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Abstract: In this paper we introduce and examine some properties of the sequence spaces  
  ,,, pC m

v    ,,, pC m
v  ,),,( pC m

v    pC m
v ,,  and ),,( pV m

v  , and compute the r-, r- 

and r-duals of the sequence spaces   ,v c() and  vc0 , and the r- and rN-duals of the sequence 

spaces )( m
vC   and  m

vC  . 
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INTRODUCTION 
  

Let w be the set of all sequences of real or complex numbers and  ,    c   and  0c   be 

respectively the Banach spaces of bounded, convergent and null sequences   kxx    with the usual 

norm ,sup kxx   where  ,,2,1 Nk  the set of positive integers. Also, by ,,csbs 1  and p ,  

we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series 
respectively. 

Let  n   be a non-decreasing sequence of positive numbers tending to  such that  

,11  nn   .11   The generalised de la Vallée-Poussin mean is defined by   ,1
k

Ik
n xxt

n
n 
    

where   nnI nn ,1    for  ,...2,1n . A sequence  kxx   is said to be  ,V -summable to a 

number L if   Lxtn  as n [1]. If ,nn  then (V,)-summability and strongly (V,)- 

summability are reduced to  1,C -summability and   1,C -summability respectively. 
The notion of difference sequence spaces was introduced by Kızmaz [2] and it was 

generalised by Et and Çolak [3]. Recently, the difference spaces pbv consisting of the sequences 

 kxx   such that  1 kk xx p  have been studied in the case of 10  p  by Altay and Başar 

[4], and in the case of  p1  by Başar and Altay [5], Çolak et al. [6] and Başar [7]. Since then 
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Et and Esi [8] generalised these sequence spaces to the following sequence spaces. Let  )( kvv    be 
any fixed sequence of non-zero complex numbers and m  be a non-negative integer. Then, 

 
      XxxxX k

m
vk

m
v  :  

for , X c  or ,0c where ,Nm  kkv xvx 0  and  1
11


  k

m
vk

m
v

m
v xxx , and so  

  .1
0

ikik
i

mim

i
k

m
v xvx 










    

The sequence spaces   Xm
v   are Banach spaces normed by 

 


 k

m
vii

m
i xxvx 1  

 
for , X c or .0c  Recently the difference sequence spaces have been studied by different 

research workers [9-29]. The Cesàro sequence spaces pCes and Ces were introduced by Shiue [30], 

and Jagers [31] determined the Köthe duals of the sequence space pCes   p1 . It can be shown 

that the inclusion pp Ces  is strict for  p1 . Later on the Cesàro sequence spaces  pX  and 

X of non-absolute type were defined by Ng and Lee [32, 33]. 
Let X  be a sequence space. Then X  is called: 

i) Solid (or normal) if Xxkk )(  for all sequences )( k  of scalars with 1k  for all ,Nk   

whenever Xxk )( ; 

ii) Symmetric  if  Xxk )(  implies ,)( )( Xx k   where   is a permutation of ;N   

iii) Sequence algebra  if ,. Xyx   whenever  ., Xyx    
The determination of the dual spaces is important in the theory of sequence spaces. The 

concepts of -, - and -duality are well known and the topology of the sequence spaces can be 
defined by duality. The idea of -, - and - duality was generalised by Et [34] to r-, r-  and  r- 
duality  1r . The main purpose of this paper is to introduce the r-, r-, r- and rN-duals of some 
sequence spaces. 
 
MAIN RESULTS   

In this section we prove some results involving the sequence spaces  ,,, pC m
v     

 ,,, pC m
v    ),,,( pC m

v    pC m
v ,,   and   .,, pV m

v    
 
Definition 1.  Let  1m   and   p1 . We define the following sequence spaces: 
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We get the following sequence spaces from the above sequence spaces, giving particular 

values to  ,,, vp    and  .m   

)i   For ,1p  we write  ,,m
vC    ,,m

vC   ),,( m
vC   ,m

vC   and  ,m
vV   instead of  

 ,,, pC m
v    ,,, pC m

v   ),,,( pC m
v    pC m

v ,,   and   pV m
v ,,   respectively. 

)ii   For nn   for all Nn  and ,1p  we write  ,m
vC    ,m

vC   ),( m
vC   m

vC   and  m
vV    

instead of  pC m
v ,,  ,  pC m

v ,,  , ),,,( pC m
v   pC m

v ,,  and  pV m
v ,,  respectively. If  

 ,,, pVx m
v   we say that x  is m

v -strongly p -summable to  . 

)iii   In the case of  ,...),1,1,1(v   we write   pC m ,,  ,  pC m ,,  , ),,,( pC m    pC m ,,   

and  pV m ,,  instead of   pC m
v ,,  ,   pC m

v ,,  ,  ),,,( pC m
v    pC m

v ,,   and   pV m
v ,,   

respectively. 
)iv   In the special case of ,1p  nn   for all Nn   and ,0   we write  m

vV 0   instead of  

 pV m
v ,, . 

)v   Also in the special case of  ,1p  ,...)1,1,1(v  and ,0m  we write   ,C    ,C   ),(C    

 C  and  V  instead of  pC m
v ,, ,  pC m

v ,,  , ),,,( pC m
v    pC m

v ,,   and   pV m
v ,,   

respectively. 
 

Let X  denote one of the sequence  ,,, pC m
v     ,,, pC m

v    ),,,( pC m
v    pC m

v ,,    

and   pV m
v ,, ,  and  let Y  denote one of the sequence   ,,, pC m       ,,, pC m    ),,,( pC m     

 pC m ,,   and  pV m ,, .  We note that the sequence space X  is different from the sequence 

space Y  and YX . For this, let  mkx    and   kv  ; then   ,,, pCx m     but  

 .,, pCx m
v     Conversely, if we choose   1 mkx   and   1 kv  , then   pCx m

v ,,  ,  but  

 .,, pCx m    
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The above sequence spaces contain some unbounded sequences for  .1m   For example, 

the sequence   mkx    is an element of   pC m
v ,,   but is not an element of  .   

