Maejo International Journal of Science and Technology

ISSN 1905-7873 Available online at www.mijst.mju.ac.th

Full Paper

The Fibonacci-Padovan sequences in finite groups

Sait Tas^{1,*}, Omur Deveci² and Erdal Karaduman¹

¹ Department of Mathematics, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey

² Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100 Kars, Turkey

* Corresponding author, email: saittas@atauni.edu.tr

Received: 6 November 2013 / Accepted: 3 November 2014 / Published: 17 November 2014

Abstract: The Fibonacci-Padovan sequence modulo *m* was studied. Also, the Fibonacci-Padovan orbits of *j*-generator finite groups such that $2 \le j \le 5$ was examined. The Fibonacci-Padovan lengths of the groups Q_8 , $Q_8 \times Z_{2m}$ and $Q_8 \times_{\varphi} Z_{2m}$ for $m \ge 3$, where Z is integer, were then obtained.

Keywords: Fibonacci-Padovan sequences, recurrence sequences, Fibonacci-Padovan orbits of finite groups, matrix

INTRODUCTION AND PRELIMINARIES

It is well known that linear recurrence sequences appear in modern research in many fields from mathematics, physics, computer science and architecture to nature and art [e.g. 1-10]. The study of recurrence sequences in groups began with an earlier work of Wall [11], who investigated the ordinary Fibonacci sequences in cyclic groups. The concept was extended to some special linear recurrence sequences by several authors [e.g. 12-21]. In this paper, we extend the theory to the Fibonacci-Padovan sequences.

A Fibonacci-Padovan sequence $\{a_n\}$ is defined [22] recursively by the equation

$$a_n = a_{n-1} + 2a_{n-2} - 2a_{n-3} + a_{n-5} \tag{1}$$

for $n \ge 5$, where $a_0 = 1, a_1 = 1, a_2 = 3, a_3 = 3, a_4 = 7$.

Kalman [23] mentioned that these sequences are special cases of a sequence which is defined recursively as a linear combination of the preceding k terms:

$$a_{n+k} = c_0 a_n + c_1 a_{n+1} + L + c_{k-1} a_{n+k-1},$$

where c_0, c_1, L , c_{k-1} are real constants. Kalman [23] derived a number of closed-form formulas for the generalised sequence by companion matrix method as follows:

$$A_{k} = \begin{bmatrix} a_{ij} \end{bmatrix}_{k \times k} = \begin{bmatrix} 0 & 1 & 0 & L & 0 & 0 \\ 0 & 0 & 1 & L & 0 & 0 \\ 0 & 0 & 0 & L & 0 & 0 \\ M & M & ML & M & M \\ c_{0} & c_{1} & c_{2} & L & c_{k-2} & c_{k-1} \end{bmatrix}.$$
(2)

Then by an inductive argument he obtained:

$$A_{k}^{n} \begin{bmatrix} a_{0} \\ a_{1} \\ M \\ a_{k-1} \end{bmatrix} = \begin{bmatrix} a_{n} \\ a_{n+1} \\ M \\ a_{n+k-1} \end{bmatrix}.$$
(3)

It is well known that a sequence, including that of group elements, is periodic if, after a certain point, it consists only of the repetition of a fixed sub-sequence. The number of elements in the repeating sub-sequence is the period of the sequence. For example, the sequence a,b,c,d,e,b,c,d,e,b,c,d,e,L is periodic after the initial element a and has period 4. A sequence of group elements is simply periodic with period k if the first k elements in the sequence form a repeating sub-sequence. For example, the sequence a,b,c,d,e,f,a,b,c,d,e,f,L is simply periodic with period k if the first k elements in the sequence form a repeating sub-sequence. For example, the sequence a,b,c,d,e,f,a,b,c,d,e,f,L is simply periodic with period 6.

Definition 1. For a finite generated group $G = \langle A \rangle$, where $A = \{a_1, a_2, ..., a_n\}$, the sequence $x_i = a_{i+1}, 0 \le i \le n-1, x_{i+n} = \prod_{j=1}^n x_{i+j-1}, i \ge 0$ is called the Fibonacci orbit of G with respect to the generating set A, denoted by $F_A(G)$. If $F_A(G)$ is periodic, then the length of the period of the sequence is called the Fibonacci length of G with respect to the generating set A, written $LEN_A(G)$ [24].

