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Abstract:  A hybrid framework for an improved resolution of 3D-model colon 
reconstruction from computed tomographic colonography images is proposed. The 
framework is composed of three main parts: colon cleansing, colon-wall detection and colon 
segmentation followed by 3D model reconstruction. The first part, colon cleansing, was 
performed by applying a Laplacian operator combined with K-means clustering and 
morphological-based operations. An average Gaussian low-pass filter of two different sizes 
combined with a median filter was employed to reconstruct the colon wall as realistically as 
possible, and was evaluated on four data sets by an expert radiologist. The second part, 
colon-wall detection, utilised hybrid edge and enhanced gradient vector flow procedures to 
enhance the colon-wall detection, and the results were evaluated on eight data sets in 
comparison with two existing techniques by two expert radiologists. Finally, colon 
segmentation, based on anatomical structures and volume analysis, was applied and then 3D 
models were reconstructed. The colon cleansing was consistent across all data sets and gave 
satisfactory removal of all partial volume effects and contrast-enhancing material, whilst the 
proposed method gave better results for colon wall segmentation than the existing methods, 
even in special cases of unusually structured colons. 

 
Keywords:  computed tomographic colonography, colorectal cancer, polyps, colon cleansing, 
colon detection 

_______________________________________________________________________________________ 
 
INTRODUCTION 
 

 Colorectal cancer is a deadly disease in both men and women if the pathological symptoms 
are not diagnosed in the early stages [1]. Most colorectal cancers can be successfully treated if the 
pre-cancer cells (polyps) are detected and diagnosed at an initial stage. Virtual colonoscopy, also 
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called computed tomographic (CT) colonography, is used in colorectal cancer screening, which is 
performed by scanning the patient’s abdomen to produce a series of cross sectional CT 
colonography images. This non-invasive technique is more comfortable for patients because they do 
not need a physical cleansing, which is comprised of either cleansing the colon with a large volume 
of liquids or taking medication and enemas to clear the colon lumen. Instead, the patient orally takes 
a contrast enhancement agent to make the retained residual materials (faeces and liquid stool) inside 
the colon radio-opaque so that they can be removed from the CT images by computerised cleansing 
[2]. 

However, CT colonoscopy has two main problems. The first is in cleaning up the colon 
images (colon cleansing) to eliminate any retained material of contrast-enhancing fluid (CEF) inside 
the colon lumen for reliable and accurate polyp detection. Although the intensities of these 
unwanted residual materials are enhanced, they do not show explicit boundaries due to the partial 
volume effect (PVE). Therefore, although applying simple threshold subtraction on the residual 
materials gives the fastest result, it cannot eliminate the PVE voxels at the interface region between 
the residual fluids and air, and it also increases aliasing effects at the surface of the colon wall.  
  The second problem is in the colon-wall detection and segmentation stage. The accuracy of 
the colon-wall detection is important in localising and identifying the size of polyps, but artefacts 
such as blurred surfaces where the colon lumen meets with air can reduce the accuracy of the colon-
wall detection. Moreover, the colon is not the only air-filled organ in the abdomen. The lower 
portion of the lung, as well as the stomach and intestine are sometimes present in CT images. These 
air-filled organs make the task of accurate colon segmentation more difficult. 

Many techniques for colon cleansing and PVE removal were reported previously. Typically, 
learning vector quantisation was applied for image classification and colon cleansing [3] whilst 
threshold value selection (based on the histogram of all the data intensity) and vertical filter were 
utilised for removing the CEF and PVE boundary [4]. However, these techniques did not address 
the effect of the sharpened intensity at the mucosal layers after colon cleansing. Segmentation ray 
casts with volume intensity distribution have been used to define the profile pattern for detecting the 
PVE whilst reconstruction graphs have been employed for removing the residuals [5]. Moreover, 
non-linear transfer function and morphological dilation operations have been used to find the 
intensity profile of the CEF [6] whilst a threshold function combined with triangular intensity 
transformation has been used for colon cleansing [7]. Similarly, half-sized data have been applied 
for generating the local and global histograms of the CEF to make a binary mask and then a 
morphological dilation operation is applied to seed the region growing [8]. Nevertheless, these 
methods require cautious selection of the optimal intensity for assigning the classification tasks.  

Various techniques on automated colon-wall detection and segmentation have been developed. 
Although the basic techniques usually apply region growing [4, 8-9], these methods suffer from a 
limited capacity to find the optimal threshold setting and require refinement of the colon border. 
Another approach is to use the immersion-based watershed algorithm to compute the colon lumen 
border using a gradient map [6, 10-11]. Nevertheless, this method also has restrictions on their 
resolution of the complex contours of the colon border. Although level-set methods [12-15] have 
been used for colon segmentation, the identification of the decreasing shade intensity voxels on the 
border of the colon wall and the concave regions is still problematic. The traditional deformable 
model has the limitation of a small capture range and also has difficulties in driving into the 
concave boundary regions [16, 17]. Consequently, a gradient vector flow (GVF) deformable model 
has been developed to give a greater capture range in driving into concave regions [18, 19] in many 
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medical image segmentations [20-24]. However, the blurred area of low-intensity shading at the 
border of the colon wall still makes the edge detection difficult by the traditional GVF method. 

