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Abstract:  The Fibonacci-Padovan sequence modulo m was studied. Also, the Fibonacci-
Padovan orbits of j -generator finite groups such that 2 5j   was examined. The 
Fibonacci-Padovan lengths of the groups 8Q , 8 2mQ Z  and 8 2mQ Z  for 3m  , where Z 

is integer, were then obtained.  
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INTRODUCTION AND PRELIMINARIES 
 

It is well known that linear recurrence sequences appear in modern research in many fields 
from mathematics, physics, computer science and architecture to nature and art [e.g. 1-10]. The 
study of recurrence sequences in groups began with an earlier work of Wall [11], who investigated  
the ordinary Fibonacci sequences in cyclic groups. The concept was extended to some special linear 
recurrence sequences by several authors [e.g. 12-21]. In this paper, we extend the theory to the 
Fibonacci-Padovan sequences. 

A Fibonacci-Padovan sequence  na  is defined [22] recursively by the equation 

                                                  1 2 3 52 2n n n n na a a a a                                                       (1) 

for 5n  , where 0 1 2 3 41, 1, 3, 3, 7a a a a a     .  
Kalman [23] mentioned that these sequences are special cases of a sequence which is defined 
recursively as a linear combination of the preceding k terms:  

0 1 1 1 1n k n n k n ka c a c a c a       L , 
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where 0 1 1, , , kc c c L  are real constants. Kalman [23] derived a number of closed-form formulas for 
the generalised sequence by companion matrix method as follows: 
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Then by an inductive argument he obtained: 
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            It is well known that a sequence, including that of group elements, is periodic if, after a 
certain point, it consists only of the repetition of a fixed sub-sequence. The number of elements in 
the repeating sub-sequence is the period of the sequence. For example, the sequence 

, , , , , , , , , , , , ,a b c d e b c d e b c d e L  is periodic after the initial element a  and has period 4. A sequence of 
group elements is simply periodic with period k if the first k elements in the sequence form a 
repeating sub-sequence. For example, the sequence , , , , , , , , , , , , , , , , , ,a b c d e f a b c d e f a b c d e f L  is 
simply periodic with period 6. 
 
Definition 1.  For a finite generated group AG  , where  1 2, , ..., nA a a a , the sequence 

1 ii ax , 10  ni , 


 
n

j
jini xx

1
1 , 0i  is called the Fibonacci orbit of G  with respect to the 

generating set A , denoted by  GFA . If  GFA  is periodic, then the length of the period of the 
sequence is called the Fibonacci length of G  with respect to the generating set A , written 

 ALEN G  [24]. 
 
FIBONACCI-PADOVAN SEQUENCES  MODULO m 
 

By (1) and (3), we can write 
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                                         (4) 

for the Fibonacci-Padovan sequence.  Let us take 
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5 5

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 2 2 1

ijM m


 
 
 

       
 
  

. 

which is said to be Fibonacci-Padovan matrix. By mathematical induction, it can be shown that, for 
0n  , 
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                                                         (5)                

 
Reducing the Fibonacci-Padovan sequence by a modulus m , we can get the repeating 

sequence denoted by 
               0 1 2 3 4, , , , , , ,n ia m a m a m a m a m a m a m L L  

where    mod i ia m a m . It has the same recurrence relation as in (1).  
 
Theorem 1.    na m  is a simple periodic sequence.  

Proof.  Let   1 2 5, , , 0 1iU x x x x m   L . Then we have 5U m  being finite; that is, for any 

0j  , there exists i j  such that    4 4i ja m a m  ,    3 3i ja m a m  ,    2 2i ja m a m  , 

   1 1i ja m a m   and    i ja m a m . From the definition of the Fibonacci-Padovan sequence, we 
have 5 4 3 22 2n n n n na a a a a       ; that is, 4 3 2 52 2n n n n na a a a a       . Then we can easily get 
that                1 1 2 2 1 1 0, , , ,i j i j i j i ja m a m a m a m a m a m a m a m         L , which implies 
that   na m is a simple periodic sequence.    

 
Let  l m  denote the smallest period of   na m  and p is used for a prime number. 

Example. We have     2 1,1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,1,0,0,0,0,1,1,1,1,1,na  L , and then 
repeat. So we get   21l m  . 
            For a given matrix ijA a     with ija ’s being integers,  modA m  means that every entry 

of A  is a reduced modulo m ; that is,     mod modijA m a m . Let   mod 0u
i u

p
M M p i   

be a cyclic group and let up
M  denote the order of up

M . It is easy to see from (5) that 

  u
u

p
l p M .        
 