FIBONACCI-PADOVAN SEQUENCES MODULO m

By (1) and (3), we can write

$$\begin{bmatrix} a_{n+1} \\ a_{n+2} \\ a_{n+3} \\ a_{n+4} \\ a_{n+5} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & -2 & 2 & 1 \end{bmatrix} \begin{bmatrix} a_n \\ a_{n+1} \\ a_{n+2} \\ a_{n+3} \\ a_{n+4} \end{bmatrix}$$
(4)

for the Fibonacci-Padovan sequence. Let us take

$$M = \begin{bmatrix} m_{ij} \end{bmatrix}_{5\times 5} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & -2 & 2 & 1 \end{bmatrix}.$$

which is said to be Fibonacci-Padovan matrix. By mathematical induction, it can be shown that, for $n \ge 0$,

$$M^{n} \begin{bmatrix} 1 \\ 1 \\ 3 \\ 3 \\ 7 \end{bmatrix} = \begin{bmatrix} a_{n} \\ a_{n+1} \\ a_{n+2} \\ a_{n+3} \\ a_{n+4} \end{bmatrix}$$
(5)

Reducing the Fibonacci-Padovan sequence by a modulus m, we can get the repeating sequence denoted by

$$\{a_n(m)\} = \{a_0(m), a_1(m), a_2(m), a_3(m), a_4(m), L, a_i(m), L\}$$

where $a_i(m) \equiv a_i \pmod{m}$. It has the same recurrence relation as in (1).

Theorem 1. $\{a_n(m)\}$ is a simple periodic sequence.

Proof. Let $U = \{(x_1, x_2, L_{,x_5}) | 0 \le x_i \le m-1\}$. Then we have $|U| = m^5$ being finite; that is, for any $j \ge 0$, there exists $i \ge j$ such that $a_{i+4}(m) \equiv a_{j+4}(m)$, $a_{i+3}(m) \equiv a_{j+3}(m)$, $a_{i+2}(m) \equiv a_{j+2}(m)$, $a_{i+1}(m) \equiv a_{j+1}(m)$ and $a_i(m) \equiv a_j(m)$. From the definition of the Fibonacci-Padovan sequence, we have $a_{n+5} = a_{n+4} + 2a_{n+3} - 2a_{n+2} + a_n$; that is, $a_n = a_{n+4} + 2a_{n+3} - 2a_{n+2} - a_{n+5}$. Then we can easily get that $a_{i-1}(m) \equiv a_{j-1}(m)$, $a_{i-2}(m) \equiv a_{j-2}(m)$, $L_{i-j+1}(m) \equiv a_1(m)$, $a_{i-j}(m) \equiv a_0(m)$, which implies that $\{a_n(m)\}$ is a simple periodic sequence.

Let l(m) denote the smallest period of $\{a_n(m)\}\$ and p is used for a prime number.

For a given matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ with a_{ij} 's being integers, $A \pmod{m}$ means that every entry of A is a reduced modulo m; that is, $A \pmod{m} \equiv \left(a_{ij} \pmod{m}\right)$. Let $\langle M \rangle_{p^u} = \left\{M^i \pmod{p^u} \middle| i \ge 0\right\}$ be a cyclic group and let $\left|\langle M \rangle_{p^u}\right|$ denote the order of $\langle M \rangle_{p^u}$. It is easy to see from (5) that $l\left(p^u\right) = \left|\langle M \rangle_{p^u}\right|$.

Theorem 2. Let t be the largest positive integer such that $l(p) = l(p^t)$. Then $l(p^{\alpha}) = p^{\alpha - t} \cdot l(p)$, for every $\alpha \ge t$.