For these reasons, we propose a hybrid framework for colon cleansing and colon-wall 
detection and segmentation to solve the described problems and to reconstruct a 3D colon model as 
realistically as possible. This will encourage radiologists to improve the diagnostic performance 
when performing a fly-through (the movement of virtual viewing inside colon) and displaying the 
entire 3D colon model with accurate surface and shape of colon. The proposed framework is 
composed of three main parts (Figure 1) and described as follows. 

 

 

 

 
Figure 1.  Proposed hybrid framework for colon cleansing and colon-wall detection and segmentation 
 

The first part is the colon cleansing process, which uses a Laplacian operator combined with 
K-means clustering [25] to detect and eliminate the CEF and then applies morphological operations 
to remove the undesirable PVE. Moreover, the mucosal layers are reconstructed by an average 
Gaussian low pass filter of two different sizes combined with a median filter. 

The second part is the colon-wall detection process, which uses an enhanced gradient vector 
flow (EGVF) to assist in the detection of the colon lumen. The proposed EGVF algorithm is 
composed of two stages. The first stage is the calculation of the hybrid edge, which is performed by 
combining the edge derived from the Canny edge detector [26] with automatic thresholding and that 
from the Laplacian of Gaussian (LoG) detectors [27] with automatic thresholding. In the second 
stage, the derived hybrid edge is then used as an edge mask to construct an enhanced edge map. 
This map is then applied to generate the EGVF for the detection of the colon wall.  

The third part is the colon segmentation and 3D model reconstruction. The colon 
segmentation method is based on the anatomical structure of the colon and a volume analysis for the 
rendering of a 3D colon model. 
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MATERIALS AND METHODS  
CT Image Acquisition and Elimination of Area Outside Abdomen 
 

Since the retained faeces in the colon lumen can conceal polyps, all patients must undergo a 
standard bowel preparation involving a low-residue diet and take colonic lavage to make the 
retained faeces become more liquid. A contrast-enhancing agent such as barium sulphate was then 
taken to make the residual fluid radio-opaque and then the colon lumen was inflated to distend the 
colon and also to homogenise the residual material. After that, the CT colonographic scan was 
performed by a spiral CT scanner (Siemens SOMATOM Sensation 16, Technical Prospects, LLC, 
USA) to produce CT colonographic images. The acquired images were constructed at 1-mm 
intervals with 512512 voxels, resulting in 500-700 slices. This approach had been approved by the 
Ethics Committee of the Faculty of Medicine, Chulalongkorn University. 

The voxels outside the body were automatically detected and were discarded from the CT 
images in order to eliminate the extra computing time. The Otsu's method [28] was applied to 
separate the CT image into the foreground and the background. Afterwards, the areas outside the 
abdomen were discarded and all voxels inside the abdomen were preserved for the next process. 

 
Image Sharpening by Laplacian Operator 
 

Traditional K-means clustering is not precise at separating voxels that are located between 
two transitional regions and so small artifacts of CEF can be missed. Thus, the images were 
sharpened by Laplacian operator [27] via the highlighting of the discontinuity intensity levels. The 
sharpened image Ish(x,y) was acquired from Eq. (1): 

 
),(),(),( 2 yxIyxIyxI sh  , (1) 

where 2 is the Laplacian operator and I(x,y) is a CT image slice at coordinates x and y.  
 
K-means Clustering for Colon Classification 
 

Although applying thresholding is the simplest method in segmentation, each range of 
threshold intensities is sensitive to the intensity inhomogeneity. A slight change to these threshold 
values can affect the contour of colon, especially the thin tissue layers that may then disappear. 
Thus, it is not easy to select proper threshold intensities, and for this reason K-means clustering was 
applied to assist in image classification since the number of clusters for partitioning the regions is 
known and it converges to the optimal solution faster than the other pixel-based methods [25].  

The intensity of each sharpened image was then used as feature vector X = {xi | i = 1, 2, 3... 
n} to classify into four main regions of (i) air, (ii) soft tissue and fat, (iii) muscle, and (iv) contrast-
enhanced material and bones. The algorithm of K-means clustering was started by initialising the 
centroid of each cluster z1, z2, z3 and z4 at random from a range of data. At the pth iteration, the 
feature vector xi was assigned to the respective cluster Cj ( j = 1, 2, 3 or 4) whose centroid was the 
nearest or whose Euclidean distance was the minimum, as expressed in Eq. (2): 

 
pji Cx ,  if pkipji zxzx ,,   , (2) 

 where   represents the Euclidean distance function, Cj,p denotes a cluster j at the pth iteration whose 
centroid is zj,p,  and k = 1, 2, 3 or 4 with the condition that j k. Afterwards, the new centroid of 
each cluster, zj,p+1 in the p+1th iteration, was recalculated to minimise the criterion function, as in Eq. 
(3) 
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where xi,j is in Cj and Nj is the number of voxels of cluster j. The value of zj,p+1 which can minimise 
this criterion became the new centroid of the cluster and was computed by Eq. (4);  
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The algorithm terminates if the centroids have not changed; otherwise, it will return to 
recalculate the clusters. To find the global minimum, several replications with random starting 
centroids were applied in order to converge the solutions to a global minimum. A sample image 
before and after performing K-means clustering is shown in Figures 2(a) and 2(b) respectively. 
 

