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Abstract: The converters of a permanent magnet synchronous generator have to be 
properly controlled to achieve maximum transfer of energy from wind. To achieve this 
goal, this article employs an energy storage device consisting of an energy capacitor 
interfaced through a voltage source converter which is operated through a smart adaptive 
radial basis function neural network (RBFNN) controller. The proposed adaptive strategy 
employs online neural network training as opposed to conventional procedure requiring 
offline training of a large data-set. The RBFNN controller was tested for various 
contingencies in the wind generator system. The adaptive online controller is observed to 
provide excellent damping profile following low grid voltage conditions as well as for 
other large disturbances. The controlled converter DC capacitor voltage helps maintain a 
smooth flow of real and reactive power in the system.  
 
Keywords:  adaptive control, energy storage control, radial basis function neural network, 
permanent magnet synchronous generator, wind turbine 

 

INTRODUCTION  
 

Variable-speed wind turbines based on permanent magnet synchronous generator (PMSG) are 
found to be attractive in large wind farms because of their advantages in terms of high efficiency of 
energy production, simple structure, low maintenance, etc. The full-rated converter in the PMSG 
separates the synchronous generator from the grid, and hence helps easy fault ride-through [1, 2]. 
However, with increased wind penetration and random wind speed fluctuations, the change in output 
power can cause grid frequency variations [3]. Maintenance of DC link voltage in the converter 
system within precise limits is essential for maximum power transfer [4]. 
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Control of the converters of a PMSG for frequency and voltage control has been widely 
reported in the literature. Two configurations have been considered: the generator-side converter 
working like a rectifier with the grid-side converter having fully controllable pulse-width- modulated 
(PWM) system, and the other having full PWM control of both generator-side and grid-side 
converters [5, 6].  Control of the generator-side converter for maximum power transfer was 
employed by Rim et al. [4], while Haque et al. [1] and Muyeen et al. [7] used grid-side converters 
for this purpose. Generator-side and grid-side converters for maximum power transfer and reactive 
control respectively were reported by Singh et al. [8]. Energy storage devices, along with flexible 
AC transmission system (FACTS), can supply both real (P) and reactive (Q) power and hence can 
make the converters operate at or near unity power factor. Sharma and Singh [9] and Bhende et al. 
[10] used battery energy storage, along with static compensator (STATCOM), for voltage and 
frequency control of a PMSG system. A simple proportional-integral-derivative (PID) controller in a 
STATCOM was shown to improve the stability of a permanent magnet wind generator [11].  Uehere 
et al. [3], Bhende et al. [10] and Conroy and Watson [12] demonstrated that coordinated converter 
control, pitch control, braking resistor and dump load can improve the wind system performance. 

With the advancement in intelligent techniques, different families of neural networks have seen 
a recent rise in application to wind energy control under differing schemes. The use of artificial 
neural networks for rotor position estimation of a PMSG generator was reported by Batzel and Lee 
[13]. Lopes [14] employed neural networks for dynamic security assessment of a power system with 
wind in-feed. Pitch control of a PMSG system was reported using sliding mode control and neural 
network [15]. Neural network methods employing both back-propagation and radial basis function 
networks generally depend on training the network with a large set of input-output data. These 
networks may not perform well under randomly varying wind speed conditions or for the arbitrary 
nature of disturbances which they are not trained for. For control design, the neural network weights 
should be computed and updated adaptively according to the system conditions. 

This article proposes a novel adaptive radial basis function neural network (RBFNN) control 
strategy for a permanent magnet wind generator system. The capacitor energy storage system 
compensates for both real and reactive power requirements of the wind system following any 
contingency. The weights of the neural network are adapted online from the measurements of the 
generator outputs. Simulation studies indicate that the adaptive RBFNN control provides excellent 
damping characteristics even for severe short circuits at the grid bus. 
 