Proof. Let q be a positive integer. Since $M^{l(p^{q+1})} \equiv I \pmod{p^{q+1}}$; that is, $M^{l(p^{q+1})} \equiv I \pmod{p^{q}}$, we get that $l(p^{q})$ divides $l(p^{q+1})$. On the other hand, writing $M^{l(p^{q})} = I + (m_{ij}^{(q)} \cdot p^{q})$, we have

Maejo Int. J. Sci. Technol. 2014, 8(03), 279-287

$$M^{l(p^{q})\cdot p} = \left(I + \left(m_{ij}^{(q)} \cdot p^{q}\right)\right)^{p} = \sum_{k=0}^{p} \binom{p}{k} \left(m_{ij}^{(q)} \cdot p^{q}\right)^{k} \equiv I \pmod{p^{q+1}},$$

which yields that $l(p^{q+1})$ divides $l(p^q) \cdot p$. Therefore, $l(p^{q+1}) = l(p^q)$ or $l(p^{q+1}) = l(p^q) \cdot p$, and the latter holds if and only if there is a $m_{ij}^{(q)}$ which is not divisible by p. Since $l(p^t) \neq l(p^{t+1})$, there is an $m_{ij}^{(t+1)}$ which is not divisible by p; thus, $l(p^{t+1}) \neq l(p^{t+2})$. The proof finishes by induction on t.

Theorem 3. If
$$m = \prod_{i=1}^{l} p_i^{e_i}, (t \ge 1)$$
 where p_i 's are distinct primes, then $l(m) = \operatorname{lcm}\left[l\left(p_i^{e_i}\right)\right]$

Proof. The statement $l(p_i^{e_i})$ is the length of the period of $\{a_n(p_i^{e_i})\}$, implies that the sequence $\{a_n(p_i^{e_i})\}$ repeats only after blocks of length $u \cdot l(p_i^{e_i})$, $(u \in N)$, where N is natural number ; and the statement l(m) is the length of the period $\{a_n(m)\}$ implies that $\{a_n(p_i^{e_i})\}$ repeats after l(m) terms for all values i. Thus, l(m) is of the form $u \cdot l(p_i^{e_i})$ and since any such number gives a period of $\{a_n(m)\}$, then we get that $l(m) = \operatorname{lcm} \left[l(p_i^{e_i})\right]$.

Let $l_{(a_1,a_2,L,a_5)}(p)$ denote the smallest period of the integer-valued recurrence relation $u_n = u_{n-1} + 2u_{n-2} - 2u_{n-3} + u_{n-5}$, $u_1 = a_1$, $u_2 = a_2$, L, $u_5 = a_5$ where each entry is a reduced modulo p. Then we have the following theorem.

Theorem 4. If $a_1, a_2, L, a_5, x_1, x_2, L, x_5 \in Z$, where Z is integer, such that $gcd(a_1, a_2, L, a_5, p) = 1$ and $gcd(x_1, x_2, L, x_5, p) = 1$, then

$$l_{(a_1,a_2,L,a_5)}(p) = l_{(x_1,x_2,L,x_k)}(p)$$

Proof. Let $l(p) = |\langle M \rangle_p| = r$. From (4), it is clear that $\begin{vmatrix} u_{n+r} \\ u_{n+r+1} \\ u_{n+r+2} \\ u_{n+r+3} \\ u_{n+r+4} \end{vmatrix} = M^r \begin{vmatrix} u_n \\ u_{n+1} \\ u_{n+2} \\ u_{n+3} \\ u_{n+4} \end{vmatrix}$. So naturally

 $\begin{bmatrix} u_{n+r} \\ u_{n+r+1} \\ u_{n+r+2} \\ u_{n+r+3} \\ u_{n+r+4} \end{bmatrix} \equiv \begin{bmatrix} u_n \\ u_{n+1} \\ u_{n+2} \\ u_{n+3} \\ u_{n+4} \end{bmatrix} \mod p \text{ . This completes the proof.}$

Conjecture 1. If p is a prime, then there exists a σ with $0 \le \sigma \le 5$ such that $|\langle M \rangle_p|$ divides $(p^6 - p^{\sigma})$.

Conjecture 2. If *p* is a prime such that p > 2, then $|\langle M \rangle_p|$ is an even integer number. Table 1 lists some primes for which Conjectures 1 and 2 are true.

