\nu}^{m}, \lambda, p]$, $C_{\infty}(\Delta_{\nu}^{m}, \lambda, p)$, $C_{\infty}[\Delta_{\nu}^{m}, \lambda, p]$ and $V[\Delta_{\nu}^{m}, \lambda, p]$ respectively.

ii) For $\lambda_n = n$ for all $n \in \mathbb{N}$ and p = 1, we write $C(\Delta_v^m)$, $C[\Delta_v^m]$, $C_{\infty}(\Delta_v^m)$, $C_{\infty}[\Delta_v^m]$ and $V[\Delta_v^m]$ instead of $C(\Delta_v^m, \lambda, p)$, $C[\Delta_v^m, \lambda, p]$, $C_{\infty}(\Delta_v^m, \lambda, p)$, $C_{\infty}[\Delta_v^m, \lambda, p]$ and $V[\Delta_v^m, \lambda, p]$ respectively. If $x \in V[\Delta_v^m, \lambda, p]$, we say that x is Δ_v^m -strongly λ_p -summable to ℓ .

iii) In the case of v = (1,1,1,...), we write $C(\Delta^m,\lambda,p)$, $C[\Delta^m,\lambda,p]$, $C_{\infty}(\Delta^m,\lambda,p)$, $C_{\infty}[\Delta^m,\lambda,p]$ and $V[\Delta^m,\lambda,p]$ instead of $C(\Delta^m_{\nu},\lambda,p)$, $C[\Delta^m_{\nu},\lambda,p]$, $C_{\infty}(\Delta^m_{\nu},\lambda,p)$, $C_{\infty}[\Delta^m_{\nu},\lambda,p]$ and $V[\Delta^m_{\nu},\lambda,p]$ respectively.

iv) In the special case of p = 1, $\lambda_n = n$ for all $n \in \mathbb{N}$ and $\ell = 0$, we write $V_0[\Delta_v^m]$ instead of $V[\Delta_v^m, \lambda, p]$.

v) Also in the special case of p = 1, v = (1, 1, 1, ...) and m = 0, we write $C(\lambda)$, $C[\lambda]$, $C_{\infty}(\lambda)$, $C_{\infty}[\lambda]$ and $V[\lambda]$ instead of $C(\Delta_{v}^{m}, \lambda, p)$, $C[\Delta_{v}^{m}, \lambda, p]$, $C_{\infty}(\Delta_{v}^{m}, \lambda, p)$, $C_{\infty}[\Delta_{v}^{m}, \lambda, p]$ and $V[\Delta_{v}^{m}, \lambda, p]$ respectively.

Let X denote one of the sequence $C(\Delta_v^m, \lambda, p)$, $C[\Delta_v^m, \lambda, p]$, $C_{\infty}(\Delta_v^m, \lambda, p)$, $C_{\infty}[\Delta_v^m, \lambda, p]$ and $V[\Delta_v^m, \lambda, p]$, and let Y denote one of the sequence $C(\Delta^m, \lambda, p)$, $C[\Delta^m, \lambda, p]$, $C_{\infty}(\Delta^m, \lambda, p)$, $C_{\infty}[\Delta^m, \lambda, p]$ and $V[\Delta^m, \lambda, p]$. We note that the sequence space X is different from the sequence space Y and $X \cap Y \neq \phi$. For this, let $x = (k^m)$ and v = (k); then $x \in C_{\infty}[\Delta^m, \lambda, p]$, but $x \notin C_{\infty}[\Delta_v^m, \lambda, p]$. Conversely, if we choose $x = (k^{m+1})$ and $v = (k^{-1})$, then $x \in C_{\infty}[\Delta_v^m, \lambda, p]$, but $x \notin C_{\infty}[\Delta^m, \lambda, p]$ The above sequence spaces contain some unbounded sequences for $m \ge 1$. For example, the sequence $x = (k^m)$ is an element of $C_{\infty}[\Delta_v^m, \lambda, p]$ but is not an element of ℓ_{∞} .

The proof of the following two theorems can be established by using the known standard techniques; therefore we give them without proof.

Theorem 1. Let $m \ge 1$ and $1 \le p < \infty$; then the sets of sequences $C(\Delta_v^m, \lambda, p)$, $C[\Delta_v^m, \lambda, p]$, $C_{\infty}(\Delta_v^m, \lambda, p)$, $C_{\infty}[\Delta_v^m, \lambda, p)$] and $V[\Delta_v^m, \lambda, p]$ are linear spaces with the coordinate-wise additition and scalar multiplication of sequences.

