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Abstract:  The Bayes estimation of the parameters of single and mixture of Rayleigh 
distributions under double censoring is discussed. The informative and non-informative 
priors under squared error loss function and k-loss function are assumed for the posterior 
estimation. The posterior risks, associated with each estimator are used to compare the 
performance of different estimators using the simulated and real life data sets.  
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INTRODUCTION  
 

In survival analysis data are always subject to censoring. The right censoring is the most 
common type of the censoring. In right censoring the survival time is smaller than the observed 
right censoring time. However, in some cases the data are subjected to left as well as right 
censoring. In case of left censoring, an analyst can only have the information that the survival time 
is larger than or equal to the observed left censoring time. A more difficult censoring scheme is 
established when both the initial and final times are interval-censored. Such a situation is referred as 
double censoring and the data with both left and right censored observations are known as doubly 
censored data.  

The analysis of the doubly censored data for simple (single) distribution has been performed 
by many authors. Fernandez [1] studied the maximum likelihood prediction based on type-II doubly 
censored samples from exponential distribution. Fernandez [2] investigated Bayesian estimation 
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based on censored samples from Pareto populations. Khan et al. [3] discussed predictive inference 
from a two-parameter Rayleigh life model using doubly censored samples. Kim and Song [4] 
considered Bayesian estimation of parameters of generalised exponential distribution using doubly 
censored samples. Khan et al. [5] performed the sensitivity analysis of predictive modelling for 
responses from three-parameter Weibull model using doubly censored sample of cancer patients.  
Pak et al. [6] proposed an estimation of Rayleigh scale parameter under doubly type-II censoring 
from imprecise data.   

In statistics a mixed model is signified as a convex fusion of other probability distributions. 
It can be used to model a full statistical population with subpopulations, where the components of 
mixture probability densities are the probability densities of the subpopulations. The mixed model 
may appropriately be used to the model data set, where the subsets of the whole data set own 
different properties that can best be modelled separately. They can be more mathematically 
manageable as the individual mixture components are more easily dealt with than the overall 
mixture density. The families of mixture distributions have many applications in different fields 
such as fisheries, botany, agriculture, economics, psychology, medicine, finance, electrophoresis, 
geology, communication theory and zoology.  

Soliman [7] obtained estimators for the finite mixture of Rayleigh model on the basis of 
progressively censored data. Sultan et al. [8] analysed some properties of the mixture of two inverse 
Weibull distributions. Saleem and Aslam [9] presented a comparison of the maximum likelihood 
estimates with the Bayesian estimates under uniform and Jeffreys’ priors for the parameters of the 
Rayleigh mixture. Kundu and Howalder [10] discussed the Bayesian estimation and prediction of 
the inverse Weibull distribution for type-II censored data. Saleem et al. [11] investigated the 
Bayesian properties of the mixture of Power function distribution using the complete and censored 
samples. Shi and Yan [12] studied the two-parameter exponential distribution under type-I 
censoring to obtain empirical Bayes estimates. Eluebaly and Bouguila [13] discussed a Bayesian 
approach to explore the finite generalised Gaussian mixed models which include several standard 
mixtures extensively used in signal and image processing applications such as Gaussian and 
Laplace. Sultan and Moisheer [14] developed an approximate Bayes estimation of the parameters 
and reliability function of the two-component mixture of inverse Weibull distributions under type-II 
censoring. The other contributions regarding Bayesian analysis of the mixed models can be seen 
from the work of Kazmi et al. [15], Ali et al. [16], Ali et al. [17], Feroze and Aslam [18], Feroze 
and Aslam [19], Feroze and Aslam [20], Sindhu et al. [21] and Sindhu et al. [22]. 
 
METHODS   
 

This section contains the introduction of the model and the likelihood function, along with 
the derivation of posterior distributions, Bayes estimators and posterior risks. The prior elicitation is 
also discussed. 
 
Proposed Mixed Model and Likelihood Function 
 

The probability density function of the Rayleigh distribution with rate parameter  i  is: 

   2 2 22 exp ,i ij ij i ij if x x x    0 ,ijx     2 0,i   i = 1,2 and j = 1,2,…,ni  .                                  (1) 

This function can be obtained by putting 2 21/   in the probability density function used by 
Saleem and Aslam [9]. 