p	$\langle M \rangle_p$	$ \langle M \rangle_p (p^6 - p^{\sigma})$
2	21	$ \langle M \rangle_p p^6 - 1$
3	104	$ \langle M \rangle_p p^6 - 1$
5	120	$ \langle M \rangle_p p^6 - p^3, \langle M \rangle_p p^6 - p^4$
29	12194	$\left \langle M \rangle_p \right \left p^6 - 1, \left \langle M \rangle_p \right \right p^6 - p^3$
31	9930	$\left \langle M\rangle_p\right \left p^6-1, \langle M\rangle_p\right \left p^6-p^3\right $
47	72224	$\left \langle M\rangle_p\right \left p^6 - 1 \right $
71	357910	$\left \langle M \rangle_p \right \left p^6 - 1, \left \langle M \rangle_p \right \right p^6 - p^3$
83	6888	$\left \langle M \rangle_p \right \left p^6 - 1, \left \langle M \rangle_p \right \left p^6 - p^2, \left \langle M \rangle_p \right \right p^6 - p^4$
101	100	$ \langle M \rangle_p \mid (p^6 - p^{\sigma}) \text{ for } 0 \le \sigma \le 5$
211	210	$ \langle M \rangle_p (p^6 - p^{\sigma}) \text{ for } 0 \le \sigma \le 5$
401	160800	$\left \langle M \rangle_p \right \left p^6 - 1, \left \langle M \rangle_p \right \right p^6 - p^2, \left \langle M \rangle_p \right \left p^6 - p^4 \right $
523	91176	$ \langle M \rangle_p p^6 - 1, \langle M \rangle_p p^6 - p^2, \langle M \rangle_p p^6 - p^4$
811	59267970	$ \langle M \rangle_p p^6 - 1, \langle M \rangle_p p^6 - p^3$
1973	5125429148	$ \langle M \rangle_p \Big p^6 - 1$
2221	365194662	$ \langle M \rangle_p p^6 - 1, \langle M \rangle_p p^6 - p^3$
4657	2710956	$\left \langle M\rangle_{p}\right \left p^{6}-1, \langle M\rangle_{p}\right \left p^{6}-p^{2}, \langle M\rangle_{p}\right \left p^{6}-p^{4}\right $
9473	44868864	$\left \langle M \rangle_p \right \left p^{\circ} - 1, \left \langle M \rangle_p \right \right p^{\circ} - p^{z}, \left \langle M \rangle_p \right \left p^{\circ} - p^{*} \right $
30137	454119384	$\left \langle M \rangle_p \right \left p^6 - 1, \left \langle M \rangle_p \right \right p^6 - p^2, \left \langle M \rangle_p \right \left p^6 - p^4 \right $

Table 1. Orders of the cyclic group $\langle M \rangle_{n}$

FIBONACCI-PADOVAN ORBITS OF FINITE GROUPS

Let G be a finite j-generator group and let X be the subset of $G \not = G = G \not = G$

Definition 2. The Fibonacci-Padovan orbits of finite groups with *j*-generating $(2 \le j \le 5)$ are defined as follows:

i. Let G be a 2-generator group. For a generating pair $(x_0, x_1) \in X$, the Fibonacci-Padovan orbit $FP(G)_{x_0,x_1}$ is defined by the sequence $\{b_i\}$ of elements of G such that

$$b_{0} = x_{0}, \ b_{1} = x_{1}, \ b_{2} = (b_{0})^{2} (b_{1}), \ b_{3} = (b_{0})^{-2} (b_{1})^{2} (b_{2}), \ b_{4} = (b_{1})^{-2} (b_{2})^{2} (b_{3}), b_{n} = (b_{n-5}) (b_{n-3})^{-2} (b_{n-2})^{2} (b_{n-1}) \text{ for } n \ge 5.$$

ii. Let G be a 3-generator group. For a generating triplet $(x_0, x_1, x_2) \in X$, the Fibonacci-Padovan orbit $FP(G)_{x_0, x_1, x_2}$ is defined by the sequence $\{b_i\}$ of elements of G such that

$$b_{0} = x_{0}, \ b_{1} = x_{1}, \ b_{2} = x_{2}, \ b_{3} = (b_{0})^{-2} (b_{1})^{2} (b_{2}), \ b_{4} = (b_{1})^{-2} (b_{2})^{2} (b_{3}),$$
$$b_{n} = (b_{n-5}) (b_{n-3})^{-2} (b_{n-2})^{2} (b_{n-1}) \text{ for } n \ge 5.$$

iii. Let G be a 4-generator group. For a generating quadruplet $(x_0, x_1, x_2, x_3) \in X$, the Fibonacci-Padovan orbit $FP(G)_{x_0, x_1, x_2, x_3}$ is defined by the sequence $\{b_i\}$ of elements of G such that