    
(a) (b) (c) (d) 

   
(e) (f) (g)   

Figure 2.  Original CT image slice (a) and that after K-means clustering (b), plus MaskAir (c), 
MaskCEF-Bone (d), MaskTissue (e); MaskCEF (f) and MaskPVE (g) 
 
Lung Removal 
 

The prior removal of lungs was employed to eliminate the extra computation. Traditionally, 
a threshold setting is used to separate the lung tissue. In contrast, here the lungs were removed 
based upon their anatomical characteristic (they contain many blood vessels). Preliminarily, the air 
regions were constructed with a binary mask and labelled as MaskAir. If a segment of MaskAir had 
holes inside, assumed to be blood vessels, it was designated as lung and ignored (Figure 3).  

 
Automatic CEF Segmentation  
 
  The region of CEF and the bones were defined as MaskCEF-Bone (Figure 2(d)), whilst the regions 
of soft tissues and muscles were combined together and called MaskTissue (Figure 2(e)). Since the 
CEF was concentrated at the lower part of the colon due to gravity and also appeared between the 
colon wall and the air region, then the voxels that surround the MaskCEF-Bone were examined for 
these restrictions to distinguish the CEF from bone and denoted as MaskCEF (Figure 2(f)).  
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(a) (b) (c)  

Figure 3. CT image slice (a) and that for MaskAir before lung removal (b) and after lung removal (c) 
 
Automatic PVE Segmentation 
  
  The PVE between air and CEF still remained in the MaskTissue. Then the boundary that 
included the interface layer of PVE voxels, assigned as MaskMerge, was calculated by merging the 
boundaries of dilated masks of each segment of MaskCEF and their contiguous MaskAir with OR 
operation and applying morphological erosion afterwards, as in Eq. (5): 

MaskMerge = ((MaskAir,ise)(MaskCEF,ise))se, (5)  where  and  represent the morphological dilation and erosion respectively, with a disk-shaped 
structuring element se whose radius size was equal to one. MaskCEF,i is each segment of MaskCEF, 
MaskAir,i is a segment of MaskAir that is contiguous to MaskCEF,i , and i represents each colon segment 
that has CEF. The symbol  represents the OR operation. The suspected PVE that interfaced between 
the air and CEF, called MaskTestPVE, was obtained by using the AND operation on MaskMerge, MaskTissue 
and the dilation of each segment of MaskCEF, as given in Eq. (6): 

 
)( , eiCEFTissueMergeTestPVE sMaskMaskMaskMask  , (6) 

where   represents the AND operation.  
Since there are two possible types of each component of MaskTestPVE (soft tissue or PVE), the 

inspection was performed with the assumptions that the PVE voxels were the interface layer 
appearing between the air and CEF; otherwise they were defined as tissue. Eventually, the PVE 
regions was determined and labelled as MaskPVE (Figure 2(g)).  
 
Colon Cleansing and Mucosa Reconstruction 
 

The dilated MaskPVE and MaskCEF were combined together and then subtracted from the CT 
image, successfully eliminating the CEF and PVE voxels. Consequently, the reconstructed edge of 
the mucosal layer was generated on the adjacent pixels of the removed edge and denoted as Edgei , 
where i is the adjacent pixels of the removed edge. Then the estimated intensity value of each voxel 
of Edgei was calculated, as in Eq. (7): 

 
/2)( ,3,5, iGMiGiEdge III  , (7) 

 where IEdge,i  is the intensity value of each voxel of Edgei, IG5,i is the intensity value at each voxel of 
Edgei after convolving the cleaned colon image by a Gaussian low-pass filter with a 55 voxels 
mask size, and IGM3,i is the intensity value at each voxel of Edgei after convolving the cleaned colon 
image by a Gaussian low-pass filter with a 33 voxels mask size and then performing median 
filtering to eliminate some noises of inharmonious intensity. Subsequently, IEdge,i was calculated and 
replaced on the Edgei to give a more natural appearance of the mucosal layer. From the experiment, 
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the Gaussian filter of both sizes could be applied to 512512 voxels (standard size of CT image) and 
a larger or smaller size of this image. A larger mask size made the image more blurred whilst a 
smaller mask size could not completely reduce the effect of the rapid transition of the intensity 
level. However, the mask size of the Gaussian filter should not be more than 55 voxels since the 
intensity at the reconstructed edge areas would be obviously different from the surrounding tissue 
layers. Even if the median filter could remove noise, it should not be used with a smaller image size 
since it might cause the omission of small protrusions in the tissue layers. 
  