Theorem 2. Let $m \ge 1$ and $1 \le p < \infty$; then the following inclusions are strict.

$$i) \quad C(\Delta_{\nu}^{m-1},\lambda,p) \subset C(\Delta_{\nu}^{m},\lambda,p),$$

$$ii) \quad C[\Delta_{\nu}^{m-1},\lambda,p] \subset C[\Delta_{\nu}^{m},\lambda,p],$$

$$iii) \quad C[\Delta_{\nu}^{m},\lambda,p] \subset C(\Delta_{\nu}^{m},\lambda,p),$$

$$iv) \quad C(\Delta_{\nu}^{m},\lambda,p) \subset C(\Delta_{\nu}^{m},\lambda,q) \quad (0
$$v) \quad C_{\infty}(\Delta_{\nu}^{m-1},\lambda,p) \subset C_{\infty}(\Delta_{\nu}^{m},\lambda,p),$$

$$vi) \quad C_{\infty}[\Delta_{\nu}^{m-1},\lambda,p] \subset C_{\infty}(\Delta_{\nu}^{m},\lambda,p),$$

$$vii) \quad C_{\infty}[\Delta_{\nu}^{m-1},\lambda,p] \subset C_{\infty}(\Delta_{\nu}^{m},\lambda,p),$$

$$viii) \quad V[\Delta_{\nu}^{m-1},\lambda,p] \subset V[\Delta_{\nu}^{m},\lambda,p],$$

$$ix) \quad V[\Delta_{\nu}^{m},\lambda,p] \subset C_{\infty}[\Delta_{\nu}^{m},\lambda,p].$$$$

Note that $C(\Delta_v^m, \lambda, p)$ and $c(\Delta_v^m)$ overlap, but neither one contains the other. Actually the sequence $x = (k^m)$ is an element of $c(\Delta_v^m)$ but not an element of $C(\Delta_v^m, \lambda, p)$, and $x = ((-1)^k)$ belongs to $C(\Delta_v^m, \lambda, p)$ but not to $c(\Delta_v^m)$, where $c(\Delta_v^m) = \{x = (x_k) : (\Delta_v^m x_k) \in c\}$.

Theorem 3. The sequence space $C[\Delta_{\nu}^{m}, \lambda, p]$ is a Banach-Coordinate- or *BK*-space normed by

$$\left\|x\right\|_{1} = \sum_{i=1}^{m} \left|v_{i}x_{i}\right| + \left(\sum_{n=1}^{\infty} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left|\Delta_{v}^{m}x_{k}\right|\right)^{p}\right)^{\frac{1}{p}}, \ \left(1 \le p < \infty\right).$$

$$\tag{1}$$

 $C_{\infty}[\Delta_{\nu}^{m},\lambda,p]$ and $V[\Delta_{\nu}^{m},\lambda,p]$ are *BK*-spaces normed by

$$\left\|x\right\|_{2} = \sum_{i=1}^{m} \left|v_{i}x_{i}\right| + \sup_{n} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left|\Delta_{v}^{m}x_{k}\right|^{p}\right)^{\frac{1}{p}}, \left(1 \le p < \infty\right)$$

$$\tag{2}$$

Proof. We give the sketch of proof for $C_{\infty}[\Delta_{\nu}^{m}, \lambda, p]$. The others can be proved in the same way. Let (x^{s}) be a Cauchy sequence in $C_{\infty}[\Delta_{\nu}^{m}, \lambda, p]$, where $x^{s} = (x_{i}^{s})_{i=1}^{\infty}$. Then there exists a positive integer n_{0} such that $||x^{s} - x^{t}||_{2} < \varepsilon$ for all $s, t > n_{0}$.

Hence (x_i^s) (for $i \le m$) and $(\Delta_v^m(x_k^s))$ for all $k \in \mathbb{N}$ are Cauchy sequence in C. Since C is complete, these sequences are convergent in C. Suppose that $x_i^s \to x_i$ (for $i \le m$) and $\Delta_v^m(x_k^s) \to y_k$ for each $k \in \mathbb{N}$ as $s \to \infty$. Then we can find a sequence (x_k) such that $y_k = \Delta_v^m x_k$ for each $k \in \mathbb{N}$. These x_k 's can be written as

Maejo Int. J. Sci. Technol. 2013, 7(03), 456-466

$$x_{k} = v_{k}^{-1} \sum_{i=1}^{k-m} (-1)^{m} {\binom{k-i-1}{m-1}} y_{i} = v_{k}^{-1} \sum_{i=1}^{k} (-1)^{m} {\binom{k+m-i-1}{m-1}} y_{i-m},$$

for sufficiently large k, for instance k > m, where $y_{1-m} = y_{2-m} = \dots = y_0 = 0$.

