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    Abstract :  We introduce and examine the concepts of   m

uv asymptotic statistical 
equivalence of order  , and strong   m

uv asymptotic equivalence of order   of 
sequences.  Also, we give some relations connected to these concepts. 
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INTRODUCTION 
 

The concept of statistical convergence was introduced by Fast [1] and Schoenberg [2]. Later 
on it was further investigated from the sequence space point of view and linked with the 
summability theory by Belen and Mohiuddine [3], Colak [4, 5], Connor [6], Fridy [7], Gadjiev and 
Orhan [8], Gungor and Et [9], Gungor et al. [10], Isik [11], Kumar and Mursaleen [12], Mohiuddine 
et al. [13], Mursaleen [14, 15], Rath and Tripathy [16], Šalát [17] and many others. The idea of 
statistical convergence depends on the density of subsets of the set N of natural numbers. The 
density of a subset E  of N  is defined by  
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provided that the limit exists, where E  is the characteristic function of the set .E  A sequence  

 kxx   is said to be statistically convergent to L  if for every ,0     .0:   Lxk kN   

The concept of asymptotically equivalent sequences was firstly introduced by Pobyvanets 
[18]. Since the last decades, asymptotically equivalent sequences have been studied by several 
authors [19-25]. In the present paper, using the generalised difference operator m  and a non-
decreasing sequence  n   of positive real numbers such that ,11  nn   ,11   n   
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 ,n   we introduce   m
uv asymptotic statistical equivalence of order   and strong 

  m
uv asymptotic equivalence of order   of sequences, and give some relations connected to  

these concepts. 
 
DEFINITIONS AND PRELIMINARIES 
 

Let w  be the set of all sequences of real or complex numbers, and ,  c  and 0c  be, 
respectively, the Banach spaces of bounded, convergent and null sequences  kxx   with the usual 
norm kxx sup . Let  n   be a non-decreasing sequence of positive numbers tending to   
such that  ,11  nn   .11   The generalised de la Vallée-Poussin mean [26] is defined by  
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where  nnI nn ,1   for ,...2,1n . A sequence  kxx   is said to be  ,V summable to a 
number L  if   Lxtn   as .n  If ,nn   then  ,V summability and strong 
 ,V summability are reduced to  1,C summability and  1,C summability respectively. By 
 , we denote the class of all non-decreasing sequences of positive real numbers tending to   such 
that ,11  nn    .11    

The notion of difference sequence spaces was introduced by Kizmaz [27] and this concept 
was generalised by Et and Colak [28]. Later Et and Esi [29] generalised these sequence spaces to 
the following sequence spaces. Let )( kuu   be any fixed sequence of non-zero real numbers and let 
m  be a non-negative integer. Then 
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for  , X  c   or .0c  It is noted that the sequence space  m
uX   is different from the sequence 

space  mX   and      mm
u XX , where       XxxxX k

m
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m  : . For this, let 

 X  and choose )( 1 mkx  and )( 2ku  ; then  mx    but  .m
ux    Conversely if we 

choose )( 2 mkx  and )( 2 ku , then  m
ux    but  mx   . Let X  be any sequence space; 

if  m
uXx  , then there exists one and only one Xzz k  )(  such that 
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for sufficiently large ,k  for example mk 2 . We shall use the sequence which is defined in (1) to 
define the sequence in  2 . Recently the difference sequence spaces have been studied [30-37]. 
 
MAIN RESULTS 

 
In this section, we give the main results of this paper. In Theorem 1 we give the relationship 

between   m
uv asymptotic statistical equivalence of order   and   m

uv asymptotic statistical 
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equivalence of order   of sequences. In Theorem 2 we give the relationship between strong 

  m
uv asymptotic equivalence of order   and strong   m

uv asymptotic equivalence of order 
  of sequences. In Theorem 3 we give the relationship between    m

uv asymptotic statistical 
equivalence of order   and strong   m

uv asymptotic equivalence of order   of sequences. 
 

Two non-negative real-value sequences x  and y  are said to be m asymptotically 
equivalent provided that 

L
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(denoted by yx
m

  ).   
 
Using the above expression  we can make the following definition.  
 
Definition 1.  Let   and  1,0   be any real number. Two non-negative real-value sequences  
x  and y  are said to be   m

uv asymptotically and statistically equivalent of order   provided that 
for every  0 , 
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  ) ,  where u  and v  are two non-negative real-value fixed sequences such 

that 0nu  and 0nv  for all Nn . For nn  , we shall write 
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in the special case 1,,1  nn un and 1nv  for all Nn ,  we shall write 
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called m asymptotic statistical equivalence) instead of 
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It is easy to see that if x and y are m asymptotically equivalent, then x  and y  are 

m asymptotically and statistically equivalent of order  ,  but the converse does not hold.  For 
this, consider two sequences,  kxx   and  kyy  , defined by 
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It is clear that x and y are m asymptotically and statistically equivalent of order   for ],1,
3
1(  

but they are not m asymptotically equivalent. 
 