Hybrid Edge Detection 
 
  The algorithm of the hybrid edge detection method was composed of three stages: (i) Canny 
edge detection [26] with automatic threshold setting, (ii) LoG edge detection [27] with automatic 
threshold setting, and (iii) hybrid edge construction. These are described in turn below. 
 
Canny edge detection with automatic threshold setting 
 

The gradient magnitude of the cleaned colon image was calculated. Afterwards, a non-
maximum suppression was performed to track along the top of the ridges so that only the gradient 
magnitudes at the points of the greatest local change were identified. Hysteresis was then applied to 
track the edges and eliminate broken edges and streaks. Hysteresis as implemented here depended 
on the setting scale of the two thresholds, T1 and T2, for detecting the edge location. The value of 
threshold T1 was automatically selected utilising Otsu's method [28], which is normally used with 
the intensity values of the CT image, but here the gradient magnitude of the cleaned colon image 
was applied instead. Then the between-class variance was determined from Eq. (8):  

2
22

2
11

2 ][][ gTgggTggb ww   . (8)  
where wg1 and wg2 are the probability distribution of the gradient magnitude value on the foreground 
and background respectively, g1 and g2 are the mean gradient magnitudes of the foreground and 
background respectively, and gT is the net mean gradient magnitude. The threshold which 
corresponded to the maximum between-class variance was defined as TOtsu. The threshold T1 for 
hysteresis was set to equal to TOtsu, whilst T2 was then calculated from Eq. (9):   

12 kTkTT Otsu  , (9)  
where k is a scaling factor which makes T2 < T1 (in this case k = 0.4) in order for the weak edges to 
be detected. When the gradient magnitude was greater than the T1, it was identified as a strong edge, 
and when it was between T1 and T2, it was identified as a weak edge, unless there was a connecting 
path from the weak edge pixels to the strong edge pixels, in which case edge linking was then 
performed. The derived edges were then labelled as fC. A sample result is shown in Figure 4(b). 
 
LoG detection with automatic threshold setting 
 
  The cleaned colon image was smoothed by the use of a Gaussian filter and subsequently the 
LoG was calculated as the second spatial derivative of the smoothed image. Zero-crossing detection 
was utilised to estimate the edge locations. The threshold value for the zero-crossing operation, Tz, 
was automatically set by the mean absolute value of LoG, as derived from Eq. (10):  
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where LoG(x,y) is the intensity level estimated by the LoG image at coordinates (x, y) of an image 
whose size is mn. The derived edges were then labelled as fLoG. A sample result is shown in Figure 
4(c) in grey and white. Afterwards, the LoG edges located at positions where the gradient 
magnitude was greater than TOtsu were preserved; otherwise they were removed as noisy edges. Hence 
the final LoG edges were acquired by Eq. (11):  









OtsuG

OtsuGLoG
LoG Tyxf

Tyxfyxf
yxf

),(if       0         
),(if  ),(

),( , 
(11) 

 
where fG(x,y) is the gradient magnitude of an image at coordinates (x, y). A sample image of LoG 
edges after elimination of the noisy edges is shown in Figure 4(c) in white.   
 

           
(a) (b) (c) (d)   

Figure 4.  (a) Original CT image slice; (b) after Canny edge detection by automatically-set 
threshold; (c) after LoG edge detection by automatically-set threshold (white) and discarded edge 
(grey); (d) hybrid edge obtained by (b) and (c) 
 
Hybrid edge construction 
 
  Although the Canny edge detection could produce strong edges, it identified an edge without 
examining the deviations from its neighbours [29]. In contrast, the LoG edge detection defined the 
edge by examining an area nearby each pixel, but it was sensitive to noise [30, 31]. Consequently, the 
hybrid edge derived from both detectors could assist in edge localisation and noise reduction better 
than that from either detector alone. Only the edges obtained from both methods and contiguous to the 
air inside the colon were conserved, whilst those at the other locations were eliminated. If the edges 
detected by both detection were at the same location, they were preserved for the hybrid edges and 
assigned as fHyb. The remaining segments in the Canny edge and LoG edge images which were not 
preserved were called SCanny and SLoG respectively. Each segment of SLoG and SCanny which were 
contiguous to SLoG was then analysed by Eqs. (12) and (13) respectively:  
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where n and m are the numbers of pixels of each segment of SLoG and SCanny respectively. The 
notation ILoG(i,j) represents the intensity of each pixel of SLoG at coordinates i and j. Similarly, 
ICanny(k,l) is the intensity of each pixel of SCanny that is contiguous to SLoG at coordinates k and l. 
When ELOG was less than ECanny or when it was more than ECanny and (n-m) was between 0 and 
threshold ks, SLoG was gathered in fHyb and its contiguous SCanny was ignored. Otherwise, SCanny was 
gathered in fHyb and its contiguous SLoG was ignored. Hence all the hybrid edges fHyb were acquired 
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by Eq. (14):  
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where SLoG(i,j) is each segment of SLoG  at coordinates (i, j), SCanny(k,l) is each segment of SCanny that 
is contiguous to SLoG(i,j) at coordinates (k,l), and ks is the threshold to protect the oversize of SLoG. 
Finally, all of the hybrid edges, fHyb, were acquired for calculating the enhanced edge map in the 
next process. A sample image of hybrid edges is shown in Figure 4(d). 
 