Thus, $(\Delta_{\nu}^{m}(x_{k}^{s})) = ((\Delta_{\nu}^{m}(x_{k}^{1})), (\Delta_{\nu}^{m}(x_{k}^{2})), ...)$ converges to $\Delta_{\nu}^{m}x_{k}$ for each $k \in \mathbb{N}$ in C. Hence $||x^{s} - x||_{2} \to 0$ as $s \to \infty$. Since $(x^{s} - x)$, $(x^{s}) \in C_{\infty}[\Delta_{\nu}^{m}, \lambda, p]$ and the space $C_{\infty}[\Delta_{\nu}^{m}, \lambda, p]$ are linear, we have $x = x^{s} - (x^{s} - x) \in C_{\infty}[\Delta_{\nu}^{m}, \lambda, p]$ Hence $C_{\infty}[\Delta_{\nu}^{m}, \lambda, p]$ is complete. Since $C_{\infty}[\Delta_{\nu}^{m}, \lambda, p]$ is a Banach space with continuous coordinates, that is, $||x^{n} - x||_{2} \to 0$ implies $|x_{k}^{n} - x_{k}| \to 0$ for each $k \in \mathbb{N}$ as $n \to \infty$, it is *BK*-space.

In the same way it can be shown that $C[\Delta_{\nu}^{m}, \lambda, p]$ is a *BK*-space normed by (1) and $V[\Delta_{\nu}^{m}, \lambda, p]$ is a *BK*-space normed by (2).

Theorem 4. The sequence space $C(\Delta_v^m, \lambda, p)$ is a *BK*-space normed by

$$\|x\|_{3} = \sum_{i=1}^{m} |v_{i}x_{i}| + \left(\sum_{n=1}^{\infty} \left|\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}\Delta_{v}^{m}x_{k}\right|^{p}\right)^{\frac{1}{p}}, (1 \le p < \infty)$$

and the space $C_{\infty}(\Delta_{\nu}^{m},\lambda)$ is a *BK*-space normed by

$$\|x\|_4 = \sum_{i=1}^m |v_i x_i| + \sup_n \left(\left| \frac{1}{\lambda_n} \sum_{k \in I_n} \Delta_v^m x_k \right| \right).$$

Proof. The proof is similar to that of Theorem 3.

Theorem 5. The sequence spaces $C(\lambda)$, $C[\lambda]$, $C_{\infty}(\lambda)$ and $C_{\infty}[\lambda]$ are solid and hence monotone, but the sequence spaces $C(\Delta_{\nu}^{m}, \lambda, p)$, $C[\Delta_{\nu}^{m}, \lambda, p]$, $C_{\infty}(\Delta_{\nu}^{m}, \lambda, p)$, $C_{\infty}[\Delta_{\nu}^{m}, \lambda, p]$ and $V[\Delta_{\nu}^{m}, \lambda, p]$ are neither solid nor symmetric, nor sequence algebras for $m \ge 1$.

Proof. Let $x = (x_k) \in C_{\infty}[\lambda]$ and $y = (y_k)$ be sequences such that $|x_k| \le |y_k|$ for each $k \in \mathbb{N}$. Then we get

$$\frac{1}{\lambda_n}\sum_{k\in I_n} |x_k| \leq \frac{1}{\lambda_n}\sum_{k\in I_n} |y_k|.$$

Hence $C_{\infty}[\lambda]$ is solid and hence monotone. Let p = 1 and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $(x_k) = (k^{m-1}) \in C_{\infty}[\Delta_v^m, \lambda, p]$ but $(\alpha_k x_k) \notin C_{\infty}[\Delta_v^m, \lambda, p]$ when $\alpha_k = (-1)^k$ for all $k \in \mathbb{N}$. Hence $C_{\infty}[\Delta_v^m, \lambda, p]$ is not solid. The other cases can be proved on considering similar examples.