Definition 2.  Let   and  1,0  be any real number. Two non-negative real-value sequences 
x  and y  are said to be strongly   m

uv  asymptotically equivalent of order   provided that for 
every 0 ,  
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special case 1,,1  nn un and 1nv  for all Nn , we shall write 
 

yx
mLV 

  (which is called 

strong m asymptotic equivalence) instead of 
  

.yx
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                                
 
Theorem  1.  Let ,  such that nn    for all Nn , and   and   be fixed real numbers 
such that .10    Also, let x  and y  be two non-negative sequences. Then each of the 
following assertions holds true:  
 i)  If  

                                 0inflim 
 






n

n
n

                                          (3) 
 

then  
  

yx
m
uv

LS  

   implies  
  

yx
m
uv

LS  

 ; 
  
 ii)  If  

                                  1lim 
 


n

n

n
                                                (4) 

 

then  
  

yx
m
uv

LS  

   implies  
  

.yx
m
uv

LS  

   

Proof.  i)  Suppose that  nn     for all Nn  and 
  

yx
m
uv

LS  

 .  Then  we can write 


























  L
y
xIkL

y
xJk

k
m
v

k
m
u

n
k

m
v

k
m
u

n ::  

and so 


























 





 



 L
y
xIkL

y
xJk

k
m
v

k
m
u

n
nn

n

k
m
v

k
m
u

n
n

:1:1  

for all ,Nn   where   .,1 nnJ nn     Hence we get  
  

.yx
m
uv

LS  

   
 

 ii)  Let  
  

yx
m
uv

LS  

   and suppose that nn JI   for all Nn .  Then we can write  
 
 

 
 



301 
Maejo Int. J. Sci. Technol. 2014, 8(03), 297-306 
 

 
  
for all .Nn   Now, proceeding to the limit as n  in the last inequality and using (4), we get 
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Theorem 2.  Let  ,  such that nn    for all Nn , and   and   be fixed real numbers 
such that .10    Also, let x  and y  be two non-negative sequences. Then each of the 
following assertions holds true:     
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Corollary 2.  Let ,  be such that nn    for all Nn , and let x , y  be two non-negative 
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Theorem 3.  Let ,  such that nn    for all  Nn , and   and   be fixed real numbers 
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m
uv

LS  

   

ii) Let  m
uyx  , .  If condition (4) is satisfied, then  

  
yx

m
uv

LS  

   implies  
  

.yx
m
uv

LV  

   
 
Proof.  i)  For any two sequences,   kxx    and   kyy  ,  we can write 
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so that  
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Hence  
  

yx
m
uv

LV  

   implies  
  

yx
m
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LS  

 . 
 

 ii) Suppose that 
  
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  and  m
uyx  , . Then there exists some 0M  such that  
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for all .Nn   Using (4), we obtain that  
  

yx
m
uv

LV  

   whenever  
  

.yx
m
uv

LS  

   Corollary 3 below is 
easily proven by applying Theorem 3. 
 
Corollary 3.  Let ,  be such that nn    for all Nn , and let x , y  be two non-negative 
sequences.  If condition (3) is satisfied, then  
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 i)   
  

yx
m
uv

LV  

   implies  
  

yx
m
uv

LS  

   for each  ]1,0( ; 
 

 ii)   
  

yx
m
uv

LV 

   implies  
  

yx
m
uv

LS  

   for each  ]1,0( ; 
 

 iii)   
  

yx
m
uv

LV 

   implies  
  

.yx
m
uv

LS 

   
 
Furthermore,  if condition (4) is satisfied, then we get following corollary.  

 i)   
  

yx
m
uv

LS  

  implies  
  

yx
m
uv

LV  

   for each  ]1,0( ; 
 

 ii)   
  

yx
m
uv

LS  

   implies 
  

yx
m
uv

LV 

    for each  ]1,0( ; 
 

 iii)  
  

yx
m
uv

LS 

     implies 
  

yx
m
uv

LV 

 .  
 
CONCLUSIONS 
 

The results obtained in this study are more general than those reported in the literature. We 
get several results giving particular values to the numbers  ,,m  and the sequences u,,  and .v   
If we take nn    for all Nn , then we can write the above theorems without conditions  3  and  
 .4  
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