$$b_{0} = x_{0}, \ b_{1} = x_{1}, \ b_{2} = x_{2}, \ b_{3} = x_{3}, \ b_{4} = (b_{1})^{-2} (b_{2})^{2} (b_{3}),$$

$$b_{n} = (b_{n-5}) (b_{n-3})^{-2} (b_{n-2})^{2} (b_{n-1}) \text{ for } n \ge 5.$$

iv. Let G be a 5-generator group. For a generating quintuplet $(x_0, x_1, x_2, x_3, x_4) \in X$, the Fibonacci-Padovan orbit $FP(G)_{x_0, x_1, x_2, x_3, x_4}$ is defined by the sequence $\{b_i\}$ of elements of G such that

$$b_0 = x_0, \ b_1 = x_1, \ b_2 = x_2, \ b_3 = x_3, \ b_4 = x_4,$$

 $b_n = (b_{n-5})(b_{n-3})^{-2}(b_{n-2})^2(b_{n-1}) \text{ for } n \ge 5.$

The classic Fibonacci-Padovan sequence in the integers modulo m can be written as $FP(Z_m)_{0,1}$.

Theorem 5. A Fibonacci-Padovan orbit of a finite group which is generating $(2 \le j \le 5)$ is simply periodic.

Proof. Let us consider the group G as a 4-generator group and let (x_0, x_1, x_2, x_3) be a generating quadruplet of G. If the order of G is n, there are n^5 distinct 5-tuples of elements of G. So at least one of the 5-tuples appears twice in the Fibonacci-Padovan orbit of G for the generating quadruplet (x_0, x_1, x_2, x_3) ; that is, the sub-sequence following these 5-tuples repeats. Hence the Fibonacci-Padovan orbit is periodic. Since the Fibonacci-Padovan orbit for the generating quadruplet (x_0, x_1, x_2, x_3) ; is periodic, there are positive integers i and j, with i > j, such that $b_{i+1} = b_{j+1}$, $b_{i+2} = b_{j+2}$, $b_{i+3} = b_{j+3}$, $b_{i+4} = b_{j+4}$ and $b_{i+5} = b_{j+5}$. By the defined relation of a Fibonacci-Padovan orbit, we know that

$$b_{i} = (b_{i+5})(b_{i+4})^{-1}(b_{i+3})^{-2}(b_{i+2})^{2}$$

and

$$b_{j} = (b_{j+5})(b_{j+4})^{-1}(b_{j+3})^{-2}(b_{j+2})^{2}.$$

Thus, $b_i = b_j$, and it follows that

$$b_{i-j} = b_{j-j} = b_0 = x_0, \ b_{i-j+1} = b_{j-(j-1)} = b_1 = x_1,$$

$$b_{i-j+2} = b_{j-(j-2)} = b_2 = x_2, \ b_{i-j+3} = b_{j-(j-3)} = b_3 = x_3$$

So the Fibonacci-Padovan orbit $FP(G)_{x_0,x_1,x_2,x_3}$ is simply periodic. The proof for the 2-generator groups, the 3-generator groups and the 5-generator groups is similar to the above and is omitted.

We denote the periods of the orbits $FP(G)_{x_0,L,x_k}$ with $1 \le k \le 4$ by $LFP(G)_{x_0,L,x_k}$. From the definition, it is clear that the period of a Fibonacci-Padovan orbit of a finite group depends on the chosen generating set and the order for the assignments of x_0,L,x_k such that $1 \le k \le 4$.

Definition 3. Let G be a finite group. If there exists a Fibonacci-Padovan orbit of the group G such that every element of the group G appears in the sequence, then the group G is called Fibonacci-Padovan sequenceable.

We now address the periods of the Fibonacci-Padovan orbits of specific classes of finite groups. The usual notation $G_1 \times_{\varphi} G_2$ is used for the semidirect product of the group G by G, where $\varphi: G_2 \to \operatorname{Aut}(G_1)$ is a homomorphism such that $b\varphi = \varphi_b$ and $\varphi_b: G_1 \to G_1$ is an element $\operatorname{Aut}(G_1)$.