DUAL SPACES

The definitions of the $r\alpha$ -, $r\beta$ -, $r\gamma$ - and rN-duals of a sequence space were introduced by Et [34]. Since then the $r\alpha$ -duals of some sequence spaces were studied by Bektas *et al.* [35], Chandra and Tripathy [36], and Tripathy and Sarma [37]. In this section we compute the $r\alpha$ -, $r\beta$ and $r\gamma$ -duals of the sequence spaces $\ell_{\infty}(v), c(v), c_0(v)$, the rN-duals of the sequence spaces $C_{\infty}(\Delta_v^m)$, $C_{\infty}[\Delta_v^m]$ and $V_0[\Delta_v^m]$, and the $r\alpha$ -duals of the sequence spaces $C_{\infty}(\Delta_v^m)$ and $C_{\infty}[\Delta_v^m]$

Definition 2 [34]. Let X be any sequence space with $1 \le r < \infty$, and define

$$X^{r\alpha} = \left\{ a = (a_k) : \sum_k |a_k x_k|^r < \infty, \text{ for each } x \in X \right\},$$

$$X^{r\beta} = \left\{ a = (a_k) : \sum_k (a_k x_k)^r \text{ is convergent, for each } x \in X \right\},$$

$$X^{r\gamma} = \left\{ a = (a_k) : \sup_n \left| \sum_{k=0}^n (a_k x_k)^r \right| < \infty, \text{ for each } x \in X \right\},$$

$$X^{rN} = \left\{ a = (a_k) : \lim_k (a_k x_k)^r = \lim_k a_k x_k = 0, \text{ for each } x \in X \right\} = X^N$$

Then $X^{r\alpha}, X^{r\beta}, X^{r\gamma}$ and X^{rN} are called $r\alpha$ -, $r\beta$ -, $r\gamma$ - and rN-duals of X respectively. It can be shown that $X^{r\alpha} \subset X^{r\beta} \subset X^{r\gamma}$ and if $X \subset Y$, then $Y^{r\eta} \subset X^{r\eta}$ for $\eta \in \{\alpha, \beta, \gamma, N\}$. If we take r = 1 in this definition, then we obtain the α -, β - and γ -duals of X. If $X = (X^{r\alpha})^{r\alpha}$, then X is called $r\alpha$ - perfect. **Lemma 1.** $x \in C_{\infty}(\Delta_{\gamma}^{m})$ implies $\sup_{n} (n^{-1} |\Delta_{\gamma}^{m-1}x_{n}|) < \infty$.

Proof. Firstly, we have

$$\frac{1}{n}\sum_{k=1}^{n}\Delta_{v}^{m}x_{k}=\frac{1}{n}\left(\Delta_{v}^{m-1}x_{1}-\Delta_{v}^{m-1}x_{n+1}\right)$$

If $x \in C_{\infty}(\Delta_{v}^{m})$, then we have

$$\frac{1}{n+1} \left| \Delta_{\nu}^{m-1} x_{n+1} \right| \le \frac{1}{n} \left| \Delta_{\nu}^{m-1} x_{n+1} \right| \le \left| \frac{1}{n} \sum_{k=1}^{n} \Delta_{\nu}^{m} x_{k} \right| + \left| \Delta_{\nu}^{m-1} x_{1} \right|$$

and this implies that $\sup_n (n^{-1} | \Delta_v^{m-1} x_n |) < \infty$.

Lemma 2. $\operatorname{Sup}_n(n^{-1} | \Delta_v^{m-1} x_n |) < \infty$ implies $\operatorname{sup}_n(n^{-m} | v_n x_n |) < \infty$. **Proof.** Omitted.

Lemma 3. $x \in C_{\infty}(\Delta_{\nu}^{m})$ implies $\sup_{n} (n^{-m} | \nu_{n} x_{n} |) < \infty$. **Proof.** Proof follows from Lemma 1 and Lemma 2.

Lemma 4 [35]. Let *m* be a positive integer. Then

$$\left[\ell_{\infty}\left(\Delta_{v}^{m}\right)\right]^{N} = \left[c\left(\Delta_{v}^{m}\right)\right]^{N} = \left\{a = (a_{n}): v_{n}^{-1}n^{m}a_{n} \to 0, n \to \infty\right\}$$

and

$$[c_0(\Delta_v^m)]^N = \{a = (a_n): \sup_n | \sum_{k=0}^n \binom{n+m-k-1}{m-1} v_n^{-1} a_n | < \infty\},\$$

where

$$X(\Delta_{v}^{m}) = \{x = (x_{k}) : (\Delta_{v}^{m} x_{k}) \in X\} \text{ for } X = \ell_{\infty}, c \text{ and } c_{0}.$$