The cumulative distribution function of the distribution is 
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   2 21 exp ,i ij i ijF x x    0 ,ijx     2 0,i   i = 1,2 and j = 1,2,…,ni  .                       (2) 

Saleem and Aslam [9] used the distribution function for a mixture of two-component 
densities. The same kind of mixture distribution with mixing weights (p1, 1- p1) can be written as 
       1 1 1 21 ,f x p f x p f x    10 1.p                        (3) 

Again considering the cumulative distribution function for the mixed model used by Saleem 
and Aslam [9], the cumulative distribution function for mixture distribution can be written as 
       1 1 1 21 .F x p F x p F x                           (4) 

Identifiability is a necessary condition for a model to produce precise inferences. Teicher 
[23] pioneered the study of identifiability of finite mixture distributions and showed that the class of 
scale parameters of the mixed models is identifiable. As we also use the scale parameters of the 
mixed model with a special case of Rayleigh distribution, the model is identifiable and we can use it 
for analysis.  

The graphs of single and mixture of Raleigh models under different parametric values are 
presented in Figures 1 and 2 respectively. They tend to be more peaked for larger values of the 
parameters.  
 

 
Figure 1.  Graphs of single Raleigh distribution           Figure 2.  Graphs of mixture of Raleigh distributions 
under different parametric values                                 under different parametric values 
                           [1 = (p1 = 0.45, 1 = 0.1, 2 = 0.12), 
                            2 = (p1 = 0.45, 1 = 10, 2 = 12), 
                            3 = (p1 = 0.45, 1 = 0.1, 2 = 12), 
                            4 = (p1 = 0.45, 1 = 10, 2 = 0.12)] 
 
Likelihood function under doubly censored samples using single Rayleigh distribution 

Consider a random sample of size ‘n’ from a Rayleigh distribution, and let xr,..., xs be the 
ordered observations that can only be observed. The remaining ‘r – 1’ smallest observations and the 
‘n – s’ largest observations are assumed to be censored. Then the likelihood function for type-II 
doubly censored sample x = (xr,..., xs) as used by Feroze and Aslam [24] can be written as  

           1!x 1
1 ! !

sr n s

r s i
i r

nL F x F x f x
r n s

   
 



                   

  2 22 2 2 21
2x 1 sr

sn sr
xx x

i r
L e e e  


 



       
.
 

After simplifications, it becomes  
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where  m = n _ s _ r +1. 
 
Likelihood function under doubly censored samples using mixed Rayleigh distributions 
 

Consider a random sample of size ‘ n ’ from the Rayleigh distribution, and let 1, ,...,r r sx x x  
be the ordered observations that can only be observed. The remaining ‘ 1r  ’ smallest observations 
and the ‘ n s ’ largest observations are assumed to be censored. Now, based on causes of failure, 
the failed items are assumed to come either from subpopulation 1 or from subpopulation 2, so the  

1 11 1,...,r sx x and 
2 22 2,...,r sx x  failed items come from the first and second subpopulations respectively.  

The rest of the observations which are less than rx and greater than sx are assumed to be censored 

from each component, where  1 21, 2,max ,s s sx x x and  1 21, 2,min ,r r rx x x . Therefore, the numbers 

of failed items, 1 1 1 1m s r    and 2 2 2 1m s r   , can be observed from the first and second 
subpopulations respectively. The remaining ( 2)n s r    items are assumed to be censored 
observations and 2s r  are the uncensored items, where 1 2r r r   , 1 2s s s  and 1 2m m m  . 
Then assuming the causes of failure of the left censored items are identified, the likelihood function 

for type-II doubly censored sample,     1 1 2 21 1 2 2x ,..., , ,...,r s r sx x x x , as done by Feroze and Aslam 

[20], can be written as
                 

1 21 221

1 2

1 2

1 1

 1  2 1 1 1 1 ( ) 1 ( ) 2 1 2 1 1( ) 1 2 2( ) 2, , 1 , , 1 , , , ,x
s sr r n sss

r r s i i
i r i r

L p p p F x F x F x f x f x       
  

 

         
    
 

,
      (6)
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1 2

1 2
1 2

2 2 2 2 2 2
1 3 2 31 2

1 1 1 2 2 2

where   ,    ,

1 and 1.

s s

j ji s r i s r
i r i r

x x n s k x kx x x k x kx

m s r m s r
 

         

     

                                                                                                                                  

                             
Bayes Estimation 
 

This section covers the Bayesian analysis of single and mixture of Rayleigh distributions 
under uniform and Nakagami priors. 
 