NOMENCLATURE 

Vw           Wind speed 
β Pitch angle 

λ                Tip-speed ratio 

d-q Direct and quadrature axes 

Ra   Stator resistance 

xd, xd d-q axes synchronous reactance  

Vs Generator stator voltage 

Vt Inverter terminal voltage 
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Vc, C  

Vdc, Cst   

DC capacitor voltage and capacitance in the converter 

DC capacitor voltage and capacitance in the storage device 

m1, m2 Modulation indices of converters 

α1, α2 Phase angles of the converters 

o, ω Base angular speed, rotor angular speed 

H, D Inertia constant and damping coefficient 

Hg, Ht Inertia constant of generator and turbine 

Ks, θs Stiffness constant, torsion angle 

Dt, Dg Damping coefficient of turbine and generator 

Vst, Ist  Voltage and current of VSC in the storage device 

Rst, Lst       Resistance and inductance of VSC 

Pmech, Pelec Mechanical power input, electrical power output 

pu (p.u.) Per unit 

 

PMSG SYSTEM MODEL 
 

The grid-connected permanent magnet generator system considered in this work is shown in 
Figure 1. Variable frequency voltage generated by the machine is rectified and inverted to grid 
frequency through fully controlled back-to-back converters located between the generator terminals 
and the transmission line. A local load and an energy storage unit are connected at the grid side of 
the inverter. The relationships between the stator voltage, current and flux, expressed in per unit 
system, are written as [16, 17]: 

 

 &Line
Transformer

Grid
sV cV tV

Local
load

PMSG

Storage
System

Converters

 

Figure 1.  Permanent magnet synchronous generator connected to the grid bus 
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where Vs , Is , and ψ are stator voltage, current and flux of the PMSG respectively; subscripts d and q 
represent direct and quadrature axes components of the quantities; Ra , xd  and xq are stator resistance 
and synchronous reactances respectively;  ψres is the flux from the permanent magnets; ω and ω0 are 
generator angular frequency and base angular frequency respectively. 

The electromechanical equations of motion of the generator and turbine rotor are written in 
terms of their respective angular speeds (ω, ωt) as:  
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where H and D are, respectively, inertia constants and damping coefficients of turbine and generator; 
Ks and θs represent, respectively, stiffness coefficient and torsion angle of the shaft connecting the 
two masses. The expressions for mechanical input power Pmech, which is the wind turbine output, and 
electrical power output Pelec are: 
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where α, Ab, Cpw, γ and β are density of air, turbine blade swept area, power coefficient, tip-speed 
ratio and turbine pitch angle respectively.  

The normalised differential equation relating the inverter current (Ii) to the internal voltage (Vi) 
and terminal voltage (Vt ) can be broken up in terms of d-q quantities as: 

 

  

0

0

[ ]

[ ]

id
id td i id i iq

i

iq
iq tq i iq i id

i

dI V V R I x I
dt x

dI
V V R I x I

dt x

 

 

   

   
      (5) 

 
where subscripts d and q refer to direct and quadrature axes components of the inverter voltage and 
current; Ri and xi are inverter resistance and reactance respectively. The generator stator voltage (Vs) 
and inverter internal voltage (Vi) are related to the DC capacitor voltage (Vc), converter and inverter 
modulation indices (m1, m2) and phase angles (α1, α2) through: 

 1 1

2 2

  
  

s c

i c

V m V
V m V




 
           (6) 

 

V sd 

V sq 



 
Maejo Int. J. Sci. Technol.  2014, 8(01), 58-74  
 

 

62

The equation of the DC link capacitor located between the two converters is derived from the 
condition that the power supplied by the rectifier equals the power input to the inverter, and is 
expressed as:  

 

  1 1 1 1 2 2 2 2
1 [ cos sin cos sin ]c

sd sq id iq
dV m I m I m I m I
dt C

        (7) 
 
A full list of symbols is included in the nomenclature section. 
 