Enhanced Gradient Vector Flow (EGVF)  
 

The EGVF was composed of two stages: the first utilised an enhanced-edge map 
computation whilst the second was the EGVF field calculation. 

  
Enhanced-edge map 
 

The gradient magnitudes at the location of the hybrid-edge mask, fHyb, were enhanced while 
the other locations were kept unchanged. Then the enhanced gradient magnitude, fe, was obtained 
by Eq. (15): 
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(15) 

where ke is the weight for the gradient magnitude enhancement (in this case ke=1.15, which was 
selected as the optimal result following the experimental increasing of the value in 0.01 increments), 
G(x,y) is the Gaussian filter,  is the gradient operator and (x, y) are the coordinates of the image. 
The enhanced-edge map, feh, was then calculated from Eq. (16): 

2),(),( yxfyxf eeh  . (16) 
 The enhanced-edge map preserved the gradient magnitude of real edges and decreased the 

gradient magnitude from noise. A sample image of an enhanced gradient magnitude is shown in 
Figure 5(c) and is different from the image obtained by the traditional gradient magnitude (Figure 
5(b)) at the location where the hybrid edges are enhanced by the weight factor. 

 

   
(a) (b) (c)   

Figure 5.  (a) Zoomed view image of square box of Figure 4(a); (b) traditional gradient magnitude of 
(a); (c) enhanced gradient magnitude of (a)  
 
EGVF field   
  The EGVF field was obtained by applying the enhanced-edge map, feh, instead of the 
traditional edge map, as shown in Eq. (17): 



 
Maejo Int. J. Sci. Technol.  2015, 9(01), 64-81; doi: 10.14456/mijst.2015.5  
 

 

73

  22
eheht ffVVV   , (17) 

  
where Vt is the partial derivative of V with respect to time t,  is a regularisation parameter, and 
 and 2 are the gradient and Laplacian operators respectively. Then the EGVF deformable model 
was calculated and used to assist in pulling the curve towards the edge. 
 
Colon Segmentation and 3D Model Reconstruction  

Colon segmentation was computed by utilising the connected component in 3D space. The 
largest volume was assumed to be the colon and the other organs were eliminated. In the case that 
the small intestine was inflated and connected with the colon, removal of the small intestine was 
performed by the anatomical knowledge that the small intestine is smaller but longer than the colon 
and that it connects to the colon at the cecum. Finally, the reconstructed 3D colon model was 
acquired by applying the marching cubes algorithm [32]. 

 
RESULTS AND DISCUSSION    
Colon Cleansing  
  The proposed colon cleansing method was examined in three assessments by a radiologist 
based on the capability of the cleansing method and the confidence in its accuracy. The assessment 
criteria for the evaluation of the colon cleansing were achieved by the guidance of the expert 
radiologist. The first assessment evaluated the capability of eliminating the CEF at each position 
inside the colon in the CT images. Assigned scores (1 to 5) corresponded to percentage ranges of 
cleansing (0-25%, 26-50%, 51-75%, 75-99% and 100% respectively). The second assessment 
evaluated the accuracy of the region cleansing of the colon lumen and was rated from 1 to 4, where 
1 = uninterpretable due to artefacts from faecal tagging, 2 = obvious wall irregularity, 3 = equivocal 
wall irregularity, and 4 = no wall irregularity. The third assessment evaluated the confidence in the 
accuracy of the colon cleansing technique and was scored from 1 to 3, for a low, moderate and high 
confidence level respectively. The mean scores of each data set for the above three assessments are 
shown in Table 1.  

           Table 1.  Results of cleansing assessment 
 

Data set 
Score of colon 

cleansing 
(1 to 5) 

Accuracy of region cleansing 
(1 to 4) 

Confidence in image 
accuracy 
(1 to 3) 

1 4.18 +1.58 3.37 + 0.88 2.79 + 0.41 
2 4.80 + 0.76 3.57 + .0.81 2.91 + 0.32 
3 4.56 + 1.25 2.92 + 0. 91 2.88 + 0.32 
4 4.82 + 0.80 3.29 + 0.90 2.90 + 0.30  

              Note:  Data are shown as mean + 1SD.  Data-set sizes are 1352, 1637, 945 and 1201 segments for  
              data sets 1-4 respectively. 
 