Bayesian estimation for single model using uniform and Nakagami priors 
 

The uniform prior proposed by Laplace [25] for the parameter of the Raleigh distribution is 
 

   1f   , 0  .                                                      (8) 
 
The posterior distribution under uniform prior using the likelihood function in equation (5) can be 
obtained as 
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 The Nakagami distribution proposed by Nakagami [26] is used as a prior distribution for the 
rate parameter , with the hyper-parameters a and b given by 
 

   
2

2 12 exp ,      , 0, 0
a

a
a

a af a b
a b b


    

     
 .             (10) 

 
The posterior distribution under Nakagami prior using the likelihood function in equation (5) can be 
obtained as 

   
 2 2 2 2 /1

2 2 1

0

1
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s

i s r
i r

x n s x jx a br
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j

r
e

j



   

 
          



 
   

 
               (11) 

 
The graphs of the posterior distribution under uniform and Nakagami priors for doubly 

censored single Rayleigh distribution under different parametric values using a simulated sample of 
size n = 40 are presented in Figures 3 and 4 respectively. Again, the graphs for posterior 
distributions tend to be more peaked for larger values of the parameters. Similarly, the curves of 
posterior distribution under Nakagami prior are more peaked than those under uniform prior. In the 
case of Nakagami prior, the elicited values of hyper-parameters are used in the graphs. 

 

    
 
     Figure 3.  Graphs of posterior distribution under              Figure 4.  Graphs of posterior distribution under 
      uniform prior          Nakagami prior 

 
Bayesian estimation for mixed model using uniform and Nakagami priors 
 

The uniform prior for the vector Θ = (λ1, λ2, 1) of the mixed model can be assumed as  
  1g    .                              (12) 

By multiplying equation (12) with equation (7), the joint posterior density for the vector  , given 
the data, becomes  
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For the Bayes estimation using Nakagami prior, let us assume that the parameters λi (i = 1, 
2) and p1 are independent random variables, and then we consider the following priors for different 
parameters. The prior for the rate parameters  i for i = 1, 2 is assumed as the Nakagami 
distribution with the hyper-parameters ai and bi given by  

   
2

2 12 exp ,      , 0
i

i i

a
aii i i

i i i ia
i i i

a af a b
a b b


    

    
 .           (14) 

 
The prior for p1 is assumed to be the beta distribution, whose density is given by  

   
      11

11 1 1
1 1 1 1 1

1 1

1 ,      , 0dc
p

c d
f p p p c d

c d
 

  
 

 .           (15) 

 
From equations (14) and (15), we propose the following joint prior density of the 
vector   1  2 1, , :p     

    11

2
112 1

1 1 1 1 1exp 1 ,0 1,  0,  0,  0,  0dcai i i
i i i

i

ag p p p a b c d
b


   
         

 
            (16)    

 
By multiplying equation (16) with equation (7), the joint posterior density for the vector  , given 
the data, becomes 
 

   

 

1 2
1 2 3 1 1 2 3 1

1 2 3
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1 2 1 1
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  .                     (17)     

 
The marginal distributions of λi (i = 1, 2) and p1 can be obtained by integrating the nuisance 
parameters.  
 

Figures 5 and 6 show the graphs of the marginal posterior distributions for both components 
under uniform prior, using a simulated sample of size n = 40. As observed in the case of single 
posterior models, the marginal posterior distributions tend to be more peaked for larger values of 
the parameters. Similarly, the curves of marginal posterior distributions under Nakagami prior are 
more peaked than those under uniform prior. 
 