The quaternion group Q_8 is defined by

$$Q_8 = \langle x, y : x^4 = e, y^2 = x^2, y^{-1}xy = x^{-1} \rangle;$$

the direct product $Q_8 \times Z_{2m}$ $(m \ge 3)$ is defined by

$$Q_8 \times Z_{2m} = \langle x, y, z : x^4 = e, y^2 = x^2, y^{-1}xyx = z^{2m} = [x, z] = [y, z] = e \rangle;$$

and the semidirect product $Q_8 \times_{\varphi} Z_{2m}$ $(m \ge 3)$ is defined by

$$Q_8 \times_{\varphi} Z_{2m} = \left\langle x, y, z : x^4 = e, y^2 = x^2, y^{-1} x y x = z^{2m} = e, z^{-1} x z x = e, z^{-1} y z y = e \right\rangle,$$

where, if $Z_{2m} = \langle z \rangle$, then $\varphi : Z_{2m} \to \operatorname{Aut}(Q_8)$ is a homomorphism such that $z\varphi = \varphi_z$; $\varphi_z : Q_8 \to Q_8$ is defined by $x\varphi_z = x$ and $y\varphi_z = y^{-1}$.

Theorem 6. $LFP(Q_8)_{x,y} = LFP(Q_8)_{y,x} = 42.$

Proof. $FP(Q_8)_{v,x}$ is

$$y, x, x^3, x^3, yx^3, y^3, xy, y, x^3y, e, y^3, x^3, yx, y^2, y^2, y^3, xy, y^2, e, e, y^3, x, x, x, x, y^3x, y^3, xy^3, y, xy, y^2, y, x^3, yx, e, y^2, y, x^3y, e, e, e, y, x, x^3, x^3, yx^3, L$$
,

which has period $LFP(Q_8)_{vx} = 42$.

The proof for the orbit $FP(Q_8)_{xy}$ is similar to the above and is omitted.

Remark 1. The quaternion group Q_8 is Fibonacci-Padovan sequenceable.

Theorem 7. The period of the Fibonacci-Padovan orbit of the direct product $Q_8 \times Z_{2m}$ $(m \ge 3)$ for each generating triplet is $lcm \lfloor 42, l(2m) \rfloor$.

Proof. Consider the Fibonacci-Padovan orbit $FP(Q_8 \times Z_{2m})_{x,y,z}$:

$$\begin{aligned} x, y, z^{a_0}, z^{a_1}, y^2 z^{a_2}, x^3 z^{a_3}, xyz^{a_4}, yxz^{a_5}, yxz^{a_6}, xyz^{a_7}, yz^{a_8}, x^3 z^{a_9}, yz^{a_{10}}, \\ xz^{a_{11}}, yz^{a_{12}}, y^2 z^{a_{13}}, xz^{a_{14}}, xyz^{a_{15}}, yz^{a_{16}}, y^2 z^{a_{17}}, z^{a_{18}}, x^3 z^{a_{19}}, y^3 z^{a_{20}}, x^2 z^{a_{21}}, \\ z^{a_{22}}, y^2 z^{a_{23}}, xz^{a_{24}}, xyz^{a_{25}}, xyz^{a_{26}}, xyz^{a_{27}}, yxz^{a_{28}}, yz^{a_{29}}, x^3 z^{a_{30}}, y^3 z^{a_{31}}, xz^{a_{32}}, \\ y^3 z^{a_{33}}, z^{a_{34}}, x^3 z^{a_{35}}, xyz^{a_{36}}, yz^{a_{37}}, z^{a_{38}}, z^{a_{39}}, xz^{a_{40}}, yz^{a_{41}}, z^{a_{42}}, z^{a_{43}}, y^2 z^{a_{44}}, L \end{aligned}$$

Using the above information, the sequence becomes:

$$\begin{split} b_0 &= x, b_1 = y, b_2 = z, b_3 = z, b_4 = y^2 z^3, L , \\ b_{42} &= x z^{40}, b_{43} = y z^{41}, b_{44} = z^{42}, b_{45} = z^{43}, b_{46} = y^2 z^{44}, L , \\ b_{42\cdot i} &= x z^{42\cdot i-2}, b_{42\cdot i+1} = y z^{42\cdot i-1}, b_{42\cdot i+2} = z^{42\cdot i}, b_{42\cdot i+3} = z^{42\cdot i+1}, b_{42\cdot i+4} = y^2 z^{42\cdot i+2}, L . \end{split}$$

The sequence can be said to form layers of length 42. So we need an *i* such that $b_{42i} = x$, $b_{42i+1} = y$, $b_{42i+2} = z$, $b_{42i+3} = z$, $b_{42i+4} = y^2 z^3$. It is easy to see that the Fibonacci-Padovan orbit $FP(Q_8 \times Z_{2m})_{x,y,z}$ has period lcm[42, l(2m)].