The assessment of the percentage of colon cleansing shows that all of the four data sets had 
a high percentage of cleansing and so the colon cleansing was satisfactory, with most of the CEF and 
PVE voxels being successfully removed regardless of their size and form (Figure 6). Even artefacts 
of inhomogeneous contrast-enhanced materials (mixture of contrast-enhancing agent and residual 
faeces) were eliminated (arrowed in Figures 6(j, m)) and the mucosa layer between air and soft 
tissue after cleansing was smooth and reconstructed. However, in the case that the patients did not 
follow the diet instruction prior to bowel preparation, the data sets might contain some tiny regions 
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of artefacts that sometimes could not be completely removed (arrowed in Figure 6(h)).  
The assessment of accuracy of the region cleansing shows that three of the four data sets had 

satisfactory scores, with only one data set (no. 3) having a lower score, which was due to the 
problem of a beam hardening artefact that rendered the residual material incompletely enhanced. 
Hence the colon wall was not smooth (arrowed in Figure 6(n)).  

Finally, the assessment of the confidence in the accuracy of the images shows that the 
proposed method is satisfactory and sufficient to assist the radiologist in diagnosing colorectal 
cancer and could be used in 3D colon reconstruction.  
 

  
(a)                                       (b) 

      
 (c)  (f)   (i)    (l)   

     
       (d)  (g)   (j)    (m)   

 

      
 (e)  (h)   (k)    (n)    

Figure 6.  (a) CT image slice; (b) CT image after colon cleansing; (c-e, i-k) CT image slice (zoomed 
views); (f-h, l-n) corresponding CT image slice (zoomed views) after colon cleansing  

 

The results of the comparison between the proposed cleansing method and the existing 
method of cleansing by threshold value selecting and vertical filter technique [4] are summarised in 
Figure 7. The existing methods produced a clear cleansed colon image when the selected threshold 
was 1,200 and 1,250 but they produced an oversegment on the CEF (square boxes in Figures 7(d, e, 
g, h)). When the selected threshold was slightly increased to 1,350, the oversegment was not found 
but instead it produced an undersegment on the CEF (square boxes in Figures 7(k, l)). Moreover, for 
all the selected threshold values operated with a vertical filter in the existing methods, the PVE of 
the interface layer between air and CEF that did not lie on the lower part of colon lumen due to  
gravity could not be removed (arrowed in Figures 7(f, i, l)). In contrast, the proposed cleansing 
method produced better results on removing the CEF and PVE from various image intensities and 
different locations of the CEF (Figures 7(m-o)), even if the CEF did not lie on the lower part of the 
colon lumen (arrowed in Figure 7(o)).  
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(a)  (d) (g) (j) (m) 

           
(b)  (e) (h) (k) (n) 

           
(c)  (f) (i) (l) (o)   

Figure 7. (a) CT image slice; (b, c) CT image slice (zoomed view); (d-l) CT image slice after colon 
cleansing by vertical filter method [4] with different thresholding values; (d-f) results from using 
threshold value = 1,200; (g-i) results from using threshold value = 1,250; (j-l) results from using 
threshold value = 1,350; (m-o) CT image slice after colon cleansing by proposed cleansing method  
 

The intensity profiles along the cleaned colon lumen formed by the proposed cleansing 
method and those formed by the existing method of CEF and PVE voxel removal by threshold 
value selecting and vertical filter technique [4] are shown in Figure 8. Rapid intensity transitions 
along the cleaned colon wall were produced by the conventional method (Figure 8(a)), whereas the 
proposed cleansing method with mucosa layer reconstruction technique showed improvement in 
transitions of the intensity level of the colon lumen after colon cleansing (Figure 8(b)). 

 

                
 (a)  (b)   

Figure 8.  Intensity profiles of removed edge: (a) by selected threshold of 1,250 operated with 
vertical filter [4]; (b) by proposed cleansing method  
 
Colon-Wall Detection and Colon Segmentation 
 
 The proposed EGVF was developed to obtain a better detection of the colon-wall boundary 
compared with the traditional GVF. An example of the results with the same weight parameters are 

In
te

ns
ity

 le
ve

l 

In
te

ns
ity

 le
ve

l 

Distance of measuring (pixels) Distance of measuring (pixels) 



 
Maejo Int. J. Sci. Technol.  2015, 9(01), 64-81; doi: 10.14456/mijst.2015.5  
 

 

76

shown in Figure 9. Although the traditional GVF method can detect a variety of colon wall shapes 
with a diminishing shaded intensity, it sometimes produces incomplete edges on the colon boundary 
(arrowed in Figures 9(e-h)), whereas the proposed EGVF gives a more complete edge pattern 
(arrowed in Figures 9(i-l)) with the shape almost like the colon segment from the CT image slice. 
When the automatically derived initial contours are misplaced, however, the EGVF and the GVF 
methods may fail to detect the thin tissue layers between the two segmented colon (arrowed in 
Figures 9(g, k)).  
 