 
Figure 5.  Graphs of marginal posterior distribution   Figure 6.  Graphs of marginal posterior distribution 
for first component under uniform prior          for second component under uniform prior 
[1 = (p1 = 0.45, 1 = 0.1, 2 = 0.12); 2 = (p1 = 0.45, 1 = 10, 2 = 12); 3 = (p1 = 0.45, 1 = 0.1, 2 = 12); 4 

= (p1 = 0.45, 1 = 10, 2 = 0.12)] 



318 
Maejo Int. J. Sci. Technol. 2015, 9(03), 312-327; doi: 10.14456/mijst.2015.24 
 

 
 

Bayes Estimation of Vector of Parameters   
 

The Bayesian point estimation is linked to a loss function in general, signifying the loss 
occurring when the estimate ̂  differs from true parameter  . As there is no specific rule of thumb 
that helps us to decide the appropriate loss function to be used, the squared error loss function 
(SELF) is used in this paper as it serves as standard loss. It is well known that under the SELF, the 
Bayes estimator of a function of the parameters is the posterior mean of the loss function and the 

risk is the posterior variance. It is defined as    2ˆ ˆ,l      . It was initially used in estimation 

problems when the unbiased estimator of θ was being considered. Another reason for its 
attractiveness is its relationship to the least squares theory. The use of SELF makes the calculations 
simpler.  

The K-loss function (KLF), proposed by Wasan [27] and defined as    2ˆ ˆ ˆ, /l       ,  

is well fitted for a measure of inaccuracy for an estimator of a scale parameter of the distribution 
defined as  0, .R    Under KLF, the Bayes estimates and posterior risks are defined as 

1ˆ ( | ) / ( | )E E    x x   and    1ˆ 2 ( | ) ( | ) 1E E     x x respectively. Recently Ali [28] used 

this loss function and also suggested a modified KLF.  
In the Bayesian estimation in the case of single Rayleigh model, the Bayes estimator and 

posterior risk using SELF under uniform prior are respectively presented as 
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The Bayes estimators and posterior risks under Nakagami prior and KLF can be obtained with little 
modifications.  

In the Bayesian estimation in the case of mixture of Rayleigh models, the respective 
marginal distribution of each parameter is used to derive the Bayes estimators and posterior risks for 

1 2,     and p1 under SELF and KLF. The Bayes estimators of 1 2,     and p1 under SELF, assuming 
Nakagami prior, are given as 
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The posterior risks of 1 2,     and p1 are given as 
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where 
1N 
 is formulised as 
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1 3 1 1A n s k s c      and 2 2 3 1A s k d   .
 

 
Similarly, expressions for Bayes estimators and their posterior risks under KLF and uniform 

prior can be obtained with little modifications. 
 
Elicitation 
 

In Bayesian analysis the elicitation of opinion is an important step. It helps us to easily 
understand the expert’s opinions. In statistical inference the hyper-parameters of a prior distribution 
are determined by the characteristics of a certain predictive distribution proposed by an expert. In 
this study we focus on a method of elicitation based on prior predictive distribution. The elicitation 
of the hyper-parameters from the prior  p   is a complex task. The prior predictive distribution is 

used for the elicitation of the hyper-parameters, which  is compared with the experts' judgement 
about this distribution, and then the hyper-parameters are chosen in such a way so as to make the 
judgment agree as closely as possible with the given distribution. More detail on this may be 
obtained from the work of Grimshaw et al. [29], O’Hagan et al. [30], Jenkinson [31] and Leon et al. 
[32]. Aslam [33] suggested the method of elicitation that compares the prior predictive distribution 
with the expert’s assessments about the distribution involved and then chooses the hyper-parameters 
that make the assessment agree closely with the member of the family. This method has also been 
used by Kazmi et al. [15]. The prior predictive distribution is derived using the following formula: 

 
   ( )p y p y p d



    |  

 
For the elicitation for single Rayleigh model under Nakagami distribution, the prior 

predictive distribution using Nakagami prior is 
 

           
 

  
1

12 1
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yap y ab y
y ab




 


                          (18)     
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For the elicitation of the two hyper-parameters, two intervals are considered. From equation (18), 
the experts’ probabilities/assessments are supposed to be 0.10 for each case. The two integrals for 
equation (18) are considered with the following limits of values of random variable ‘Y’: (0, 10) and 
(10, 20) respectively. For the elicitation of the hyper-parameters a and b, these two equations are 
solved simultaneously through a computer program developed in SAS package using the command 
of PROC SYSLIN. Thus, the values of the hyper-parameters obtained by applying this methodology 
are 0.010348 and 0.735261 respectively. 