Theorem 6. Let $m \ge 1$ and $1 \le r < \infty$. Then

(i)
$$[C_{\infty}(\Delta_{v}^{m})]^{r\alpha} = U_{1}^{(r)},$$

(ii) $[U_{1}^{(r)}]^{r\alpha} = U_{2}^{(r)}.$

where

$$U_{1}^{(r)} = \left\{ a = (a_{k}) : \sum_{k=1}^{\infty} k^{rm} |v_{k}^{-1}a_{k}|^{r} < \infty \right\},\$$
$$U_{2}^{(r)} = \left\{ a = (a_{k}) : \sup_{k} k^{-rm} |v_{k}a_{k}|^{r} < \infty \right\}.$$

Proof. (i) Let $a \in U_1^{(r)}$; then

$$\sum_{k=1}^{\infty} |a_k x_k|^r = \sum_{k=1}^{\infty} k^{rm} |v_k^{-1} a_k|^r k^{-rm} |v_k x_k|^r \le \sup_k k^{-rm} |v_k x_k|^r \sum_{k=1}^{\infty} k^{rm} |v_k^{-1} a_k|^r < \infty$$
(3)

for each $x \in C_{\infty}(\Delta_{v}^{m})$ by Lemma 3. Hence $a \in [C_{\infty}(\Delta_{v}^{m})]^{r\alpha}$. Since $\ell_{\infty}(\Delta_{v}^{m}) \subset C_{\infty}(\Delta_{v}^{m})$, we have $[C_{\infty}(\Delta_{v}^{m})]^{r\alpha} \subset [\ell_{\infty}(\Delta_{v}^{m})]^{r\alpha} = U_{1}^{(r)}$; hence $a \in U_{1}^{(r)}$.

(*ii*) Let $a \in U_2^{(r)}$ and $x \in U_1^{(r)}$. Then from (3) we have $a \in [U_1^{(r)}]^{r\alpha}$. Now suppose that $a \in [U_1^{(r)}]^{r\alpha}$ and $a \notin U_2^{(r)}$. Then we have $\sup_k k^{-rm} |v_k a_k|^r = \infty$. Hence there is a strictly increasing sequence (k(i)) of positive integers k(i) such that

$$[k(i)]^{-rm} | v_{k(i)} a_{k(i)} |^{r} > i^{m}.$$

We define the sequence $x = (x_k)$ by

$$x_{k} = \begin{cases} |a_{k(i)}|^{-1}, & k = k(i) \\ 0, & k \neq k(i). \end{cases}$$

Then we have

$$\sum_{k=1}^{\infty} k^{rm} |v_k^{-1} x_k|^r = \sum_{i=1}^{\infty} [k(i)]^{rm} |v_{k(i)} a_{k(i)}|^{-r}$$
$$\leq \sum_{i=1}^{\infty} i^{-m} < \infty, \quad m \ge 2.$$

Hence $x \in U_1^{(r)}$ and $\sum_{k=1}^{\infty} |a_k x_k|^r = \sum_{k=1}^{\infty} 1 = \infty$. This contradicts $a \in [U_1^{(r)}]^{r\alpha}$; hence $a \in U_2^{(r)}$.

Theorem 7. Let $m \ge 1$ and $1 \le r < \infty$. Then

(i) $\{C_{\infty}[\Delta_{\nu}^{m}]\}^{r\alpha} = U_{1}^{(r)},$ (ii) $[U_{1}^{(r)}]^{r\alpha} = U_{2}^{(r)}.$

Proof. The proof is similar to that of Theorem 6.

Corollary 1. The sequence spaces $C_{\infty}(\Delta_{\nu}^{m})$ and $C_{\infty}[\Delta_{\nu}^{m}]$ are not $r\alpha$ -perfect for $m \ge 1$.

Let $v = (v_k)$ be any fixed sequence of non-zero complex numbers and let E stand for ℓ_{∞} , c and c_0 . Then we define $E(v) = \{x = (x_k) : (v_k x_k) \in E\}$. In the following theorem we give the $r\alpha$ -, $r\beta$ - and $r\gamma$ -duals of E(v).

