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    Abstract :  We introduce and examine the concepts of   m

uv asymptotic statistical 
equivalence of order  , and strong   m

uv asymptotic equivalence of order   of 
sequences.  Also, we give some relations connected to these concepts. 
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INTRODUCTION 
 

The concept of statistical convergence was introduced by Fast [1] and Schoenberg [2]. Later 
on it was further investigated from the sequence space point of view and linked with the 
summability theory by Belen and Mohiuddine [3], Colak [4, 5], Connor [6], Fridy [7], Gadjiev and 
Orhan [8], Gungor and Et [9], Gungor et al. [10], Isik [11], Kumar and Mursaleen [12], Mohiuddine 
et al. [13], Mursaleen [14, 15], Rath and Tripathy [16], Šalát [17] and many others. The idea of 
statistical convergence depends on the density of subsets of the set N of natural numbers. The 
density of a subset E  of N  is defined by  

    1lim
1

k
n

E E

n

k
n

 



 , 

provided that the limit exists, where E  is the characteristic function of the set .E  A sequence  

 kxx   is said to be statistically convergent to L  if for every ,0     .0:   Lxk kN   

The concept of asymptotically equivalent sequences was firstly introduced by Pobyvanets 
[18]. Since the last decades, asymptotically equivalent sequences have been studied by several 
authors [19-25]. In the present paper, using the generalised difference operator m  and a non-
decreasing sequence  n   of positive real numbers such that ,11  nn   ,11   n   
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 ,n   we introduce   m
uv asymptotic statistical equivalence of order   and strong 

  m
uv asymptotic equivalence of order   of sequences, and give some relations connected to  

these concepts. 
 
DEFINITIONS AND PRELIMINARIES 
 

Let w  be the set of all sequences of real or complex numbers, and ,  c  and 0c  be, 
respectively, the Banach spaces of bounded, convergent and null sequences  kxx   with the usual 
norm kxx sup . Let  n   be a non-decreasing sequence of positive numbers tending to   
such that  ,11  nn   .11   The generalised de la Vallée-Poussin mean [26] is defined by  

  ,1
k

Ikn
n xxt

n







 

where  nnI nn ,1   for ,...2,1n . A sequence  kxx   is said to be  ,V summable to a 
number L  if   Lxtn   as .n  If ,nn   then  ,V summability and strong 
 ,V summability are reduced to  1,C summability and  1,C summability respectively. By 
 , we denote the class of all non-decreasing sequences of positive real numbers tending to   such 
that ,11  nn    .11    

The notion of difference sequence spaces was introduced by Kizmaz [27] and this concept 
was generalised by Et and Colak [28]. Later Et and Esi [29] generalised these sequence spaces to 
the following sequence spaces. Let )( kuu   be any fixed sequence of non-zero real numbers and let 
m  be a non-negative integer. Then 

      XxxxX k
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for , X c  or ,0c  where ,Nm   kku xux 0 ,  1
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   The sequence space  m

uX   is a Banach space normed by  
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for  , X  c   or .0c  It is noted that the sequence space  m
uX   is different from the sequence 

space  mX   and      mm
u XX , where       XxxxX k

m
k

m  : . For this, let 

 X  and choose )( 1 mkx  and )( 2ku  ; then  mx    but  .m
ux    Conversely if we 

choose )( 2 mkx  and )( 2 ku , then  m
ux    but  mx   . Let X  be any sequence space; 

if  m
uXx  , then there exists one and only one Xzz k  )(  such that 
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for sufficiently large ,k  for example mk 2 . We shall use the sequence which is defined in (1) to 
define the sequence in  2 . Recently the difference sequence spaces have been studied [30-37]. 
 
MAIN RESULTS 

 
In this section, we give the main results of this paper. In Theorem 1 we give the relationship 

between   m
uv asymptotic statistical equivalence of order   and   m

uv asymptotic statistical 
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equivalence of order   of sequences. In Theorem 2 we give the relationship between strong 

  m
uv asymptotic equivalence of order   and strong   m

uv asymptotic equivalence of order 
  of sequences. In Theorem 3 we give the relationship between    m

uv asymptotic statistical 
equivalence of order   and strong   m

uv asymptotic equivalence of order   of sequences. 
 

Two non-negative real-value sequences x  and y  are said to be m asymptotically 
equivalent provided that 

L
y
x

k
m

k
m

k



lim  

(denoted by yx
m

  ).   
 