For the elicitation for mixture of Rayleigh models under Nakagami distribution, the prior 
predictive distribution using Nakagami prior is 

 

 
     

   
1 2

1 2

1 11 1 2 1
1 1 2 21 12 1 2 1

1 1 1 1 1 1 2 2

( ) 2 2 ,  0
a a

a a

ya c ya dp y a b a b y
c d y a b c d y a b

 
  

  
   

             (19)     

 
For the elicitation of the six hyper-parameters, six different intervals are considered. From equation 
(19), the expert’s probabilities/assessments are supposed to be 0.10 for each case. The six integrals 
for equation (19) are considered with the following limits of values of random variable ‘Y’: (0, 10), 
(10, 20), (20, 30), (30, 40), (40, 50) and (50, 60) respectively. For the elicitation of the hyper-
parameters a1, a2, b1, b2, c1 and d1, these six equations are solved simultaneously through a computer 
program developed in SAS package using the command of PROC SYSLIN. Thus, the values of the 
hyper-parameters obtained by applying this methodology are 0.000231, 0.012109, 0.52114, 4.99325, 
0.52130 and 0.14790 respectively. 
 
RESULTS AND DISCUSSION 
   

A simulation study was carried out to investigate the performance of Bayes estimates under 
a tenfold choice of parametric values, different sample sizes, and different values of mixing 
parameter. We took random samples of sizes n = 20, 40 and 80 from single and two-component 
mixture of Rayleigh distributions with tenfold choice of the parameters. The choice of censoring 
time was made in such a way that the censoring rate in the resultant sample was approximately 
20%. The processes for the generation of data from the single and mixed models are discussed in 
the following sections. 
 
Simulation  

In the case of single Rayleigh model the parametric space is considered as  0.1,10 . The 
data are generated using the following steps.  
 
Step 1: Draw samples of size ‘n’ from Rayleigh model using inverse transformation technique by 

 taking the generator  2 ln 1x u    , where ‘u’ is a uniform random variable.  
Step 2: Determine the test termination points on the left and right, i.e. the values of rx (test 

termination point from left) and sx  (test termination point from right). 
Step 3: The observations which are less than rx and greater than sx are considered to be censored. 
Step 4: Use the observations which are greater than or equal to rx and less than or equal to sx  for 
 the analysis.  
Step 5: Repeat steps 1- 4 ten thousand times and calculate the average of the estimates. 
 

It should be noted that the values of rx  and sx  are assumed to be such that an equal number 
of values are censored from left and right, i.e 10% from each side. 
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In the case of mixture of Rayleigh models, the parametric space is considered as 
        1 2( , ) 0.1,  0.12 , 10,  12 , 0.1,  12 , 10,  0.12 ,   1 0.45p  . To generate the mixture data we 

make use of probabilistic mixing with probabilities p1 and (1- p1). A uniform number u  is generated 
n times and if u < p1, the observation is taken randomly from 1F  (Rayleigh distribution with 
parameter 1 ), otherwise from 2F  (Rayleigh distribution with parameter 2 ). To implement censored 
samplings, we consider that the 

1 11 1,...,r sx x and 
2 22 2,...,r sx x failed items come from the first and 

second subpopulations respectively. The values of rx  and sx  are assumed to be such that an equal 
number of values are censored from left and right, i.e. 10% from each side.   The simulated data sets   
are obtained using the following steps: 
 
Step 1: Draw samples of size ‘n’ from each component of the mixture model using inverse 
 transformation technique by taking the generator  2 ln 1x u    , where ‘u’ is a 
 uniform random variable. 
Step 2:  Generate a uniform random number u , corresponding to each observation. 
Step 3: If 1u p , take the observation from the first subpopulation; if 1u p , take the 
 observation from the second subpopulation. 
Step 4: Determine the test termination points on the left and right, i.e. the values of rx  (test 

termination point from left) and sx  (test termination point from right). 
Step 5: The observations which are less than rx and greater than sx are considered to be censored 

from each component. 
Step 6: Use the observations which are greater than or equal to rx and less than or equal to sx  for 
 the analysis. 
Step 7: Repeat steps 1 - 6 ten thousand times and calculate the average of the estimates. 
  