Theorem 8. Let $m \ge 1$ and $1 \le r < \infty$. Then $[E(v)]^{r\eta} = U^{(r)}$ for $\eta \in \{\alpha, \beta, \gamma\}$, where

$$U^{(r)} = \left\{ a = (a_k) : \sum_{k=1}^{\infty} \left| v_k^{-1} a_k \right|^r < \infty \right\}$$

Proof. We give the proof for the case $E = \ell_{\infty}$ and $\eta = \alpha$. If $a \in U^{(r)}$, then

Maejo Int. J. Sci. Technol. 2013, 7(03), 456-466

$$\sum_{k=1}^{\infty} |a_k x_k|^r \le \sup_k |v_k x_k|^r \sum_{k=1}^{\infty} |\frac{a_k}{v_k}|^r < \infty$$

for each $x \in \ell_{\infty}(v)$; hence $a \in [\ell_{\infty}(v)]^{r\alpha}$. Now suppose that $a \in [\ell_{\infty}(v)]^{r\alpha}$ and $a \notin U^{(r)}$. Then there is a strictly increasing sequence (n_i) of positive integers n_i such that

$$\sum_{k=n_i+1}^{n_{i+1}} |v_k^{-1}a_k|^r > i^r$$

Let $x \in \ell_{\infty}(v)$ be defined by

$$x_{k} = \begin{cases} 0, & 1 \le k \le n_{1} \\ v_{k}^{-1}(\operatorname{sgn} a_{k})/i, & n_{i} < k \le n_{i+1} \end{cases}$$

Then we may write

$$\sum_{k=1}^{\infty} |a_k x_k|^r = \sum_{k=n_1+1}^{n_2} |a_k x_k|^r + \dots + \sum_{k=n_l+1}^{n_{l+1}} |a_k x_k|^r + \dots$$
$$= \sum_{k=n_1+1}^{n_2} |v_k^{-1} a_k|^r + \dots + \frac{1}{i^r} \sum_{k=n_l+1}^{n_{l+1}} |v_k^{-1} a_k|^r + \dots$$
$$> 1 + 1 + \dots = \sum_{i=1}^{\infty} 1 = \infty.$$

This contradicts $a \in (\ell_{\infty}(v))^{r\alpha}$; hence $a \in U^{(r)}$. The proofs for the cases $X = c_0$ or c and $\eta \in \{\beta, \gamma\}$ are similar.

Corollary 2. *i*) Let $v_k = 1$ for all $k \in \mathbb{N}$. Then we have

$$\left[C_{\infty}(\Delta_{\nu}^{m})\right]^{r\alpha} = \left\{C_{\infty}\left[\Delta_{\nu}^{m}\right]\right\}^{r\alpha} = G_{1}^{(r)} \text{ and } \left[G_{1}^{(r)}\right]^{r\alpha} = G_{2}^{(r)}.$$

where

$$G_1^{(r)} = \{a = (a_k) : \sum_{k=1}^{\infty} k^{rm} | a_k |^r < \infty\},\$$

$$G_2^{(r)} = \{a = (a_k) : \sup_k k^{-rm} | a_k |^r < \infty\},\$$

(*ii*) Let $v_k = 1$ for all $k \in \mathbb{N}$ and m = 0. Then we have

$$[C_{\infty}(\Delta_{\nu}^{m})]^{r\alpha} = \left\{ C_{\infty} \left[\Delta_{\nu}^{m} \right] \right\}^{r\alpha} = \ell_{r} = \{ a = (a_{k}) : \sum_{k=1}^{\infty} |a_{k}|^{r} < \infty \},$$

(*iii*) Let $v_k = 1$ for all $k \in \mathbb{N}$. Then we have $U^{(r)} = \ell_r$.

Lemma 5 [35]. Let *m* be a positive integer. Then

i) There exist positive constants, M_1 and M_2 , such that $M_1 k^m \le \binom{m+k}{k} \le M_2 k^m$, k = 0, 1, 2...

ii) $\sum_{k=0}^{n} {\binom{n+m-k-1}{m-1}} = {\binom{n+m}{m}} = {\binom{n+m}{n}},$ *iii*) If $x \in c_0(\Delta_v^m)$, then ${\binom{m+k}{k}}^{-1} v_k x_k \to 0, (k \to \infty).$ **Theorem 9.** Let $1 \le r < \infty$, and *m* be a positive integer. Then $[C_{\infty}(\Delta_{v}^{m})]^{rN} = \{C_{\infty}[\Delta_{v}^{m}]\}^{rN} = [C_{\infty}(\Delta_{v}^{m})]^{N} = \{C_{\infty}[\Delta_{v}^{m}]\}^{N} = U_{1}(v)$ and $\{V_{0}[\Delta_{v}^{m}]\}^{rN} = \{V_{0}[\Delta_{v}^{m}]\}^{N} = U_{2}(v)$ where

$$U_1(v) = \{a = (a_n): v_n^{-1} n^m a_n \to 0, n \to \infty\}$$
$$U_2(v) = \{a = (a_n): \sup_n | \sum_{k=0}^n \binom{n+m-k-1}{m-1} v_n^{-1} a_n | < \infty\}.$$