 ENERGY STORAGE CONTROLLER MODEL 
 

The circuit configuration of the energy storage device is shown in Figure 2. It contains a 
storage capacitor which is interfaced to the wind generator system through a voltage source 
converter (VSC) and a buck-boost converter operated through switches S1 and S2 [18]. By 
controlling the delay angle of the switches in the converter, the direction of power flow can be 
reversed. The modulation index of the VSC allows control of the internal voltage given by the 
relation st dc mV mV     . Here, θm is the angle of the inverter terminal voltage Vt at the point of 

connection of the storage device. A combination of modulation index and phase angle (m,) control 
allows control of real and reactive power injection to the wind system. Applying Kirchhoff's voltage 
law, the dynamic relationship for d-q components of VSC output currents can be written as: 

 

VSC Buck-boost
Converter

Energy Storage 
Device

m 

tV
stV

stI

  
Figure 2.  Capacitor energy storage control system 
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where Istd and Istq are, respectively, the direct and quadrature axes components of STATCOM 
current Ist; Vtd and Vtq are the d-q components respectively of terminal voltage Vt; Vdc represents the 
voltage across the DC capacitor Cst; Rst and Lst are the effective resistance and inductance of the 
VSC respectively. The voltage equation for DC link capacitor in the storage system, obtained by 
following the same procedure as in (8), is written as: 

[ cos( ) sin( )]dc ces
std m stq m

st st

dV Im I I
dt C C
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The current from the storage capacitor (Ices) is related to capacitance and its voltage (Vces) by a 
simple relationship: 
 

ces ces

es

dV I
dt C

            (10)

  
Combining the dynamic equations (1), (3), (5), (7), (8), (9) and (10), and eliminating the non-

state variables through appropriate relationships, the composite state model for the PMSG system, 
along with the storage control device, is expressed as: 
 

 
[ , ]
[ , ]

x f x u
y g x u




           (11) 

 
The control vector (u) is composed of m and  of the energy storage device and y represents the 
vector of chosen outputs. 
 
ADAPTIVE RBFNN CONTROLLER  

The main concept of the proposed control design is to maintain the wind generator output to 
pre-specified values following wind speed change, low voltage conditions or other arbitrary 
disturbances in the system. The controls in the storage system are activated by neural network 
controllers to compensate for P and Q imbalance in the wind system. In the usual neural network 
applications the offline training of large amounts of input-output data is required to generate a 
weighting matrix. These weights may not predict the output accurately in randomly or arbitrarily 
changing system conditions. For satisfactory control estimates, the training should be done online 
and the weight updates should be made as time progresses [19].   

The configuration of the adaptive neural network controller proposed in this study is shown 
in Figure 3. The controller consists of a core radial basis function network (RBFN), an adaptation 
system for the RBFN and a proportional stabilising controller. The adaptation system consists of a 
linear estimate of the system matrices, an adaptation algorithm and a weight update policy. A 
proportional stabilising controller is incorporated in the strategy to ensure that the RBFN controller 
initialisation is stable while the weighting updates are initiated. Both the RBFN and the stabilising 
controller are activated by an error signal between the reference input (r) and the actual output (y). 
The output from the adapted neural network, along with the stabilising controller, is then fed to the 
wind generator system. As the training proceeds, the RBFN takes over the stabilising proportional 
controller [20, 21]. 

The structure of the RBFNN is shown in Figure 4. The neurons in the radial basis networks 
usually have three layers: the input, the hidden and the output layers. At any time, step k, the output 
of the hidden layer, can be expressed through [22]: 

 
  ( ) ( ) ( )TV k W k k          (12) 

 
where W is the weight matrix and  is a set of basis functions, the jth kernel of which is usually 
chosen to be the Gaussian function: 

2 2( ) exp( ( ) / )j j jk r k c           (13) 
 
where cj is the centre of the jth neuron and σj represents the width of the layer.  
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Figure 3.  RBFN-based adaptive controller for wind generator system 
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Figure 4.  RBFNN structure 
 