Table 1 represents the Bayes estimates and corresponding posterior risks for doubly 
censored single Rayleigh model. From this table, it can be seen that estimated values of the 
parameters converge to the true values of the parameters, and the amount of the corresponding 
posterior risk decreases with increase in sample size. As the amount of posterior risks associated 
with the estimates under Nakagami prior is smaller than that under uniform prior, so the 
performance of Nakagami prior is better than uniform prior. On the other hand, the performance of 
SELF is better than KLF when the parametric values are small, while in the case of larger values of 
the parameter, the performance of KLF is better than SELF. 
 Numerical results of the simulation study, presented in Tables 2-5, reveal interesting 
properties of the proposed Bayes estimators for the mixture of Rayleigh models. The estimated 
values of the parameters converge to the true values of the parameters, and the amounts of posterior 
risks tend to decrease by increasing the sample size. Another interesting point concerning the 
posterior risks of the estimates of 1 and 2 is that increasing (or decreasing) the proportion of 
component in the mixture decreases (or increases) the amount of posterior risks for the estimates of 
λ1.  

The Bayes estimates of the lifetime parameters are either over- or underestimated. The 
estimates of the mixing parameter ( 1p ) also have mixed behaviour: sometimes overestimated and 
other times underestimated. The performance of Nakagami prior seems better than uniform prior as 
the associated magnitude of posterior risks is smaller in the case of Nakagami prior. In comparing 
the loss functions, it is assessed that the magnitude of posterior risks under SELF is smaller than 
that under KLF for a smaller choice of true parametric values, i.e. for (λ1, λ2) = (0.1, 0.12). On the 
other hand, for quite larger values of parameters, i.e. for (λ1, λ2) = (10, 12) and for significantly 
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different values of parameters, i.e. for (λ1, λ2) = (0.1, 12) and (10, 0.12), the KLF produces better 
results. It should also be mentioned here that the SELF in the majority of cases produces better 
convergence than the KLF.  
 
Table 1.  Bayes estimators and posterior risks (in brackets) under uniform prior and Nakagami prior 
for single model using  0.1,10   

n 
Uniform prior Nakagami prior 

SELF KLF SELF KLF 
λ = 0.10 λ = 10 λ = 0.10 λ = 10 λ = 0.10 λ = 10 λ = 0.10 λ = 10 

20 0.10664 11.41053 0.10540 10.72593 0.10550 10.88324 0.10427 10.23027 
(0.00051) (4.47964) (0.08900) (0.08795) (0.00050) (4.27545) (0.08647) (0.08394) 

40 0.10855 10.93152 0.10440 10.66980 0.10375 10.42546 0.10394 10.17586 
(0.00023) (2.48177) (0.04732) (0.04397) (0.00023) (2.45224) (0.04572) (0.04344) 

80 0.10329 10.47666 0.10252 10.44836 0.10221 10.10949 0.10145 10.08218 
(0.00012) (1.10186) (0.02175) (0.02387) (0.00012) (1.07332) (0.02151) (0.02325) 

 

 
   Table 2.  Bayes estimators and posterior risks (in brackets) under uniform prior for mixed model  
   using  1 2 1, , (0.1, 0.12, 0.45) and (10, 12, 0.45)p     

n 
SELF 

1̂  2̂  1p̂  1̂  2̂  1p̂  

20 
0.107209 0.132703 0.515202 11.086576 13.549166 0.517763 

(0.000503) (0.000564) (0.013700) (4.321071) (4.923963) (0.013560) 

40 
0.100505 0.130256 0.509777 10.567887 13.461262 0.502870 

(0.000230) (0.000314) (0.007576) (2.488090) (2.797394) (0.007513) 

80 
0.103622 0.127356 0.502084 9.912993 13.026748 0.484931 

(0.000118) (0.000167) (0.003912) (1.088862) (1.624447) (0.003864) 
                    KLF 

20 
0.102959 0.129129 0.497539 10.221412 12.865358 0.502526 

(0.087594) (0.072430) (0.133359) (0.084839) (0.070344) (0.131133) 

40 
0.106241 0.128014 0.487087 10.014874 12.850151 0.493996 

(0.046633) (0.038191) (0.071148) (0.044080) (0.038230) (0.071735) 