Theorem 2.  Let t  be the largest positive integer such that    tl p l p . Then    tl p p l p    , 
for every t  . 

Proof.  Let q  be a positive integer. Since    
1

1mod
ql p qM I p


 ; that is,    
1

mod
ql p qM I p


 , we 

get that  ql p  divides  1ql p  . On the other hand, writing     ql p q q
ijM I m p   , we have 
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 , 

which yields that  1ql p   divides  ql p p . Therefore,    1q ql p l p   or    1q ql p l p p   , and 

the latter holds if and only if there is a  q
ijm  which is not divisible by p . Since    1t tl p l p  , 

there is an  1t
ijm   which is not divisible by p ; thus,    1 2t tl p l p  . The proof finishes by 

induction on t .  

Theorem 3.  If  
1

, 1i

t
e
i

i

m p t


   where ip ’s are distinct primes, then  l m  lcm  ie
il p 

  .  

Proof.  The statement ‘  ie
il p  is the length of the period of   ie

n ia p ’ implies that the sequence 

  ie
n ia p  repeats only after blocks of length  ie

iu l p ,  u N , where N is natural number ; and 

the statement ‘  l m  is the length of the period   na m ’ implies that   ie
n ia p  repeats after  l m  

terms for all values i . Thus,  l m  is of the form  ie
iu l p  and since any such number gives a 

period of   na m , then we get that  l m  lcm  ie
il p 

  .  
  
            Let    

1 2 5, , ,a a al pL  denote the smallest period of the integer-valued recurrence relation 

1 2 3 52 2n n n n nu u u u u       , 1 1 2 2 5 5, , ,u a u a u a  L  where each entry is a reduced modulo p .  
 
Then we have the following theorem. 
  
Theorem 4.  If 1 2 5 1 2 5, , , , , , ,a a a x x x ZL L , where Z is integer, such that  1 2 5gcd , , , , 1a a a p L  
and  1 2 5gcd , , , , 1x x x p L , then 

       
1 2 5 1 2, , , , , ka a a x x xl p l pL L . 

Proof. Let   p
l p M r  . From (4), it is clear that 
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. This completes the proof.   

 
Conjecture 1.  If p  is a prime, then there exists a   with 0 5   such that 

p
M  divides 

 6p p . 

Conjecture 2.  If p  is a prime such that 2p  , then 
p

M  is an even integer number. Table 1 

lists some primes for which Conjectures 1 and 2 are true. 
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Table 1.  Orders of the cyclic group 
p

M
  

   
2 21 

 
3 104 

 
5 120 

 
29 12194 

 
31 9930 

 
47 72224 

 
71 357910 

 
83 6888 

 
101 100 

 
211 210 

 
401 160800 

 
523 91176 

 
811 59267970 

 
1973 5125429148 

 
2221 365194662 

 
4657 2710956 

 
9473 44868864 

 
30137 454119384 

 
 

FIBONACCI-PADOVAN ORBITS OF FINITE GROUPS 
 
             Let G  be a finite j -generator group and let X  be the subset of 

j

G G G G  L1 4 4 2 4 4 3  such that 

 0 1 1, , , jx x x X L  if and only if G  is generated by 0 1 1, , , jx x x L . We call  0 1 1, , , jx x x L  a 
generating j -tuple for G .  
 
Definition 2.  The Fibonacci-Padovan orbits of finite groups with j -generating ( 2 5j  ) are 
defined as follows:   
i.  Let G  be a 2-generator group. For a generating pair  0 1,x x X , the Fibonacci-Padovan orbit 

 
0 1,x x

FP G  is defined by the sequence  ib  of elements of G  such that  

0 0b x , 1 1b x ,    2
2 0 1b b b ,      2 2

3 0 1 2b b b b ,      2 2
4 1 2 3b b b b , 

       2 2
5 3 2 1n n n n nb b b b b

     for 5n  . 
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ii.  Let G  be a 3-generator group. For a generating triplet  0 1 2, ,x x x X , the Fibonacci-Padovan 
orbit  

0 1 2, ,x x x
FP G  is defined by the sequence  ib  of elements of G  such that  

0 0b x , 1 1b x , 2 2b x ,      2 2
3 0 1 2b b b b ,      2 2

4 1 2 3b b b b , 

       2 2
5 3 2 1n n n n nb b b b b

     for 5n  . 
iii.  Let G  be a 4-generator group. For a generating quadruplet  0 1 2 3, , ,x x x x X , the Fibonacci-
Padovan orbit  

0 1 2 3, , ,x x x x
FP G  is defined by the sequence  ib  of elements of G  such that  

0 0b x , 1 1b x , 2 2b x , 3 3b x ,      2 2
4 1 2 3b b b b , 

       2 2
5 3 2 1n n n n nb b b b b

     for 5n  . 
iv. Let G  be a 5-generator group. For a generating quintuplet  0 1 2 3 4, , , ,x x x x x X , the Fibonacci-
Padovan orbit  

0 1 2 3 4, , , ,x x x x x
FP G  is defined by the sequence  ib  of elements of G  such that  

0 0b x , 1 1b x , 2 2b x , 3 3b x , 4 4b x , 

       2 2
5 3 2 1n n n n nb b b b b

     for 5n  . 