Considering the saturation to be a tangent sigmoid function, the jth component of input (u) to 
the plant can be expressed as:  
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Here umax= umin= α1, and β1 is slope of the sigmoid function. The error function (e) is defined as: 
 

  ( ) ( ) ( )e k r k y k           (15) 
 

The weighting matrix is obtained by minimising the mean square error (E), which is the 
product of the transpose of error (eT ) and error e at any time step k :  

 
( ) ( )TE e k e k          (16) 

 
The update law for the elements of the weighting matrix W(k), using the gradient descent technique, 
is written as: 
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( 1) ( )j j
j

Ew k w k
w




  
        (17) 

After linearisation of the system of equations (11), its discrete form can be written in terms of A, B, 
C, D matrices as:   
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Substituting output y from (18) gives the expression for the gradient as:  
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Using the chain rule and substituting the state equation from (18), it can be shown that:   
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The recursive formula for the update of the weights is then: 
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In the above equation, p is the number of output and ϕlj  is the ljth element of (CB+λ1) matrix. The 
quantity λ1 is selected so as to overcome zero entries of matrix CB at the start of the training process 
[23]. Quantity η is the learning rate of the radial basis function network. A step-by-step process is 
tabulated in Algorithm 1. 
 
Algorithm 1.  Adaptive RBFNN control algorithm 

 
- Obtain a linear estimate of the PMSG model using offline identification or linearisation of the 

non-linear model.  
- Initialise stabilising controller with a gain small enough to ensure a stable initialisation. 
- Initialise RBFNN with random synaptic weights having small values. 
- Initialise a small learning rate η. 
- Select α depending upon the constraints required on the control inputs. 
- Based on (22), the weights are updated as the PMSG outputs are acquired at each sampling 

instance. 
- If the learning rate is small enough for the weights to converge, the PMSG outputs follow the 

reference trajectory. 
 
TESTING THE CONTROLLER 
 
 The adaptive RBFNN controller design was implemented on the permanent magnet generator 
system considered in Figure 1. The control inputs are the modulation index and phase angles of the 
storage system converters, while the outputs to be tracked are the generator speed and terminal 
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voltage. The generator is considered to be delivering 0.95 per unit (pu) power under steady 
condition at an average wind speed of 12 m/sec. The damping of the turbine-generator rotor is 
considered to be zero for a worst-case scenario. The system parameters are included in the 
Appendix. Only those disturbances which give rise to oscillatory or unstable responses are reported 
in this article.  

 Figure 5 shows the synchronous generator speed variation when it is subjected to a 20% 
input torque pulse on the shaft for 300 milliseconds (ms). The torque unbalance gives an oscillatory 
response in the generator because of zero damping. Although the converter and DC capacitor system 
isolate the two synchronous systems, the generator and the grid, part of the large oscillations in the 
generator will get past the converters into the grid. From the response shown in the Figure, it can be 
seen that the adaptive online RBFN controller results in larger overshoots compared to the 
uncontrolled case at the beginning of the adaptive training process. This is due to near-zero 
initialisation of the RBF weights. As time progresses the network gets trained and the oscillations die 
out quickly.    
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Figure 5.  Speed variation of permanent magnet synchronous generator following a 20% input 
torque pulse for 300 ms with and without proposed RBFNN control 
 

Figure 6 shows a comparison of the speed of the synchronous generator with the reference 
value when RBFNN control is applied. Figure 7 shows that the sum of squared error converges very 
fast. Figure 8 shows that in the early part of the transients, when the network has not been properly 
trained, the generator stator current momentarily increases by about 25%. However, it quickly 
returns to the normal level as the neural network gets trained. Maintenance of a constant level of  the 
DC-link capacitor voltage is essential for maximising the power transfer through the converters. It 
can be observed from Figure 9 that the DC link voltage recovery is very fast with the adaptive neural 
network control. Variations of the control variables (m and ψ), given in Figure 10, show that the 
control effort falls to a reasonably smaller value quickly after a slightly large excursion at the start of 
the training process. 
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Figure 6.  Variation of controlled generator speed from reference value 
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Figure 7.  Sum of squared error for 20% input torque pulse 
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Figure 8.  Generator stator current variation with and without adaptive RBFNN control 
 

0 5 10 15
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

C
on

ve
rte

r D
C

 v
ol

ta
ge

 (p
.u

.)