     
(a)  (e)  (i) 

              
(b)  (f)  (j) 

                
(c)  (g)  (k) 

                   
(d)  (h)  (l) 

 
Figure 9.  CT image slice (zoomed views) (a-d) and those after manipulation by GVF (e-h) and 
EGVF (i-l)  

 

 The performance of the proposed method for colon-wall detection and colon segmentation 
was compared with the existing segmentation methods of the watershed algorithm [10] and the 
level-set method [14]. The assessment was performed by comparing the results from all three 
techniques in terms of quality and accuracy of colon-wall detection, independently evaluated by two 
expert radiologists as a blind assessment__the radiologists did not know any information about the 
techniques which had been applied to each set of data. The assessment scores from the two 
radiologists were ranked on a scale from 1 (poor quality) to 10 (best quality), and in order to make 
the comparison reasonable, the initial contours from all techniques were automatically set in the 
same place by reference to the air inside the colon. The gradient magnitude and the standard 
deviation were used in the same range and the weight parameters of all techniques were 
increasingly adjusted in 0.01 increments and were selected from the best experimental results and 
employed to all data sets. For the proposed EGVF method, the weight parameters were μ = 0.01, α = 
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0.03, β = 0.01 and ke = 1.15. The EGVF deformable model algorithm was stopped if the area inside 
the deformable model in the last 10 iterations had no progress. This stopping condition was also 
applied to the level-set method. In addition to the original four data sets used previously (1-4), four 
more data sets (5-8) were examined so as to allow for differently-shaped colons. 

The comparative assessment scores of the quality of the colon-wall detection on each data 
set from both radiologists for each technique, including the p-value by Duncan’s multiple means 
tests, are summarised in Table 2. The proposed method clearly gave better results (numerically and 
statistically) on the detection of the colon wall than those from the other two traditional techniques 
(watershed and level-set methods) for all of the eight data sets examined, including their  net means. 
That the means of all the assessment scores of the quality of colon-wall detection across all data sets 
did not numerically differ much between the three techniques may reflect the large number of 
segments of the colon. 
 
Table 2.  Assessment scores by watershed algorithm, level-set method and proposed EGVF of the 
quality of colon-wall detection of all colon segments 
 

 Radiologist 1   Radiologist 2 
Data set Watershed Level set EGVF p-value  Watershed Level set EGVF p-value 

1 9.77 + 0.79 9.74 + 0.66 9.88 + 0.45 5.13E-08*  9.94 + 0.45 9.95 + 0.28 9.99 + 0.13 0.00035* 
2 9.90 + 0.49 9.91 + 0.39 9.97 + 0.19 3.56E-07*  9.89 + 0.57 9.88 + 0.43 9.98 + 0.20 7.02E-12* 
3 9.76 + 0.89 9.87 + 0.49 9.90 + 0.35 3.80E-08*  9.78 + 0.93 9.89 + 0.45 9.94 + 0.32 2.55E-07* 
4 9.82 + 0.96 9.91 + 0.44 9.93 + 0.37 1.14E-05*  9.88 + 0.89 9.97 + 0.23 9.99 + 0.10 3.12E-07* 
5 9.66 + 1.31 9.80 + 0.72 9.89 + 0.51 1.25E-13*  9.87 + 0.80 9.94 + 0.35 9.98 + 0.22 6.66E-10* 
6 9.79 + 1.02 9.93 + 0.38 9.95 + 0.30 5.39E-13*  9.86 + 0.89 9.95 + 0.33 9.98 + 0.22 1.64E-09* 
7 9.90 + 0.59 9.91 + 0.49 9.95 + 0.40 0.00972*  9.96 + 0.25 9.95 + 0.22 9.99 + 0.05 3.44E-11* 
8 9.85 + 0.68 9.89 + 0.38 9.92 + 0.32 0.00016*  9.92 + 0.57 9.96 + 0.24 9.99 + 0.12 1.56E-07* 

Mean 9.81 + 0.53 9.87 + 0.19 9.93 + 0.16 6.19E-48*  9.89 + 0.54 9.94 + 0.21 9.98 + 0.11 2.22E-50* 
 
Note:  Data are shown as mean + 1 SD. Means followed by * are significantly different at p < 0.01 level (Duncan’s 
multiple means test). Data-set sizes are 1352, 1637, 945, 1201, 1854, 1702, 1728 and 1661 segments for data sets 1-8  
respectively.  

 
In normal cases (segments without arrow in Figure 10), all techniques gave a broadly similar 

performance for the colon-wall segmentation. In special cases (segments with arrow in Figure 10), 
where the colon lumen had a small thin layer or a higher descending shaded intensity at the border 
of the colon lumen, however, each technique gave different results. The watershed algorithm could 
detect an obvious colon wall (Figure 10(h)), but it sometimes produced incomplete edges (arrowed 
in Figure 10(e)) and missed small tissue layers (arrowed in Figures 10(f, g)). Similarly, the level-set 
method could detect an explicit colon wall with a smooth curve (Figure 10(i)), but it could not move 
to the real shape with higher descending contrast intensity and concave regions (arrowed in Figures 
10(j-l)). These could lead to false discrimination and misrepresent the size and shape of the colon- 
wall tissue layer, especially polyps. The EGVF gave a more completed edge (arrowed in Figures 
10(m-p)) on capturing the concave regions, small tissue layers and colon boundary with diminishing 
shaded intensity.  