The classic Fibonacci-Padovan sequence in the integers modulo m  can be written as  0,1mFP Z . 
 
Theorem 5.  A Fibonacci-Padovan orbit of a finite group which is generating ( ) is simply 
periodic. 
 
Proof.  Let us consider the group G  as a 4-generator group and let  0 1 2 3, , ,x x x x  be a generating 

quadruplet of G . If the order of G  is n , there are 5n  distinct 5-tuples of elements of G . So at least 
one of the 5-tuples appears twice in the Fibonacci-Padovan orbit of G  for the generating quadruplet 
 0 1 2 3, , ,x x x x ; that is, the sub-sequence following these 5-tuples repeats. Hence the Fibonacci-
Padovan orbit is periodic. Since the Fibonacci-Padovan orbit for the generating quadruplet 
 0 1 2 3, , ,x x x x  is periodic, there are positive integers i  and j , with i j , such that 1 1i jb b  , 

2 2i jb b  , 3 3i jb b  , 4 4i jb b   and 5 5i jb b  . By the defined relation of a Fibonacci-Padovan 
orbit, we know that 

       1 2 2
5 4 3 2i i i i ib b b b b 

     
and 
                                                             1 2 2

5 4 3 2j j j j jb b b b b
 

    . 
Thus, i jb b , and it  follows that  

0 0i j j jb b b x    ,  1 1 11i j j jb b b x      ,  

 2 2 22i j j jb b b x      ,  3 3 33i j j jb b b x      . 

So the Fibonacci-Padovan orbit  
0 1 2 3, , ,x x x x

FP G  is simply periodic. The proof for the 2-generator 

groups, the 3-generator groups and the 5-generator groups is similar to the above and is omitted. 
           We denote the periods of the orbits  

0 , , kx x
FP G

L
with 1 4k   by  

0 , , kx x
LFP G

L
. From the 

definition, it is clear that the period of a Fibonacci-Padovan orbit of a finite group depends on the 
chosen generating set and the order for the assignments of 0 , , kx xL  such that  1 4k  . 
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Definition 3.  Let G  be a finite group. If there exists a Fibonacci-Padovan orbit of the group G  
such that every element of the group G  appears in the sequence, then the group G  is called 
Fibonacci-Padovan sequenceable. 
            We now address the periods of the Fibonacci-Padovan orbits of specific classes of finite 
groups. The usual notation 1 2G G  is used for the semidirect product of the group 1G by 2G, where 

 2 1: AutG G   is a homomorphism such that bb   and 1 1:b G G   is an element  1Aut G .  
            The quaternion group 8Q  is defined by  

4 2 2 1 1
8 , : , ,Q x y x e y x y xy x     ; 

the direct product 8 2mQ Z   3m   is defined by  

 4 2 2 1 2
8 2 , , : , , [ , ] [ , ]m

mQ Z x y z x e y x y xyx z x z y z e        ; 

and the semidirect product 8 2mQ Z   3m   is defined by  
4 2 2 1 2 1 1

8 2 , , : , , , ,m
mQ Z x y z x e y x y xyx z e z xzx e z yzy e

          , 

where, if 2mZ z  , then  2 8: AutmZ Q   is a homomorphism such that ;zz   8 8:z Q Q   
is defined by zx x   and 1

zy y  .  
 
Theorem 6.     8 8, ,

42.
x y y x

LFP Q LFP Q   

Proof.   8 ,y x
FP Q  is 

3 3 3 3 3 3 3 2 2 3 2 3

3 3 3 2 3 2 3 3 3 3

, , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , ,

y x x x yx y xy y x y e y x yx y y y xy y e e y x x
x x y x y xy y xy y y x yx e y y x y e e e y x x x yx L

 
 
which has period  8 ,

42
y x

LFP Q  .  

            The proof for the orbit  8 ,x y
FP Q  is similar to the above and is omitted. 

Remark 1.  The quaternion group 8Q  is Fibonacci-Padovan sequenceable. 
 