Time (sec.)

 

 

RBFNN control
No control

 
Figure 9.  Converter DC-link voltage variation following a 20% input torque pulse 
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Figure 10.  Modulation index (top figure) and phase angle controls (bottom figure) generated for 
20% torque pulse case 

 
Figure 11 shows a comparison of the generator speed variation response obtained from the 

following two strategies: a) the proposed adaptive RBFNN control, and b) decoupled P-Q strategy 
of supercapacitor control as reported in the literature [18]. The decoupled supercapacitor control of 
the PMSG involves a relatively complex controller, whose parameters are designed through an 
optimisation procedure. The major advantage of the proposed RBFNN controller over the earlier 
reported work is that the former can be implemented online and its performance is robust. 
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Figure11.  Comparison of generator speed variation obtained from proposed RBFNN control with 
optimum de-coupled P-Q strategy reported in the literature 
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The robustness of the RBFNN controller was tested at very low voltage conditions on the 
grid bus. Figures 12-13 show variations in the turbine speed and converter DC voltage respectively, 
following a 200-ms three-phase fault on the grid. The system response without any additional control 
results in growing oscillation. The RBFNN strategy controls the oscillation effectively and restores 
normal operation in less than 10 sec. The initial generator current and converter voltage show large 
peaks because of random initialisation of the weights. However, as time progresses the weights get 
trained and the system response reaches steady value smoothly. 

Figure 14 shows the variation in wind turbine speed and the generator terminal voltage  
following repetitive disturbances by input torque pulse. As can be observed, the initial transients in 
the subsequent disturbance are not as pronounced under the RBFNN control since the weight 
initialisation is no longer needed. 

From a number of simulation studies, it is observed that the proposed adaptive RBFNN 
restores even the dynamically unstable system to normal operation very quickly. The amount of 
control required to achieve this has been observed to be reasonably small. The adaptive strategy is 
simple to implement as it involves only a few steps of computation.  
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Figure 12.  Wind turbine speed variation following a 200-ms three-phase fault at the grid bus with 
and without adaptive controller 
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Figure 13.  Converter DC voltage variation following a 200-ms grid fault corresponding to Fig. 12 
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Figure 14.  Wind turbine speed variation and generator terminal voltage under RBFNN 
control when subjected to repetitive disturbances 
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CONCLUSIONS  
 

A novel online adaptive control strategy for an energy storage device has been proposed using 
artificial neural network. The strategy employs selected system outputs to predict the control and 
also updates the network weights online. No offline training is involved in the process. The objective 
of the strategy is to restore the permanent magnet wind generator to pre-specified levels of output 
following arbitrary disturbances in the system. This has been achieved by compensating for the wind 
generator P and Q imbalance through the energy storage device. The radial basis function considered 
has fast convergence characteristics. The proposed adaptive neural network control strategy is much 
superior to the classical neural controls, which employ fixed weights.  
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APPENDIX 
  
System Data (in per unit, except stated otherwise) 
 
PMSG quantities: 1.5 MVA, 690 V, 40-pole, f b = 11.5 Hz, Ra = 0.01, Xd = 1, Xq = 0.7, Hg = 0.5s,  
Ht = 3s, Ks = 0.3, Residual flux = 0.9  
 
Converter parameters: Ri = 0.05, Xi = 0.1, C = 1; Storage capacitor and VSC: 250 kW, Rst = 0.01, 
Lst = 0.15, Cdc = 1 
 
Local load and line: P = 200 kW, Q = 400 kVAR (including capacitor);  Rline = 0.1, Xline = 0.2 
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