The proof of the following two theorems can be established by using the known standard 
techniques; therefore we give them without proof. 

 
Theorem 1. Let 1m  and ;1  p  then the sets of sequences  pC m

v ,, ,  pC m
v ,, , 

),,( pC m
v  ,   ),, pC m

v    and   pV m
v ,,   are linear spaces with the coordinate-wise  additition 

and scalar multiplication of sequences.  
 
Theorem 2.  Let  1m   and  ;1  p   then the following inclusions are strict. 

 )i        pCpC m
v

m
v ,,,,1    , 

 )ii        ,,,,,1 pCpC m
v

m
v      

 )iii      ,,,,, pCpC m
v

m
v     

 )iv       qCpC m
v

m
v ,,,,       ,0 qp    

 )v        ,,,,,1 pCpC m
v

m
v   


   

 )vi       ,,,,,1 pCpC m
v

m
v   


   

 )vii      ,,,,, pCpC m
v

m
v      

 )viii       ,,,,,1 pVpV m
v

m
v      

 )ix        .,,,, pCpV m
v

m
v     

 
Note that   pC m

v ,,   and  )( m
vc    overlap, but neither one contains the other. Actually the 

sequence   mkx    is an element of  )( m
vc    but not an element of   pC m

v ,, ,  and    kx 1   
belongs to   pC m

v ,,   but not to  ),( m
vc   where   })(:)({ cxxxc k

m
vk

m
v  .   

 
Theorem 3.  The sequence space  pC m

v ,,   is a Banach-Coordinate- or BK-space normed by 

 























 







pxxvx
p

n

p

k
m
v

Iknn
ii

m

i

1 ,1
1

11
1 

.                                                                 (1) 

 pC m
v ,,   and   pV m

v ,,   are  BK-spaces normed by 

 









 



pxxvx
p

n

p

k
m
v

Iknn
ii

m

i

1 ,1sup

1

1
2 

                                                                     (2) 

Proof.  We give the sketch of proof for  pC m
v ,, . The others can be proved in the same way. Let  

 sx   be a Cauchy sequence in   ,,, pC m
v   where 

 1)( i
s
i

s xx . Then there exists a positive integer  

0n   such that ., allfor  02
ntsxx ts    

Hence  s
ix   (for  mi    ) and   )( s

k
m
v x  for all Nk   are Cauchy sequence in .C  Since C  

is complete, these sequences are convergent in .C  Suppose that s
ix ix  (for mi  ) and  

  k
s
k

m
v yx   for each Nk  as s . Then we can find a sequence   kx   such that  ky  k

m
v x   

for each  .Nk  These  sxk '   can be written as 
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    ,
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1
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m
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i
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m
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i
kk y

m
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vx 
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
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


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

















   

for sufficiently large  ,k   for instance  ,mk    where  .0
021   yyy mm    

Thus,           ,, 21
k

m
vk

m
v

s
k

m
v xxx    converges to  k

m
v x   for each  Nk   in  .C   Hence  

0
2
 xx s  as .s  Since  xx s   ,    pCx m

v
s ,,    and the space  pC m

v ,,  are linear, 

we have     .,, pCxxxx m
v

ss     Hence  pC m
v ,,   is complete. Since  pC m

v ,,   is a 

Banach space with continuous coordinates, that is,  0
2
 xxn   implies  0 k

n
k xx   for each  

Nk  as  ,n   it is BK-space.  
In the same way it can be shown that  pC m

v ,,   is a BK-space normed by  1   and  
 pV m

v ,,   is a  BK-space normed by  2 .    
 
Theorem 4.  The sequence space   pC m

v ,,   is a  BK-space normed by 
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and the space  ),( m
vC    is a BK-space normed by 

.1sup
1

4 









 
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Proof.  The proof is similar to that of Theorem 3. 
 
Theorem 5.  The sequence spaces  ,C  ,C  )(C  and  C  are solid and hence monotone, 
but the sequence spaces  ,,, pC m

v    ,,, pC m
v   ),,,( pC m

v   pC m
v ,,  and  pV m

v ,,  are 
neither solid nor symmetric, nor sequence algebras for 1m .  
Proof.  Let    Cxx k   and  kyy   be sequences such that kk yx   for each Nk . Then 
we get  

.11
k

Ikn
k

Ikn

yx
nn







 

Hence  C  is solid and hence monotone. Let 1p  and nn   for all Nn . Then  

   pCkx m
v

m
k ,,)( 1  

   but     pCx m
vkk ,,     when   k

k 1   for all  .Nk   Hence  
 pC m

v ,,   is not solid. The other cases can be proved on considering similar examples. 
 
 DUAL SPACES 
 

The definitions of the r-, r-, r- and rN-duals of a sequence space were introduced by     
Et [34]. Since then the r-duals of some sequence spaces were studied by Bektas et al. [35], 
Chandra and Tripathy [36], and Tripathy and Sarma [37].  In this section we compute the r-, r-  
and  r-duals of the sequence spaces       ,,, 0 vcvcv   the  rN-duals of the sequence spaces  

   m
v

m
v

m
v VCC   0and),(  , and the r-duals of the sequence spaces  )( m

vC    and   .m
vC    

 
Definition 2 [34].  Let X  be any sequence space with   r1 ,  and define 
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Theorem 9.  Let  ,1  r  and m  be a positive integer. Then 
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