The proof for other generating triplets is similar to the above and is omitted.

Theorem 8. The period of the Fibonacci-Padovan orbit of the direct product $Q_8 \times_{\varphi} Z_{2m}$ $(m \ge 3)$ for each generating triplet is $lcm \lfloor 42, l(2m) \rfloor$.

Proof. Consider the Fibonacci-Padovan orbit $FP(Q_8 \times_{\varphi} Z_{2m})_{\psi \in \mathbb{Z}}$:

$$y, x, z^{a_0}, z^{a_1}, x^2 z^{a_2}, y^3 z^{a_3}, yxz^{a_4}, yxz^{a_5}, xyz^{a_6}, yxz^{a_7}, xz^{a_8}, yz^{a_9}, x^3 z^{a_{10}}, y^3 z^{a_{11}}, x^3 z^{a_{12}}, z^{a_{13}}, yz^{a_{14}}, yxz^{a_{15}}, x^3 z^{a_{16}}, z^{a_{17}}, y^2 z^{a_{18}}, y^3 z^{a_{19}}, x^3 z^{a_{20}}, x^2 z^{a_{21}}, x^2 z^{a_{22}}, y^2 z^{a_{23}}, yz^{a_{24}}, yxz^{a_{25}}, xyz^{a_{26}}, xyz^{a_{27}}, yxz^{a_{28}}, x^3 z^{a_{29}}, y^3 z^{a_{30}}, x^3 z^{a_{31}}, y^3 z^{a_{32}}, x^3 z^{a_{33}}, x^2 z^{a_{34}}, yz^{a_{35}}, yxz^{a_{36}}, x^3 z^{a_{37}}, z^{a_{38}}, z^{a_{39}}, yz^{a_{40}}, xz^{a_{41}}, z^{a_{42}}, z^{a_{43}}, x^2 z^{a_{44}}, L$$

Using the above information, the sequence becomes:

$$\begin{split} b_0 &= y, \, b_1 = x, \, b_2 = z, \, b_3 = z, \, b_4 = x^2 z^3, L , \\ b_{42} &= y z^{40}, \, b_{43} = x z^{41}, \, b_{44} = z^{42}, \, b_{45} = z^{43}, \, b_{46} = y^2 z^{44}, L , \\ b_{42:i} &= x z^{42:i-2}, \, b_{42:i+1} = y z^{42:i-1}, \, b_{42:i+2} = z^{42:i}, \, b_{42:i+3} = z^{42:i+1}, \, b_{42:i+4} = x^2 z^{42:i+2}, L . \end{split}$$

The sequence can be said to form layers of length 42. So we need an *i* such that $b_{42i} = y, b_{42\cdot i+1} = x, b_{42\cdot i+2} = z, b_{42\cdot i+3} = z, b_{42\cdot i+4} = x^2 z^3$. It is easy to see that the Fibonacci-Padovan orbit $FP(Q_8 \times_{\varphi} Z_{2m})_{y \times z}$ has period lcm[42, l(2m)].

The proof for other generating triplets is similar to the above and is omitted.

Remark 2. If l(2m) < 2m and 42|l(2m), the groups $Q_8 \times Z_{2m}$ and $Q_8 \times_{\varphi} Z_{2m}$ such that $m \ge 3$ are not Fibonacci-Padovan sequenceable (where, by 42|l(2m), we mean that 42 divides l(2m)).

CONCLUSIONS

Examining the Fibonacci-Padovan sequence modulo m, we have defined the Fibonacci-Padovan orbits of j-generator finite groups for $2 \le j \le 5$. Furthermore, we have obtained the Fibonacci-Padovan lengths of the groups Q_8 , $Q_8 \times Z_{2m}$ and $Q_8 \times_{\varphi} Z_{2m}$ for $m \ge 3$.