Proof. The proof of the part $[C_{\infty}(\Delta_{\nu}^{m})]^{N} = [C_{\infty}(\Delta_{\nu}^{m})]^{N} = U_{1}(\nu)$ is easy. We only show that $\{V_{0}[\Delta_{\nu}^{m}]\}^{N} = U_{2}(\nu)$. Since $[c_{0}(\Delta_{\nu}^{m})]^{N} = U_{2}(\nu)$ and $c_{0}(\Delta_{\nu}^{m}) \subset V_{0}[\Delta_{\nu}^{m}]$, we have $[c_{0}(\Delta_{\nu}^{m})]^{N} \subset U_{2}$. Let $a \in U_{2}(\nu)$ and $x \in V_{0}[\Delta_{\nu}^{m}]$. Then by Lemma 5 *i*), *ii*) and *iii*), we obtain

$$\lim_{n} a_{n} x_{n} = \lim_{n} \left(\sum_{k=0}^{n} \binom{n+m-k-1}{m-1} \right) v_{n}^{-1} a_{n} \left(\sum_{k=0}^{n} \binom{n+m-k-1}{m-1} \right)^{-1} v_{n} x_{n} = 0.$$

Hence $a \in \{V_0[\Delta_v^m]\}^{\mathbb{N}}$.

ACKNOWLEDGEMENTS

This research was supported by FUBAP (The Management Union of the Scientific Research Projects of Firat University) under the Project Number: FUBAP 1646. The authors are thankful to the referees whose comments improve the quality of the paper.

REFERENCES

- 1. L. Leindler, "Über die de la Vallee-Pousinsche Summierbarkeit allgemeiner Orthogonalreihen", *Acta Math. Acad. Sci. Hungar.*, **1965**, *16*, 375-387.
- 2. H. Kızmaz, "On certain sequence spaces", Canad. Math. Bull., 1981, 24, 169-176.
- 3. M. Et and R. Çolak, "On some generalized difference sequence spaces", *Soochow J. Math.*, **1995**, *21*, 377-386.
- 4. B. Altay and F. Başar, "The fine spectrum and the matrix domain of the difference operator Δ on the sequence space ℓ_p , (0 ",*Commun. Math. Anal.*,**2007**,*2*, 1-11.
- 5. F. Başar and B. Altay, "On the space of sequences of *p*-bounded variation and related matrix mappings", *Ukrainian Math. J.*, **2003**, *55*, 136-147.
- 6. R. Çolak, M. Et and E. Malkowsky, "Some Topics of Sequence Spaces", Firat University Press, Elazığ, **2004**.
- F. Başar, "Summability Theory and Its Applications", Bentham Science Publishers, Istanbul, 2012.
- 8. M. Et and A. Esi, "On Köthe-Toeplitz duals of generealized difference sequence spaces", *Bull. Malaysian Math. Sci. Soc.*, **2000**, *23*, 25-32.
- 9. B. Altay and F. Başar, "On the fine spectrum of the difference operator Δ on c_0 and c", *Inform. Sci.*, **2004**, *168*, 217-224.