With respect to the images from special conditions, segments of the colons were selected by 
both radiologists and then the comparative assessment scores of the quality of colon-wall detection 
for these special cases were analysed separately  (Table 3). The mean assessment scores by both 
radiologists of the quality of the colon-wall detection in the selected special cases were all 
numerically and statistically better for the proposed method than the watershed and level-set 
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methods. Hence the proposed method seemed to give better results with various shapes of colon and 
even with special cases, except when the automatically allocated initial contours were misplaced, 
which resulted in rough edges. 

 

                 
(a)  (e) (i) (m) 

       
(b)  (f) (j) (n) 

       
(c)  (g) (k) (o) 

       
(d)  (h) (l) (p)   

Figure 10.  CT image slice (zoomed views) (a-d) and those after manipulation by watershed 
algorithm (e-h), level-set method (i-l) and EGVF (m-p) 
 

Table 3.  Assessment scores by watershed algorithm, level-set method and EGVF of quality of 
colon-wall detection in special cases 
 

 Radiologist 1  Radiologist 2 
Data set Watershed Level set EGVF p-value  Watershed Level set  EGVF p-value 

1 8.78 + 1.46 8.62 + 0.88 9.35 + 0.84 9.78E-14*  9.70 + 1.00 9.72 + 0.59 9.93 + 0.30 0.000179* 
2 9.20 + 1.18 9.26 + 0.87 9.74 + 0.48 8.06E-10*  9.09 + 1.41 9.05 + 0.86 9.83 + 0.54 1.17E-16* 
3 8.09 + 1.80 8.92 + 0.95 9.42 + 0.83 7.45E-14*  8.26 + 2.09 9.08 + 0.94 9.52 + 0.78 1.14E-10* 
4 7.33 + 2.59 8.73 + 1.10 9.02 + 1.00 9.27E-10*  8.27 + 2.95 9.53 + 0.77 9.92 + 0.36 1.17E-08* 
5 7.01 + 2.73 8.25 + 1.35 9.05 + 1.21 4.10E-25*  8.82 + 2.10 9.49 + 0.94 9.80 + 0.81 9.27E-12* 
6 7.30 + 2.60 9.04 + 1.01 9.30 + 0.86 8.57E-22*  8.21 + 2.72 9.36 + 1.01 9.73 + 0.74 4.89E-12* 
7 8.85 + 1.64 9.04 + 1.33 9.41 + 1.21 0.00169*  9.61 + 0.76 9.47 + 0.54 9.97 + 0.18 8.03E-15* 
8 8.63 + 1.63 9.02 + 0.71 9.28 + 0.70 2.13E-07*  9.26 + 1.61 9.66 + 0.64 9.91 + 0.37 1.48E-08* 

Mean 8.25 + 2.11 8.84 + 1.09 9.34 + 0.94 6.50E-76*  9.03 + 1.88 9.44 + 0.82 9.84 + 0.56 9.14E-61* 
 
Note:  Data are shown as mean + 1 SD. Means followed by * are significantly different at the p < 0.01 level (Duncan’s 
multiple means test). Data-set sizes are 257, 199, 118, 83, 209, 132, 157 and 179 segments for data sets 1-8 
respectively.  
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In the final process the colon segmentation was performed based on anatomical structures 
and volume analysis, and the contiguous small intestine was removed. Then the surface rendering 
was performed to finally reconstruct the 3D colon model (Figure 11). The average time for each 
step is shown in Table 4; all calculations were performed in Matlab environmental on Windows 7 
using a PC computer with a 2.0GHz Core i7 processor and 4 GB of RAM memory. 

 

       
 
 

Figure 11.  3D model of the colon 
 

                Table 4.  Average time for each step for a 512512-voxel CT image size 
 

Processing step Time (second) Time (%) 
Colon cleansing   

Elimination of area outside abdomen 0.0957 1.3760 
Image sharpening by Laplacian operator 0.0446 0.6413 
K-means clustering for colon classification 1.1349 16.3180 
Lungs removal 0.0411 0.5910 
Automatic CEF and PVE segmentation 0.7563 10.8743 
Colon cleansing and mucosa reconstruction 0.0897 1.2897 

Colon-wall detection and colon segmentation    
Canny edge detection with automatic threshold setting 0.1188 1.7081 
LoG detection with automatic threshold setting 0.0793 1.1402 
Hybrid edge construction 0.0604 0.8685 
EGVF for colon-wall detection and colon segmentation 4.5341 65.1929 

Total 6.9549 100 
 
CONCLUSIONS 
 

In our hybrid framework for reconstructing a 3D colon model, the accuracy of the colon 
cleansing was satisfactory. All  PVE and CEF were successfully removed and the mucosal layer was 
reconstructed just like in the natural colon lumen. Some troubles with the tiny artefacts were 
overcome by applying more features to extract. The accuracy of the colon-wall detection was better  
than the conventional watershed and level-set methods. The limitation imposed by misplaced initial 
contours could be improved by adding more features to adapt contours. The 3D model of the colon 
was successfully reconstructed and sufficient for the radiologist’s diagnostic examinations.  
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