ACKNOWLEDGEMENT

This project (Project no. 2013-FEF-72) was supported by the Commission for the Scientific Research Projects of Kafkas University.

REFERENCES

- 1. P. G. Becker, "k-Regular power series and Mahler-type functional equations", J. Number Theory, 1994, 49, 269-286.
- 2. W. Bosma and C. Kraaikamp, "Metrical theory for optimal continued fractions", J. Number Theory, 1990, 34, 251-270.
- 3. M. S. El Naschie, "Deriving the essential features of the standard model from the general theory of relativity", *Chaos Solitons Fractals*, **2005**, *24*, 941-946.

- 4. M. S. El Naschie, "Stability analysis of the two-slit experiment with quantum particles", *Chaos Solitons Fractals*, **2005**, *26*, 291-294.
- 5. S. Falcon and A. Plaza, "*k*-Fibonacci sequences modulo m", *Chaos Solitons Fractals*, **2009**, *41*, 497-504.
- 6. A. S. Fraenkel and S. T. Kleinb, "Robust universal complete codes for transmission and compression", *Discrete Appl. Math.*, **1996**, *64*, 31-55.
- 7. B. K. Kirchoof and R. Rutishauser, "The phyllotaxy of costus (Costaceae)", *Bot. Gaz.*, **1990**, *151*, 88-105.
- 8. D. M. Mandelbaum, "Synchronization of codes by means of Kautz's Fibonacci encoding", *IEEE Trans. Inform. Theory*, **1972**, *18*, 281-285.
- 9. W. Syein, "Modelling the evolution of stelar architecture in vascular plants", *Int. J. Plant Sci.*, **1993**, *154*, 229-263.
- 10. R. G. E. Pinch, "Distribution of recurrent sequences modulo prime powers", Proceedings of 5th IMA Conference on Cryptography and Coding, **1995**, Cirencester, UK.
- 11. D. D. Wall, "Fibonacci series modulo *m*", Am. Math. Monthly, **1960**, 67, 525-532.
- 12. O. Deveci and E. Karaduman, "The generalized order-k Lucas sequences in finite groups", J. *Appl. Math.*, **2012**, DOI: 10.1155/2012/464580.
- 13. O. Deveci, "The *k-nacci* sequences and the generalized order-*k* Pell sequences in the semidirect product of finite cyclic groups", *Chiang Mai J. Sci.*, **2013**, *40*, 89-98.
- 14. O. Deveci and E. Karaduman, "The cyclic groups via the Pascal matrices and the generalized Pascal matrices", *Linear Algebra Appl.*, **2012**, *437*, 2538-2545.
- 15. O. Deveci and E. Karaduman, "The Pell sequences in finite groups", *Util. Math.*, **2015**, *96* (in press).
- 16. O. Deveci, "The Pell-Padovan sequences and the Jacobsthal-Padovan sequences in finite groups", *Util. Math.*, in press.
- 17. S. W. Knox, "Fibonacci sequences in finite groups", Fibonacci Quart., 1992, 30, 116-120.
- 18. K. Lü and J. Wang, "k-Step Fibonacci sequence modulo m", Util. Math., 2007, 71, 169-178.
- 19. E. Ozkan, H. Aydin and R. Dikici, "3-Step Fibonacci series modulo *m*", *Appl. Math. Comput.*, **2003**, *143*, 165-172.
- 20. V. W. de Spinadel, "The family of metallic means", Visual Math., 1999, 1, 176-185.
- 21. V. W. de Spinadel, "The metallic means family and forbidden symmetries", *Int. Math. J.*, **2002**, *2*, 279-288.
- 22. N. D. Gogin and A. A. Myllari, "The Fibonacci-Padovan sequence and MacWilliams transform matrices", *Program. Comput. Softw.*, **2007**, *33*, 74-79.
- 23. D. Kalman, "Generalized Fibonacci numbers by matrix methods", *Fibonacci Quart.*, **1982**, *20*, 73-76.
- 24. C. M. Campbell and P. P. Campbell, "The Fibonacci length of certain centro-polyhedral groups", *J. Appl. Math. Comput.*, **2005**, *19*, 231-240.
- © 2014 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for noncommercial purposes.