80 
0.094853 0.123316 0.484133 10.285132 12.557065 0.475643 

(0.021888) (0.020362) (0.034902) (0.023584) (0.020691) (0.037357) 
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  Table 3.  Bayes estimators and posterior risks (in brackets) under uniform prior for mixed model 
  using  1 2 1, , (0.10, 12, 0.45) and (10, 0.12, 0.45)p    
 

n 
SELF 

1̂  2̂  1p̂  1̂  2̂  1p̂  

20 
0.098497 14.214270 0.552917 12.212382 0.117154 0.420005 

(0.000316) (4.921202) (0.012464) (4.343465) (0.000331) (0.012162) 

40 
0.091638 13.945293 0.543338 12.073530 0.119216 0.432426 

(0.000135) (2.401793) (0.006765) (2.219332) (0.000160) (0.006444) 

80 
0.095115 13.649684 0.534044 11.518744 0.121828 0.450936 

(0.000067) (1.193893) (0.003386) (1.119705) (0.000077) (0.003253) 
                     KLF 

20 
0.092387 13.492645 0.541278 11.771346 0.108699 0.436242 

(0.068477) (0.055819) (0.100292) (0.068494) (0.054418) (0.152270) 

40 
0.096671 13.246342 0.528118 11.638419 0.121915 0.440904 

(0.033686) (0.026147) (0.052829) (0.033122) (0.026645) (0.083827) 

80 
0.098805 12.535256 0.520105 11.569858 0.124054 0.445349 

(0.016265) (0.013083) (0.027307) (0.016581) (0.013209) (0.042834) 
 
 

  Table 4.  Bayes estimators and posterior risks (in brackets) under uniform prior for mixed model 
   using  1 2 1, , (0.1, 0.12, 0.45) and (10, 12, 0.45)p    
 

n 
SELF 

1̂  2̂  1p̂  1̂  2̂  1p̂  

20 
0.104076 0.127713 0.498425 10.82959 12.9605 0.497084 

(0.000479) (0.000558) (0.013229) (4.256710) (4.8388) (0.013244) 

40 
0.099427 0.12652 0.48622 10.12890 12.88640 0.479166 

(0.000223) (0.000306) (0.007231) (2.39442) (2.71684) (0.007305) 

80 
0.099036 0.125807 0.478841 9.61493 12.67810 0.462094 

(0.000114) (0.000161) (0.003865) (1.05203) (1.58376) (0.003820) 
                     KLF 

20 
0.101884 0.123181 0.480102 10.11040 12.73760 0.481255 

(0.086648) (0.069120) (0.129905) (0.083902) (0.068839) (0.12979) 

40 
0.101669 0.123008 0.471869 9.85076 12.45580 0.474996 

(0.045012) (0.037679) (0.070063) (0.043278) (0.037003) (0.069297) 

80 
0.090768 0.121778 0.470942 9.91883 12.11990 0.468498 

(0.021446) (0.019760) (0.034345) (0.022678) (0.019891) (0.036650) 
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   Table 5.  Bayes estimators and posterior risks (in brackets) under uniform prior for mixed model 
    using  1 2 1, , (0.10, 12, 0.45) and (10, 0.12, 0.45)p    
 

n 
SELF 

1̂  2̂  1p̂  1̂  2̂  1p̂  

20 
0.095619 13.67980 0.534912 11.92930 0.112064 0.403231 

(0.000301) (4.868910) (0.012036) (4.278770) (0.000325) (0.011879) 

40 
0.090655 13.54530 0.51823 11.5720 0.114125 0.412042 

(0.000131) (2.343030) (0.006457) (2.13578) (0.000155) (0.006265) 

80 
0.090905 13.48370 0.509322 11.17240 0.118567 0.42970 

(0.000065) (1.148460) (0.003346) (1.08183) (0.000075) (0.003216) 
                     KLF 

20 
0.0914225 12.87110 0.522308 11.64350 0.10762 0.417776 
(0.067737) (0.053268) (0.097694) (0.067737) (0.053254) (0.15071) 

40 
0.092511 12.72830 0.511618 11.44770 0.118174 0.423946 

(0.032515) (0.025796) (0.052023) (0.032519) (0.025790) (0.080978) 

80 
0.09455 12.37891 0.505934 11.15780 0.119735 0.438659 

(0.015937) (0.012696) (0.026871) (0.015944) (0.012698) (0.042023) 