Theorem 7.  The period of the Fibonacci-Padovan orbit of the direct product 8 2mQ Z   3m   for 
each generating triplet is  lcm 42, 2l m   . 
 
Proof.  Consider the Fibonacci-Padovan orbit  8 2 , ,m x y z

FP Q Z :  
0 3 5 6 7 8 9 101 2 4

13 15 16 17 18 19 2011 12 14 21

23 25 26 27 28 29 30 322 24

2 3 3

2 2 3 3 2

2 3 3

, , , , , , , , , , , , ,
, , , , , , , , , , ,

, , , , , , , , ,

a a a a a a a aa a a

a a a a a a aa a a a

a a a a a a a aa a

x y z z y z x z xyz yxz yxz xyz yz x z yz
xz yz y z xz xyz yz y z z x z y z x z
z y z xz xyz xyz xyz yxz yz x z y z 1 32

33 34 35 36 37 38 39 40 4341 42 443 3 2

, ,
, , , , , , , , , , , , .

a

a a a a a a a a aa a a

xz
y z z x z xyz yz z z xz yz z z y z L

 

Using the above information, the sequence becomes:  
2 3

0 1 2 3 4

40 41 42 43 2 44
42 43 44 45 46

42 2 42 1 42 42 1 2 42 2
42 42 1 42 2 42 3 42 4

, , , , , ,

, , , , , ,

, , , , , .i i i i i
i i i i i

b x b y b z b z b y z
b xz b yz b z b z b y z
b xz b yz b z b z b y z        

        

    

    

    

L

L

L
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The sequence can be said to form layers of length 42. So we need an i  such that 

2 3
42 42 1 42 2 42 3 42 4, , , ,i i i i ib x b y b z b z b y z            . It is easy to see that the Fibonacci-Padovan 

orbit  8 2 , ,m x y z
FP Q Z  has period  lcm 42, 2l m   .    

            The proof for other generating triplets is similar to the above and is omitted. 
 
Theorem 8.  The period of the Fibonacci-Padovan orbit of the direct product 8 2mQ Z   3m   for 
each generating triplet is  lcm 42, 2l m   . 

Proof.  Consider the Fibonacci-Padovan orbit  8 2 , ,m y x z
FP Q Z :  

0 3 5 6 7 8 9 101 2 4

13 15 16 17 18 19 2011 12 14 21

23 25 26 27 28 29 3022 24

2 3 3

3 3 3 2 3 3 2

2 2 3 3

, , , , , , , , , , , , ,
, , , , , , , , , , ,
, , , , , , , , ,

a a a a a a a aa a a

a a a a a a aa a a a

a a a a a a aa a

y x z z x z y z yxz yxz xyz yxz xz yz x z
y z x z z yz yxz x z z y z y z x z x z
x z y z yz yxz xyz xyz yxz x z y z x 31 32

33 34 35 36 37 38 39 40 4341 42 44

3 3

3 2 3 2

, ,
, , , , , , , , , , , , .

a a

a a a a a a a a aa a a

z y z
x z x z yz yxz x z z z yz xz z z x z L

 

Using the above information, the sequence becomes: 
2 3

0 1 2 3 4

40 41 42 43 2 44
42 43 44 45 46

42 2 42 1 42 42 1 2 42 2
42 42 1 42 2 42 3 42 4

, , , , , ,

, , , , , ,

, , , , , .i i i i i
i i i i i

b y b x b z b z b x z
b yz b xz b z b z b y z
b xz b yz b z b z b x z        

        

    

    

    

L

L

L
 

The sequence can be said to form layers of length 42. So we need an i such that 
2 3

42 42 1 42 2 42 3 42 4, , , ,i i i i ib y b x b z b z b x z            . It is easy to see that the Fibonacci-Padovan orbit 

 8 2 , ,m y x z
FP Q Z  has period  lcm 42, 2l m   .    

            The proof for other generating triplets is similar to the above and is omitted. 
 
Remark 2.  If  2 2l m m  and  42 2l m , the groups 8 2mQ Z  and 8 2mQ Z  such that 3m   are 
not Fibonacci-Padovan sequenceable (where, by  42 2l m , we mean that 42 divides  2l m ).   
 
CONCLUSIONS 
 
              Examining the Fibonacci-Padovan sequence modulo m , we have defined the Fibonacci-
Padovan orbits of j -generator finite groups for 2 5j  . Furthermore, we have obtained the 
Fibonacci-Padovan lengths of the groups 8Q , 8 2mQ Z  and 8 2mQ Z  for 3m  . 
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