- 10. B. Altay, "On the space of *P*-summable difference sequences of order *m*, $(1 \le p < \infty)$ ", *Studia Sci. Math. Hungar.*, **2006**, *43*, 387-402.
- 11. V. K. Bhardwaj and I. Bala, "Generalised difference sequence space defined by $|\overline{N}, p_k|$ summability and an Orlicz function in seminormed space", *Math. Slovaca*, **2010**, *60*, 257-264.
- 12. I. Djolović and E. Malkowsky, "Characterizations of compact operators on some Euler spaces of difference sequences of order *m*", *Acta Math. Sci.*, **2011**, *31B*, 1465-1474.
- 13. M. Et, "On some generalised Cesàro difference sequence spaces", Istanbul Univ. Fen. Fak. Mat. Derg., 1996/97, 55/56, 221-229.
- 14. M. Et, "Spaces of Cesàro difference sequences of order *r* defined by a modulus function in a locally convex space", *Taiwanese J. Math.*, **2006**, *10*, 865-879.
- M. Et and M. Işık, "On pα -dual spaces of generalised difference sequence spaces", Appl. Math. Lett., 2012, 25, 1486-1489.
- M. Işık, "On statistical convergence of generalised difference sequences", Soochow J. Math., 2004, 30, 197-205.
- M. Güngör and M. Et, "Δ^r strongly almost summable sequences defined by Orlicz functions", *Indian J. Pure Appl. Math.*, **2003**, *34*, 1141-1151.
- 18. E. Malkowsky and S. D. Parashar, "Matrix transformations in spaces of bounded and convergent difference sequences of order *m*", *Analysis*, **1997**, *17*, 87-97.
- 19. M. Mursaleen, "Generalised spaces of difference sequences", J. Math. Anal. Appl., 1996, 203, 738-745.
- 20. P. D. Srivastava and S. Kumar, "Generalised vector-valued paranormed sequence space using modulus function", *Appl. Math. Comput.*, **2010**, *215*, 4110-4118.
- 21. B. C. Tripathy, Y. Altin and M. Et, "Generalised difference sequence spaces on seminormed space defined by Orlicz functions", *Math. Slovaca*, **2008**, *58*, 315-324.
- 22. Z. U. Ahmad and M. Mursaleen, "Köthe-Toeplitz duals of some new sequence spaces and their matrix maps", *Publ. Inst. Math. (Belgr.)*, **1987**, *42*, 57-61.
- 23. E. Malkowsky, "Absolute and ordinary Köthe-Toeplitz duals of some sets of sequences and matrix transformations", *Publ. Inst. Math. (Belgr.)*, **1989**, *46*, 97-103.
- 24. E. Malkowsky, M. Mursaleen and S. Suantai, "The dual spaces of sets of difference sequences of order *m* and matrix transformations", *Acta Math. Sin. Engl. Ser.*, **2007**, *23*, 521-532.
- 25. M. Mursaleen and A. K. Noman, "On some new difference sequence spaces of non-absolute type", *Math. Comput. Model.*, **2010**, *52*, 603-617.
- 26. B. C. Tripathy and S. Mahanta, "On a class of vector-valued sequences associated with multiplier sequences", *Acta Math. Appl. Sin. Engl. Ser.*, **2004**, *20*, 487-494.
- 27. B. C. Tripathy and B. Hazarika, "I-convergent sequence spaces associated with multiplier sequences", *Math. Inequal. Appl.*, **2008**, *11*, 543-548.
- 28. B. C. Tripathy and P. Chandra, "On some generalized difference paranormed sequence spaces associated with multiplier sequence defined by modulus function", *Anal. Theory Appl.*, **2011**, *27*, 21-27.
- B. C. Tripathy and A. Baruah, "Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers", *Kyungpook Math. J.*, 2010, 50, 565-574.
- 30. J. S. Shiue, "On the Cesàro sequence space", Tamkang J. Math., 1970, 2, 19-25.

- 31. A. A. Jagers, "A note on Cesàro sequence spaces", Nieuw Arch. Wisk., 1974, 22, 113-124.
- 32. P. N. Ng and P. Y. Lee, "On the associate spaces of Cesàro sequence space", *Nanta Math.*, **1976**, *9*, 168-172.
- 33. P. N. Ng and P. Y. Lee, "Cesàro sequence spaces of non-absolute type", *Comment. Math.*, **1978**, *20*, 429-433.
- 34. M. Et, "On some topological properties of generalized difference sequence spaces", *Int. J. Math. Math. Sci.*, **2000**, *24*, 785-791.
- 35. Ç. A. Bektaş, M. Et and R. Çolak, "Generalised difference sequence spaces and their dual spaces", J. Math. Anal. Appl., 2004, 292, 423-432.
- 36. P. Chandra and B. C. Tripathy, "On generalized Köthe-Toeplitz duals of some sequence spaces", *Indian J. Pure Appl. Math.*, **2002**, *33*, 1301-1306.
- 37. B. C. Tripathy and B. Sarma, "Generalized Köthe-Toeplitz duals of some double sequence spaces", *Fasc. Math.*, **2008**, *40*, 119-125.
- © 2013 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for noncommercial purposes.