 
Real Data Analysis 
 

We analysed a real data set to illustrate the methodology discussed in the previous section. 
In order to show the usefulness of the proposed mixture distribution, we applied the results to the 
survival times (in years) of a set of cancer patients given chemotherapy treatment. The details of 
this data can be seen from Bekker et al. [34] and the references cited therein. We used the 
Kolmogorov-Smirnov and chi-square tests to see whether the data follow the Rayleigh distribution. 
These tests, with p-values of 0.2170 and 0.2681 respectively, indicate that the data follow the 
Rayleigh distribution at 5% level of significance. The original data consisted of 46 values regarding 
survival times (in years) of cancer patients given chemotherapy treatment. A uniform number ‘u’ 
was generated for each of the 46 values. If u < p1, the observation was allotted to F1 (the Rayleigh 
distribution with parameter 1, i.e. the first component of the mixture); otherwise to 2F (from the 

Rayleigh distribution with parameter 2 , i.e. the second component of the mixture). The 
observations allotted to the first and second components of the mixture were considered as 
population-I and population-II respectively. The observations which were less than 0.047 (i.e. rx ) 

and greater than 3.978 (i.e. sx ) were assumed to be censored from left and right respectively from 
each population. The remaining doubly censored data from population-I and population-II are 
presented in Table 6. The values of rx  and sx  were assumed to be such that an equal number of 
values were censored from left and right, i.e. 10% from each side. The Bayes estimates were 
obtained assuming non-informative and informative priors under SELF and KLF. 

Tables 7-8 contain the Bayesian estimation of parameters of the single and mixture of 
Rayleigh distributions under real-life data set. The findings from the real-life analysis are in close 
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agreement with those from the simulation study. It should be noted that the estimates under SELF 
and Nakagami prior are associated with smaller amounts of posterior risks. 

 
Table 6.  Doubly-censored, real-life data of the mixture regarding survival times (in years) of 
cancer patients given chemotherapy treatment    
 

Population-I Population-II 
0.197, 0.534, 0.115, 0.296, 0.121, 0.466, 0.529, 1.447, 
0.863, 0.132, 0.395, 0.696, 2.825, 3.658, 3.978, 3.743,  
2.343, 2.178, 0.540,  4.003,  1.553,  1.485,  2.83, 2.416 

0.260, 1.099, 0.501, 0.458, 0.641, 
0.334, 0.570, 0.164, 0.203, 0.282, 
0.047, 1.271, 1.589, 1.326, 0.841, 
2.444 

 
 
 Table 7.  Bayes estimators and posterior risks (in brackets) for single Rayleigh model using real 
  data set 
 

Uniform prior Nakagami prior 
SELF KLF SELF 

 
KLF 

0.386117 0.383239 0.382462 0.377970 
(0.002481) (0.035318) (0.002451) (0.035057) 

 

 Table 8.  Bayes estimators and posterior risks (in brackets) for mixed Rayleigh models using real 
  data set 
 

Prior 
p1 = 0.45 

SELF KLF 
1̂  2̂  1p̂  1̂  2̂  1p̂  

Uniform prior 
0.381184 0.756889 0.535297 0.378104 0.723677 0.532335 

(0.002447) (0.007935) (0.006711) (0.034814) (0.031677) (0.053736) 
Nakagami 

prior 
0.377204 

(0.002420) 
0.722023 

(0.007572) 
0.516536 

(0.006537) 
0.373998 

(0.034429) 
0.716491 

(0.030999) 
0.509802 

(0.053186) 
 

CONCLUSIONS 
   

In this article the Bayesian inference of the single and mixture of Rayleigh models under 
type-II double censoring has been considered assuming informative and non-informative priors. The 
simulation study has displayed some interesting properties of the Bayes estimates. It is noted in 
each case that the posterior risks of estimates of lifetime parameters are reduced as the sample size 
increases. The performance of the Nakagami prior in each case (single or mixed model) is found to 
be better than the uniform prior. On the other hand, the performance of SELF is better for a smaller 
choice of parametric values, while for larger values of parameter the performance of KLF is better. 
This property is also the same in the case of single and mixed models. A real-life example further 
strengthens the findings from the simulation study. The study can further be extended by 
considering some other censoring techniques and by using some more flexible probability 
distributions.  
 
 

 

p̂
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