Using the above expression  we can make the following definition.  
 
Definition 1.  Let   and  1,0   be any real number. Two non-negative real-value sequences  
x  and y  are said to be   m

uv asymptotically and statistically equivalent of order   provided that 
for every  0 , 

0:1lim 
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(denoted by 
  

yx
m
uv

LS  

  ) ,  where u  and v  are two non-negative real-value fixed sequences such 

that 0nu  and 0nv  for all Nn . For nn  , we shall write 
 

yx
m
uv

LS 




 instead of 
  

yx
m
uv

LS  

  and 

in the special case 1,,1  nn un and 1nv  for all Nn ,  we shall write 
 

yx
mLS 

  (which is 

called m asymptotic statistical equivalence) instead of 
  

.yx
m
uv

LS  

   
It is easy to see that if x and y are m asymptotically equivalent, then x  and y  are 

m asymptotically and statistically equivalent of order  ,  but the converse does not hold.  For 
this, consider two sequences,  kxx   and  kyy  , defined by 
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It is clear that x and y are m asymptotically and statistically equivalent of order   for ],1,
3
1(  

but they are not m asymptotically equivalent. 
 
Definition 2.  Let   and  1,0  be any real number. Two non-negative real-value sequences 
x  and y  are said to be strongly   m

uv  asymptotically equivalent of order   provided that for 
every 0 ,  

01lim 






L
y
x

k
m
v

k
m
u

Ikn
n

n


 

 

(denoted by 
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  ).  For nn  , we shall write 
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special case 1,,1  nn un and 1nv  for all Nn , we shall write 
 

yx
mLV 

  (which is called 

strong m asymptotic equivalence) instead of 
  

.yx
m
uv

LV  

                                
 
Theorem  1.  Let ,  such that nn    for all Nn , and   and   be fixed real numbers 
such that .10    Also, let x  and y  be two non-negative sequences. Then each of the 
following assertions holds true:  
 i)  If  

                                 0inflim 
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 ii)  If  
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Proof.  i)  Suppose that  nn     for all Nn  and 
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for all ,Nn   where   .,1 nnJ nn     Hence we get  
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   and suppose that nn JI   for all Nn .  Then we can write  
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for all .Nn   Now, proceeding to the limit as n  in the last inequality and using (4), we get 

  
.yx

m
uv

LS  

    The following results are derivable easily from Theorem 1. 
  
Corollary 1.  Let ,  be such that  nn     for all  Nn , and let x , y  be two non-negative 
sequences.  If condition (3) is satisfied, then  

 i) 
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Furthermore,  if condition (4) is satisfied, then we get following corollary  
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 . 
 
Theorem 2.  Let  ,  such that nn    for all Nn , and   and   be fixed real numbers 
such that .10    Also, let x  and y  be two non-negative sequences. Then each of the 
following assertions holds true:     

i)  If condition (3) is satisfied, then 
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Since  3  holds and  
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for each .Nn   Therefore  
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   Theorem 2  yields the following corollary. 
  
Corollary 2.  Let ,  be such that nn    for all Nn , and let x , y  be two non-negative 
sequences.  If condition (3) is satisfied, then  
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Furthermore,  if condition (4) is satisfied, then we get the following corollary.  
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Theorem 3.  Let ,  such that nn    for all  Nn , and   and   be fixed real numbers 
such that .10    Also, let x  and y  be two non-negative sequences. Then each of the 
following assertions holds true: 

i)  If condition (3) is satisfied, then
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ii) Let  m
uyx  , .  If condition (4) is satisfied, then  
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Proof.  i)  For any two sequences,   kxx    and   kyy  ,  we can write 
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for all .Nn   Using (4), we obtain that  
  

yx
m
uv

LV  

   whenever  
  

.yx
m
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LS  

   Corollary 3 below is 
easily proven by applying Theorem 3. 
 
Corollary 3.  Let ,  be such that nn    for all Nn , and let x , y  be two non-negative 
sequences.  If condition (3) is satisfied, then  
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Furthermore,  if condition (4) is satisfied, then we get following corollary.  
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CONCLUSIONS 
 

The results obtained in this study are more general than those reported in the literature. We 
get several results giving particular values to the numbers  ,,m  and the sequences u,,  and .v   
If we take nn    for all Nn , then we can write the above theorems without conditions  3  and  
 .4  
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